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Abstract
Log-linear model combination is the standard approach in
LVCSR to combine several knowledge sources, usually an
acoustic and a language model. Instead of using a single scaling
factor per knowledge source, we make the scaling factor word-
and pronunciation-dependent. In this work, we combine three
acoustic models, a pronunciation model, and a language model
for a Mandarin BN/BC task. The achieved error rate reduction
of 2% relative is small but consistent for two test sets. An anal-
ysis of the results shows that the major contribution comes from
the improved interdependency of language and acoustic model.
Index Terms: speech recognition, model combination, system
combination, log-linear modeling, minimum risk training

1. Introduction
Nowadays, the standard approach to large vocabulary continu-
ous speech recognition (LVCSR) is to combine several knowl-
edge sources in a log-linear model. In this approach each
knowledge source gets a scaling factor (the exponent in the log-
linear model) which is optimized in a discriminative manner:
either by direct error minimization on a tuning set or by opti-
mizing some objective function on a training set [1, 2]. The
models of the knowledge sources are usually trained indepen-
dently and the task of the log-linear model combination is to
capture the dependencies between the individual models.

In this work we aim at improving the log-linear model com-
bination by introducing word- and pronunciation-dependent
scaling factors, instead of using a single scale per model. The
idea is that the additional parameters can better describe the in-
terdependency of the individual models. For example, a word-
dependent scale can adjust the impact of the language model
for a given word depending on how well the acoustic model can
discriminate the pronunciation of the word. A detailed descrip-
tion of the log-linear model combination and the dependencies
we try to capture as well as a short discussion of related work is
given in the next section.

We apply our approach to a Mandarin broadcast news and
conversations (BN/BC) task. The log-linear model combina-
tion consists of several acoustic models, a pronunciation model,
a language model, and word penalties. We train the scaling fac-
tors on a separate 120h set using minimum risk training. The
models are applied in a lattice rescoring followed by a confu-
sion network (CN) decoding on character level. We also present
experiments with character- and syllable-dependent scaling fac-
tors, which reduce the problem of data sparseness and are con-
sistent with the character level CN decoding. The models and
the experimental setup are described in Section 3.

Experimental results and an analysis of the results are pre-
sented in Section 4 and 5. The last section draws conclusions
and gives an outlook.

2. Log-linear Model Combination with
Word-dependent Scaling Factors

The general form of the log-linear model we use is shown in
Equation (1). It consists of a set of word-level feature functions
fi(wn; ·) and a corresponding set of word-dependent scaling
factors λi(wn).
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In the following we assume that for each word its acous-
tic spelling is known, that is, we consider a word wn to be
a tuple of the orthography orth(wn) of the word and the
pronunciation pron(wn). Furthermore, by xtn

tn−1+1 we de-
note the consecutive sequence of acoustic features assigned to
word wn. The feature functions used are the logarithms of sev-
eral acoustic models p(pron(wn)|xtn

tn−1+1), of the pronunci-
ation model p(pron(wn)|orth(wn)), of the language model
p(orth(wn)|orth(wn−L

n−1 )), where L is the context length of
the language model, and a word penalty.

In many experiments it was shown that model-dependent
scaling factors are crucial for highly accurate speech recog-
nizers, e.g. [1, 2, 3]. Going from a single scaling factor per
model to word-dependent scaling factors is motivated by the
following observations, which give reason to assume a word-
and pronunciation-dependent interaction between the models.

• varying discriminative power of the acoustic model: the
discriminative power of an acoustic model is usually un-
steady across phones and thus across pronunciations

• varying discriminative power among different acoustic
models: different acoustic front-ends differ in their abil-
ity to discriminate among phones

• several modeling and training issues of the acoustic
model, e.g. the severe independence assumptions and
the presumably underestimated variances of the GMMs

Furthermore, due to the word-dependent scaling factors the
training of the model in Equation (1) estimates word-dependent
pronunciation scores and penalties in a discriminative manner.

Word- or word class-dependent scaling factors were used
in [4, 5]. In the first paper a joint training of the acoustic model,
the language model, and the scaling factors is performed. In
the latter work word class-dependent scaling factors are used
among other techniques in an adaptation step. Neither paper
investigated the improvement coming solely from the word-
dependent scaling factors. Another approach was applied in [6],
where an improvement of around 3% relative is reported by us-
ing scaling factors that depend on classes derived from several
acoustic features.



Table 1: The Mandarin BN/BC system: Training, development,
and test sets. The word-dependent scaling factors are trained
on the 120h “Λ-training” set. For the first test set no word-
segmented transcripts are available.

running vocabulary
corpus duration words char.s words char.s
AM-training ∼230h 2.4M 4.0M 42.1K 5.3K
Λ-training ∼120h 1.3M 2.2M 33.7K 4.4K

held-out 1.5h 12.7K 21.5K 4.4K 1.8K
development 2.5h 27.5K 46.8K 5.3K 1.9K
test1 1.6h - 28.1K - 1.7K
test2 1h 10.5K 18.2K 2.9K 1.4K

An alternative approach is to consider the interdependency
of the models directly in model training or model adaptation.
Discriminative language model training was done e.g. in [7].
The major problem for LVCSR tasks is that the vast amount of
language model training data comes without a spoken form. In
the recent years some work was done on considering the depen-
dencies between different acoustic front-ends already in acous-
tic model training yielding small improvements, e.g. [8].

3. Experimental Setup
The word-dependent scaling factors are tested in a Mandarin
BN/BC system [9]. We use two different training sets for acous-
tic model training (230h) and scaling factor training (120h). On
the 230h set we train models for three different acoustic front-
ends: MFCCs, PLPs, and gammatone filter bank based features
(GTs). The acoustic models are maximum likelihood estimates
and use an LDA, VTLN, and constrained-MLLR in training and
in addition MLLR in recognition.

The log-linear model combination of the three acoustic
models with word-dependent scaling factors is applied in a lat-
tice rescoring step. Lattices are produced with the MFCC sys-
tem and are subsequently arc-wise rescored with fixed word
boundaries. For experiments on character or syllable level the
word arcs are first split into character arcs using the time in-
formation from an arc-wise forced alignment with the MFCC
model. The lattices for the 120h training and the development
and test sets are produced with exactly the same setup.

The 60K vocabulary and the four-gram language model
are kindly provided by SRI. Unfortunately, the language model
training data includes both training sets which results in a much
lower perplexity on the 120h set than on the development and
test sets. In order to get an idea of how much we loose due to the
discrepancy we created an additional held-out set by removing
each hundredth segment from the 120h set. Table 1 summarizes
the corpora statistics.

3.1. Scaling Factor Classes

If a word in the 120h training set occurs less often than a cut-
off Nmin, then the corresponding scaling factor is replaced by
a backing-off scale. The backing-off scaling factor depends on
the number of phonemes in the pronunciation of the word:

λi(w) =


λi,w, if #w > Nmin

λi,|pron(w)|, else (2)

For experiments on character level we use only a single
backing-off class. In order to get an idea of how important

the lexical information is we build an alternative set of scaling
factors where we tie character-dependent scaling factors among
equal pronunciations, i.e. we build syllable classes.

Table 2 contains the number of word-, character-, and
syllable-dependent scales and the corresponding cut-offs.

We measured the coverage of running words in the devel-
opment set which have a word-dependent scaling factor: for the
cut-offs of 200, 50, 20, 10, and 5 the coverage is 67%, 83%,
90%, 93%, and 96%. For character- and syllable-dependent
scaling factors the coverage is almost complete.

3.2. Scaling Factor Training

For most experiments we combine five models: the three acous-
tic models, the pronunciation model, and the language model.
The interdependency between these models is sufficiently de-
scribed by putting the word-dependent scaling factors on four
of the five models. Following the considerations from Section 2
we put the word-dependent scaling factors on the acoustic mod-
els and the pronunciation model (and on the word penalty, if
used).

For parameter estimation we apply minimum risk training
with either the smoothed phoneme error (MPE) or word error
(MWE) as objective function, where only the scaling factors
are optmized. The estimation is done iteratively using Rprop, a
gradient-descent algorithm. Time boundaries (and thus acous-
tic model scores and costs) are kept fixed among the training
iterations. The implementation of the MPE objective function
follows directly [10]. For character level experiments we try in
addition MWE training, where we derive the costs from a con-
fusion network (CN). The CNs are build from the training set
lattices using our standard CN-decoder. In preliminary exper-
iments we also tried MMI but it was inferior to minimum risk
training.

Regularization turns out to be important, similar to the
I-smoothing used in [10] for GHMM training. Equation (3)
shows the objective function for minimum risk training, where
L denotes the loss function.
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Λ0 is the set of model-dependent scaling factors derived from a
direct error rate minimization on the development set using our
CN-decoder. Thus, the initial LM scaling factors are around one
and the acoustic model scaling factors are close to the inverse
language model scale (as used in Viterbi decoding) divided by
the number of acoustic models. We optimize the scaling factors
until convergence in the objective function occurs and take the
scaling factors from the last training iteration for decoding. The
regularization constant R is optimized on the development set,
which is costly and therefore is not done in fine-grained steps.

For discriminative acoustic model training it is known that
using a weak language model improves the training result. We
did some preliminary experiments using uni- and bigram lan-
guage models, but all results were clearly worse.

For lattice decoding we use the same character-based CN-
decoder that we employ in MWE training. For all log-linear
model combinations (using one or several acoustic models) we
observe a slight 2-3% relative improvement over the Viterbi re-
sults. The improvements persist for experiments with word-
dependent scaling factors.
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Figure 1: Model-combination results for 25 training iterations and 6,904 word-dependent scaling factors. The word-dependent scaling
factors are trained on 120h. The left plot shows the objective function and character error rates for the training set, the held-out set,
and the development set. The right plot shows the progression of the error rates for the development set and the two test sets.

4. Experimental Results
Figure 1 shows detailed results for the training and evaluation of
the best performing setup which consists of 6K word-dependent
scaling factors. In the left plot we see that the objective func-
tion (phoneme accuracy) improves smoothly and the character
error rates (CER) on training, held-out, and development set
smoothly decrease. The right plot shows again the development
set together with the two test sets. Both, the Viterbi and the CN
results are plotted.

The plots for the other setups look rather similar. Ta-
ble 2 assembles the results for word-, character-, and syllable-
dependent scaling factors for different cut-off values. The num-
ber of classes refers to the number of scaling factors per model;
throughout the language model gets only a single scaling factor.
The baseline is the setup using a single scale per model.

4.1. Word level

The best improvement is achieved with 6K scaling factors, but
the differences among the cut-off values is tiny and especially
for 3K and more scaling factors it might even disappear with
a more fine-grained optimization of the regularization constant.
The relative improvement in CER is around 2%, a little better
for the held-out set where we observe a relative improvement
of 3%. On the training set we measured the error rate of the
Viterbi decoding and even here we observe at most a gain of
4% relative. Additional word penalties do not help.

4.2. Character level

The results with character-dependent scaling factors are similar
to the word-dependent results. The differences in the word- and
character-level baselines are due to fixing the boundaries of the
character arcs with the MFCC model. When rescoring with the
PLP and GT model the results are suboptimal compared to a
word arc-wise rescoring.

The MWE results are a little worse than for MPE. We hoped
that the CN-decoder benefits from MWE trained, character-
dependent scaling factors, but the gap to the corresponding
Viterbi results do not widen.

Going from character- to syllable-dependent scaling factors
changes only the results for one test set, for which already mov-
ing from words to characters yields slightly worse results.

5. Analysis
The only small improvements we get from word-dependent
scaling factors are sobering. Even on the training set the im-
provement is rather small.

A further analysis is to show which interdependencies are
eventually captured by our approach. The first question is:
how much of the improvement comes from the pronunciation
weights? To answer this question we train a log-linear model
combination with a single pronunciation model scale. The re-
sults remain almost equal, which is not surprising as in Man-
darin only few pronunciation variants are known.

Next, we investigate the influence of the word length. In
preliminary experiments we used scaling factors that depend
only on the number of phonemes in the pronunciation of a word.
The improvements, if at all, were much smaller than for word-
dependent scaling factors. Looking at the results in Table 2
we observe that character-dependent scaling factors perform al-
most as good as the word-dependent ones. All the differences
are rather tiny which does not allow us to draw reliable conclu-
sions, but the results indicate that the interdependency between
the models does not strongly depend on the word length.

The remaining question is: how important are the word-
dependent scaling factors for modeling the interdependency of
the three acoustic models? We performed the following experi-
ment: we build a MFCC, a PLP, and a GT system using the best
word-dependent scaling factors trained on the log-linear model
combination containing the three acoustic models. Obviously,
in the resulting systems the impact of the acoustic and the lan-
guage model are not balanced anymore. To compensate for that
we introduce an additional scaling factor for each model, which
we optimize directly on the development set. For a fair com-
parison we performed the same optimization for the log-linear
model combination of all three acoustic models. The results
are given in Table 3. We see that the average relative improve-
ment for the three systems using only a single acoustic model
is almost equal to the relative improvement for the log-linear
combination containing all three acoustic models. The con-
clusion is that the word-dependent scaling factors presumably
do not capture the dependencies between the acoustic models,
but solely model the interdependency of acoustic and language
model. Which in turn explains why we don’t benefit from ap-
plying a weaker language model in training.



Table 2: CN-decoding results for the log-linear model combi-
nation using word-, character-, and syllable-dependent scal-
ing factors. The scaling factors are trained on 120h using ei-
ther minimum phone error (MPE) or minimum character error
(MWE) training.

opt. #classes [%CER]
criterion (cut-off) dev test1 test2 held-out
word-dependent scaling factors
MPE 1 13.94 14.51 12.73 9.76

997(200) 13.80 14.26 12.56 9.59
3,596( 50) 13.76 14.23 12.57 9.54
6,904( 20) 13.73 14.19 12.51 9.43

10,911( 10) 13.73 14.28 12.53 9.57
16,665( 5) 13.74 14.25 12.46 9.52

character-dependent scaling factors
MPE 1 13.95 14.59 12.63 9.77

2,708( 20) 13.79 14.37 12.40 9.54
3,707( 5) 13.80 14.37 12.40 9.55

MWE 1 13.94 14.60 12.65 9.77
2,708( 20) 13.84 14.42 12.55 9.77
3,707( 5) 13.83 14.42 12.50 9.78

syllable-dependent scaling factors
MPE 1 13.95 14.59 12.63 9.77

1,064( 20) 13.79 14.51 12.40 9.60
MWE 1 13.94 14.60 12.65 9.77

1,064( 20) 13.91 14.61 12.46 9.84

A last experiment that points in the same direction is to
combine and decode the three systems in a confusion network
combination (CNC). We compute separate lattice sets with the
MFCC, PLP, and GT system and rescore them using the best
word-dependent scaling factors from the log-linear model com-
bination. The results of the CNC are shown in Table 3, the
relative improvements are even slightly higher than for the log-
linear model combination.

6. Conclusions and Outlook
In this work we investigated the influence of word- and
pronunciation-dependent scaling factors in a log-linear combi-
nation of three acoustic models, a pronunciation and a language
model. The scaling factors are trained on a large, separate 120h
training set. But only an improvement of 2% relative is ob-
served for a Mandarin BN/BC task. We see the maximum im-
provement already for around 3K scaling factors.

A further analysis of the results shows that the improvement
comes presumably almost solely from the interdependency of
the language and the acoustic models. The word-dependent
scaling factors cannot boost the gain from assembling three
acoustic models in the log-linear model combination.
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Table 3: CN-decoding results for log-linear model combina-
tions using one or several acoustic models, and for a system
combination. The word-dependent scaling factors are opti-
mized for the model combination containing the three acoustic
models. Each model has an additional scale; for each setup
these scales are optimized directly on the development set.

acoustic [%CER]
front-end(s) #classes dev test1 test2
model combination with one acoustic model
MFCC 1 14.79 15.18 13.32

6,904 14.44 15.07 12.98
PLP 1 15.07 15.20 13.67

6,904 14.71 15.05 13.54
GT 1 15.47 15.97 14.05

6,904 15.20 15.87 13.68
model combination with all acoustic models
MFCC+PLP+GT 1 14.01 14.51 12.71

6,904 13.69 14.18 12.52
system combination (CNC)
MFCC+PLP+GT 1 13.72 14.13 12.44

6,904 13.35 13.89 12.13
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