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Abstract

Log-linear models have recently been used in acoustic model-
ing for speech recognition systems. This has been motivated
by competitive results compared to systems based on Gaus-
sian models, and a more direct parametrisation of the poste-
rior model. To competitively use log-linear models for speech
recognition, important methods, such as speaker adaptation,
have to be reformulated in a log-linear framework. In this work,
an approach to log-linear affine feature transforms for speaker
adaptation is described. Experiments for both supervised and
unsupervised adaptation are presented, showing improvements
over a maximum likelihood baseline in the form of feature space
maximum likelihood linear regression for the case of supervised
adaptation.

Index Terms: speech recognition, adaptation, log-linear mod-
els

1. Introduction

In recent years, discriminatively trained log-linear models have
been successfully used in hidden Markov model (HMM) based
acoustic models for automatic speech recognition (ASR), tak-
ing the place of Gaussian mixture models (GMMs). Log-linear
models have been shown to be competitive or better than com-
parable discriminatively trained Gaussian models [1].

In order to successfully use log-linear modeling in a state-
of-the-art speech recognition system, it is necessary to repro-
duce or replace all important methods used in improving such a
system. Speaker adaptation is one important method to improve
the performance of a speech recognition system, and especially
the use of feature space maximum likelihood linear regression
(fMLLR) speaker adaptive training (SAT) [2], has proved to be
an important part of state-of-the-art systems [3]. Thus, it is im-
portant to develop and investigate adaptation methods for log-
linear models if they are to replace Gaussian models in a state-
of-the-art speech recognition system.

In this work, speaker adaptation of log-linear models, using
affine feature transforms, similar to fMLLR, is introduced. This
uses methods similar to the estimation of linear feature trans-
forms for log-linear models that was introduced in [4]. Related
work include discriminative adaptation of Gaussian models us-
ing the maximum mutual information criterion, as described for
instance in [5].

2. Log-linear Models in ASR

The use of log-linear modeling in ASR has recently been intro-
duced. It can be motivated as a more direct formulation of the
posterior probability described by a (discriminatively trained)
Gaussian model.

Assume a sequence of acoustic vectors :clT, and a word se-
quence wl¥. From [6], the log-linear hidden Markov model

(LHMM) defines a posterior probability
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for a large vocabulary ASR system, where Z (27 ) denotes the
normalization constant. The parameters of the model are given
by the scalars o, &, s, as, and the vectors A, and the total
set of all parameters is denoted by A = {a, ., & o1, sy As )

The LHMM is a linear-chain hidden conditional random
field [7] with the same model structure as a Gaussian hid-
den Markov model, and log-linear parametrization of the sub-
models. This is not a log-linear model in itself, due to the sum
over the state sequences in the numerator. Due to the close re-
lationship to log-linear models it will still be included under the
term log-linear modeling in the present work.

As described in [6], the estimation of the parameters of such
a model is typically performed using the maximum mutual in-
formation (MMI) criterion, i.e by maximizing the log-posterior.
Conventional lattice based MMI replaces the sum over all word
sequences in the normalization constant Zx (2] ), by an approx-
imation based on a word lattice. The log-posterior to be opti-
mized over the model parameters is given by

Q(A) = log P (w?' |21), )

Due to the sum in the numerator of the LHMM posterior this
is a non-convex criterion. To achieve more robust optimization,
it would be advantageous to use a convex formulation instead,
since one of the advantages of LHMMs is the existence of such
criteria. In [1], two convex optimization criteria are described,
the first being a frame posterior based criterion, similar to the
criteria used for hybrid neural network HMM models [8], the
second being a convex modification of the lattice based MMI
criterion. Nevertheless, experience shows that also the normal
lattice based MMI criterion works well in practice, and is used
for parameter estimation in the present work, since it has lower
complexity than the modified convex lattice based MMI crite-
rion.

The resulting optimization problem can be approached us-
ing any optimization method. In [6] as well as in the present
work, the Rprop method [9], a gradient based method that only
takes into account the sign of the gradient, is used.



3. Log-linear Model Adaptation

To devise a speaker adaptation method for LHMMs, it is in-
structive to look at the formulation of adaptation for the case of
Gaussian models for inspiration. One important speaker adap-
tation method is fMLLR, that can be used both for recognition
side adaptation, and speaker adaptive training. fMLLR consist
of an affine transformation of the acoustic feature vector ¢,
such that x; = Az, + b, where the matrix A and the vector b
are speaker dependent parameters.

Single global feature transforms have recently been used to
improve classification performance when using log-linear mod-
eling [4]. A similar approach can be utilized for speaker adap-
tation.

By extending the acoustic feature vector x; with a constant
element, such that the new feature vector & = [1 z']7, and
combining the model parameters o, and ), into one vector
9s = [as Al]", the emission model part, E(s],t), of Equa-
tion 1 can be rewritten such that

E(slT,t) = exp (ast + )\th)

= exp (9;&) . 3)

Modifying Equation 1 to include an affine transformation
of the features gives

E(s1,t) = exp (ast + )\'Srt (Aze + b))

= exp (9; Wft)
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where the extended transformation matrix W is defined as
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to give a parametrization identical to fMLLR. It would also be
possible to use an unconstrained matrix W, but this was not
done in the present work. From the explicit component form
of Equation 4 it can be seen that if the model parameters 6
are kept fixed, the resulting emission model is log-linear in the
matrix components W;;.

As in the previous section, the estimation of the parame-
ters of the transformation matrix can be performed using differ-
ent criteria. In the present work the segment-wise lattice based
MMI criterion is used. By including the adaptation matrix W,
the criterion from Equation 2 changes to

Q(A, W) = log Py (wy |21), (6)

where P (wr' |21) is equivalent to Equation 1, but with the

emission model exchanged with E(s{ ,t) from Equation 4, and
the normalization approximated over a word lattice. As with
the estimation of the regular emission model parameters, this
criterion is optimized using the Rprop criterion.

From Gaussian models we know that there exists an equiva-
lence between fMLLR and so called constrained maximum like-
lihood linear regression, that is a transformation of the model,
where the mean and covariances are transformed using the same
matrix. Using straightforward matrix algebra, a similar equiva-
lence can be shown also for this case;

E(sT,t) = exp (61,W&:) = exp ((WTGSt)Tst) )

It is thus clear that the transformation &, = W&, of the
(extended) features, is equivalent to the transformation ¢, =
W7, of the model. Note that no offset vector is included in
the model transformation formulation. This is to be expected
since the output of a LHMM is invariant to a global offset to the
emission parameters.

4. Experiments

Experiments were conducted based on the European Parliament
plenary sessions (EPPS) corpus, from the TC-STAR project [3].
The EPPS task is a transcription task, where adaptation nor-
mally is used in an unsupervised framework. In the present
work, it was decided to evaluate the use of both supervised and
unsupervised adaptation. To facilitate this, the original EPPS
2006 development corpus was split into two corpora, one adap-
tation corpus, used for supervised adaptation, and one test cor-
pus, on which the speech recognition results were produced.
For the current experiments, the (automatic) segmentation and
speaker clustering were taken as given, and for each speaker
cluster, the first half of the segments were assigned to the adap-
tation corpus, and the rest to the test corpus. Table 1 gives the
statistics of the resulting corpora.

Table 1: Adaptation and test corpora

| | Adapt | Test |
Net Duration 1.55h | 1.64h
# Segments 356 370
# Speaker clust. 32
# Running words || 13704 [ 14784
Perplexity 107.0 | 112.7
OOV Rate 0.63 0.78

The baseline acoustic model used for the adaptation ex-
periments was taken from a system developed during the 2007
TC-STAR evaluation. The system used a MFCC front-end aug-
mented with a single voicedness feature, and the acoustic mod-
els used 4500 states. Furthermore, in all experiments a one pass
VTLN method, using a classifier for warping factor estimation,
was used.

The goal of this work is to demonstrate the effectiveness
of speaker adaptation for LHMMs. To facilitate the conversion
of the acoustic model to log-linear form, it was decided to use
single Gaussian models, sharing a single globally pooled co-
variance (as opposed to the Gaussian mixture models used in
the final system in the evaluation.) It should be noted that the
recognition performance of the system used in the following
experiments are lower than those for a state of the art speech
recognition system. Since the eventual goal of LHMM adapta-
tion is to use it with models trained from scratch in a log-linear
framework, such as those described in [10], the following ex-
periments should be seen as a demonstration of feasibility.

In all the experiments, per-speaker fMLLR matrices were
first estimated, using the original Gaussian models. These max-
imum likelihood estimated matrices were used to initialize the
discriminative log-linear adaptation matrix estimation. The log-
linear adaptation matrices were estimated based on the lattice
based MMI criterion, using the Rprop optimization criterion.
The resulting matrices were used as feature transforms, and the
performance of the discriminative adaptation was evaluated af-
ter each iteration.



4.1. Supervised Adaptation

For the supervised experiments, the acoustic model was adapted
on the adaptation corpus for each speaker cluster, using the
available manual transcriptions. Table 2 shows the baseline and
fMLLR results for the case of supervised adaptation. In figure 1,
the word error rate (WER) is plotted as a function of the num-
ber of iterations of log-linear based MMI estimation performed,
where iteration zero means the performance with the initializing
fMLLR transform. Figure 2 show the development of the sum
of the objective function of Equation 6 over all speaker clusters,
as a function of the number of estimation iterations.

Table 2: Baseline and supervised fMLLR results

| Iteration H WER[%] ‘
Baseline 31.9
fMLLR Iter. 1 27.2

fMLLR Iter. 2 26.8
fMLLR Iter. 3 26.8
fMLLR Iter. 4 26.8

Figure 1: WER [%] over iterations, supervised adaptation
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Figure 2: Objective function over iterations, supervised adapta-
tion

4.2. Unsupervised Adaptation

Unsupervised discriminative training does not typically lead to
large improvements, compared to maximum likelihood adapta-
tion. Nevertheless, if one wants to use exclusively log-linear
modelling in a typical ASR system, where unsupervised adap-
tation plays an important part, its use will be needed. Table 3
shows the baseline and maximum likelihood results. In figures 3
and 4, the WER and objective function for successive iterations
of the MMI estimation are shown.

Table 3: Baseline and unsupervised fMLLR results
Iteration | WER[%] |

Baseline 31.9
fMLLR Iter. 1 27.8
fMLLR Iter. 2 27.5
fMLLR Iter. 3 27.5
fMLLR Iter. 4 27.5

Figure 3: WER [%] over iterations, unsupervised adaptation
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Figure 4: Objective function over iterations, unsupervised adap-
tation



4.3. Discussion of Results

Table 4 summarizes the important results from the experiments.
It can be seen that the log-linear speaker adaptation give a siz-
able improvement over fMLLR, in a supervised framework. Us-
ing unsupervised adaptation though, the improvement is mini-
mal. This agrees with previous results, where either small or
no improvements have been observed from discriminative unsu-
pervised adaptation, compared to the maximum likelihood case;
see for instance [11].

Table 4: Summary of results

l [ Supervised [ Unsupervised ‘

Baseline 31.9
fMLLR 26.8 27.5
LL Adapt 25.9 27.4

In both the case of supervised and unsupervised adaptation
we see that the optimum in WER is reached without any conver-
gence in the objective function being reached, indicating that se-
vere overfitting takes place. It would be advantageous if a more
direct correspondence between objective function and word er-
ror rate could be achieved, since one of the potential advantages
of the log-linear formulation is the existence of convex objec-
tive functions. On the other hand, it must be remembered that
no regularization was used in these experiments. In future work,
the use of regularization will be investigated.

5. Conclusions

This paper presented work on discriminative speaker adapta-
tion for log-linear acoustic models. A method for affine feature
transform estimation using the maximum mutual information
criterion is described, and its use for speaker adaptation is dis-
cussed.

By applying supervised log-linear discriminative features
space adaptation, a substantial improvement is seen in com-
parison to maximum likelihood adaptation using the same
parametrization. This is consistent with previous results com-
paring maximum likelihood and discriminative adaptation [5].
When applying log-linear adaptation in an unsupervised frame-
work, no reliable improvements can be observed, as expected
from previous results from discriminative unsupervised adapta-
tion [11].

Future work includes investigating the different optimiza-
tion criteria for LHMM adaptation, including the use of regu-
larization. Additionally the use of different adaptation matrices
for different LHMM states, as well as different parameter ty-
ings, will be investigated.
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