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Abstract

The goal of statistical language modeling is to find probabil-
ity estimates for arbitrary word sequences. To obtain non-zero
values, the probability distributions found in the training data
need to be smoothed. In the widely-used Kneser-Ney family
of smoothing algorithms, this is achieved by absolute discount-
ing. The discount parameters can be computed directly using
some approximation formulas minimizing the leaving-one-out
log-likelihood of the training data.

In this work, we outline several shortcomings of the stan-
dard estimators for the discount parameters. We propose an
efficient method for computing the discount values on held-
out data and analyze the resulting parameter estimates. Ex-
periments on large English and French corpora show consistent
improvements in perplexity and word error rate over the base-
line method. At the same time, this approach can be used for
language model pruning, leading to slightly better results than
standard pruning algorithms.

Index Terms: language model smoothing, absolute discount-
ing, Kneser-Ney method, language model pruning

1. Introduction
The task of statistical language modeling consists of estimating
accurate probabilities for any possible word sequence. Many
different modeling approaches exist, but only few of them show
competitive results in real-world applications. Recent advances
include improvements in exponential models (‘model M’, [1])
and neural networks ([2], [3]) where feed-forward or recur-
rent network architectures are trained to estimate word posterior
probabilities.

On the other hand, standard n-gram smoothing techniques
for language modeling are still superior in several aspects: Be-
sides their good performance in terms of word error rate, they
are essential for efficient decoding, and due to fast training
times, they can benefit from arbitrarily large amounts of train-
ing data. In addition, any modeling approach can usually be
improved by interpolation with a smoothed n-gram language
model (LM), see e. g. [3].

A variety of smoothing algorithms has been proposed,
among which the Kneser-Ney method ([4]) often has been re-
ported to give best results.

This technique relies on absolute discounting. Given an n-
gram (h,w) where w denotes a word, and h the preceding his-
tory words, a constant offset b (discount) is subtracted from the
n-gram count N(h,w) found in the training data. Interpolating
higher-order probability estimates with lower-order ones, this

results in the estimation formula

p(w|h) = max


N(h,w)− b
N(h, ·) , 0

ff
+ γ(h) · p(w|h̄).

We stick to the notation introduced in [4]: By h̄ we denote
the generalized history, dropping the leftmost history word,
and γ(h) is the interpolation weight. The above recursion ter-
minates at the unigram level, interpolating unigram estimates
with zerogram probabilities.

In [4], the method of absolute discounting is refined by in-
troducing an optimized lower-order distribution, using so-called
modified counts. Based on this work, [5] and [6] develop
smoothing methods for multiple discounts (modified Kneser-
Ney smoothing). Then, in the above formula, b needs to be re-
placed by bN(h,w) as the discount depends on the n-gram count.

For all smoothing algorithms discussed here, approxima-
tion formulas have been derived to compute the values of the
discount parameters. In [6], the authors also compute the dis-
count parameters based on held-out data. Unfortunately, they
optimize parameters just one by one using Powell’s algorithm.
They give results for at most three parameters. Their experi-
ments seem to suggest that no improvements can be obtained
by using a held-out corpus when the amount of training data is
large.

In addition, it is common practice not to optimize the dis-
counts: Standard software implementations like [7] and [8] only
offer the direct computation of the discount values based on
conventional formulas.

In this work, we address the following two questions:

1. What is the impact of using discount values which
are optimized with respect to perplexity when a large
amount of training data is available?

2. How can these values be computed efficiently?

Contrasting previous experiments, we also extend the num-
ber of discounts to much larger values. We run experiments on
several corpora, reporting on results in terms of perplexity and
word error rate. Finally, we show that our method can easily be
applied to language model pruning.

2. Estimation of Discount Parameters
The standard discount equations are derived in such a way that
the leaving-one-out log-likelihood of the training dataX

hw

N(h,w) · log p1(w|h)

is minimized. Here, p1(w|h) denotes the probability estimate
of w given h, leaving out one occurrence of the n-gram (h,w)
from the training data.



In case of a single parameter b, this results in the approx-
imate discount estimator b = n1/(n1 + 2n2), where nr de-
notes the number of n-grams whose count (or modified count)
is equal to r in the training data. Often, three discounts b1,
b2, and b3+ are used, depending on whether N(h,w) = 1,
N(h,w) = 2, or N(h,w) ≥ 3. Then, the discounts are usually
set according to the equations

b1 = 1− 2b
n2

n1
= b, b2 = 2− 3b

n3

n2
, b3+ = 3− 4b

n4

n3
.

Using these formulas for computing the discounts may in-
cur the following problems:

1. The above equations are (and can only be—no closed-
form solutions exist) only approximations to the exact
solutions.

2. Their derivations depend on backing-off smoothing (see
below for more details). On the other hand, interpola-
tion generally performs better. Nevertheless, discounts
of interpolated models are computed using the backing-
off discount formulas.

3. It is not clear how to set the discounts when a language
model is pruned. In practice, the discounts are computed
for the full model, and are not changed after pruning.

Furthermore, the derivation of the lower-order distribution
in [4] and [6] relies on using a single discount parameter. Using
more than one parameter results in probability distributions that
do not satisfy the marginal constraints exactly (see e. g. [9]).
On the other hand, increasing the number of discounts results
in a more accurate modeling of the probability mass for unseen
events, and experiments show consistent improvements.

For these reasons, we revisit the idea of optimizing the dis-
counts on held-out data. In principle, the optimization could
also be carried out on the training data using leaving-one-out,
but then the optimization process would be overly complex as
the amount of training data usually exceeds the size of held-out
data by several orders of magnitude.

2.1. Interpolation

The Kneser-Ney smoothing algorithm makes use of the same
formula as absolute discounting for the estimation of p(w|h).
The interpolation weight γ(h) is defined as

γ(h) =
b|b|+N|b|+(h, ·) +

P|b|−1
r=1 brNr(h, ·)

N(h, ·)
where |b| is the number of discounts, andNr(h, ·) is the number
of words that have been observed r times with the given history.

The log-likelihood function F on held-out data can then be
defined as follows:

F =
X
hw

C(h,w) log p(w|h)

where the C(h,w) denote the count of (h,w) in the held-out
data. Normally, discount parameters are not tied across different
orders, resulting in a matrixB ∈ Rn×|b| of discount parameters
for n-gram models.

Now we can compute the optimal discount values by maxi-
mizing F . The corresponding optimization problem is not con-
cave ([10]): Even when restricting to bigrams (v, w) and a sin-
gle discount, after some calculations, for the eigenvalues λ1,2

of the Hessian of p(w|v) we obtain

λ1,2 = ±N1+(v, ·)
W −N+

1+(·, ·)
WN+(·, ·)N(v, ·)

where the superscript + indicates modified counts, andW is the
vocabulary size. Because of opposite signs for λ1,2, the Hessian
is not negative-semidefinite, and thus p(w|h) not concave. Fi-
nally, as p(w|h) is not concave, log p(w|h) is neither.

We optimize F using the improved Resilient Propagation
algorithm (RPROP) including weight backtracking as described
in [11] which was shown to yield good performance when op-
timizing non-convex (or, in our case, non-concave) problems,
and which is easy to implement.

As RPROP is a first-order optimization method, we need to
compute∇F . For the discount r of a given order, we have

∂F

∂br
=
X
hw

C(h,w)
1

p(w|h)

∂

∂br
p(w|h),

and subsequently, for the highest order discounts we obtain

∂

∂br
p(w|h) =

Nr(h, ·)
N(h, ·) p(w|h̄)−

(
1/N(h, ·), N(h,w) = r

0, else

given that N(h, ·) > 0. In case N(h, ·) = 0, the derivative
is zero. For brevity, we omit the derivatives for the lower-
order discounts. The general structure of the above derivative
remains the same, except for multiplying higher-order interpo-
lation weights.

2.2. Backing-off

In principle, the same approach can be done for backing-off
smoothing. In this case, the probability estimate for p(w|h)
takes the form

p(w|h) =

8<:
N(h,w)− bN(h,w)

N(h, ·) N(h,w) > 0

γ̃(h) · p(w|h̄) else.

The problem is that the backing-off weight

γ̃(h) = γ(h)
. „

1−
X

w′:N(h,w′)>0

p(w′|h̄)

«
now also includes a normalization term which cannot be
dropped in the derivative for lower-order discounts. We thereby
lose an important advantage of the optimization for interpola-
tion: The complexity of the target function F only depends on
the size of the held-out corpus. In contrast, due to the summa-
tion over all words from the training corpus, for backing-off this
no longer is the case.

As backing-off models usually perform worse than inter-
polated ones, we decided not to investigate the optimization of
backing-off models in more detail.

2.3. Pruning

A simple way of reducing the size of a language model is to use
count-cutoffs: All n-grams seen less than a predefined threshold
are discarded. As a result, the probability p(w|h) for pruned n-
grams (h,w) is modeled by the lower-order distribution.

An alternative approach to LM pruning based on relative
entropy was introduced in [15]. In contrast to count-cutoffs,
this method is self-contained, i. e., the pruning method does not
rely on the count data but only on the LM itself. Let p be the
probability distribution of an LM, and let p′ be the distribution p
where the estimate p(w|h) has been removed. The entropy cri-
terion then discards those n-grams for which

p(h)
X
w

p(w|h)
log p(w|h)

log p′(w|h)
< θ

for a predefined threshold θ.



NAB Quaero EN Quaero FR
Smoothing |b| type count-cutoffs dev test dev test dev test
KN 1 backing-off 1-1-1-1 90.2 91.4 226.8 226.4 177.4 199.3
KN 1 interpolated 1-1-1-1 86.1 87.2 220.0 218.6 167.7 191.2
mod KN 3 interpolated 1-1-1-1 84.5 85.7 210.9 209.2 161.9 183.2
mod KN 3 interpolated 1-1-1-2 89.0 90.3 208.5 206.1 160.5 181.6
mod KN 3 interpolated 1-1-1-1-1 78.3 79.3 208.4 207.0 160.0 180.8
opt KN 1 interpolated 1-1-1-1 85.7 86.8 212.4 210.5 163.0 185.1
opt KN 3 interpolated 1-1-1-1 84.4 85.5 203.1 200.7 157.8 177.4
opt KN 3 interpolated 1-1-1-1-1 77.9 78.9 200.0 197.9 155.9 175.2
opt KN 10 interpolated 1-1-1-1 84.3 85.4 200.9 198.5 156.8 175.5
opt KN 10 interpolated 1-1-1-1-1 77.9 78.9 200.3 197.6 155.0 173.5
opt KN 50 interpolated 1-1-1-1 84.3 85.4 199.5 197.9 156.1 175.2

Table 1: Perplexity results for different smoothing methods, number of discount parameters, and count-cutoffs; a count-cutoff of
‘1-1-1-2’ means that at the fourgram level, only n-grams seen at least twice are retained, whereas singletons are kept for lower orders.

In [9] and [16] it was observed that this algorithm does not
interact well with Kneser-Ney (KN) smoothing. For this rea-
son, in [17] a refinement was proposed: The quantity p(h) is
estimated by a Katz-smoothed LM.

For both approaches, the discount parameters are estimated
on the full model, and they are kept constant after pruning. On
the other hand, neither the formula-based estimates nor the op-
timized discount values are appropriate for the pruned model
because it is assumed that all n-grams are used for the LM esti-
mation.

For this reason, we propose to include the pruning regime
into the discount optimization process. In our optimization
framework, this can be easily achieved in combination with
count-cutoffs: For example, when discarding singletons, this
corresponds to setting b1 = 1. As a result, in interpolated KN
smoothing only the lower-order estimate γ(h) · p(w|h̄) is non-
zero. All remaining discounts are optimized.

3. Experimental Results
To evaluate our method of optimizing the discounts, we ran a se-
ries of experiments on three different corpora for English (North
American Business Task (NAB), and Quaero1), and French
(Quaero). These are described in Table 2.

Corpus set words OOV domain

NAB EN
train 247.4 M 0.86 %

newspaperdev 919.1 K 0.86 %
test 914.7 K 0.86 %

Quaero EN
train 348.0 M 1.28 % blog+forum
dev 41.8 K 0.45 % transcriptionstest 1.2 M 0.49 %

Quaero FR
train 243.4 M 1.15 % blog+forum
dev 46.7 K 0.45 % transcriptionstest 700.4 K 0.01 %

Table 2: Statistics for the training, development and test data
for the experiments (OOV = out-of-vocabulary rate); the vocab-
ulary sizes are 64 K, 150 K, and 200 K for NAB, Quaero English
and French, respectively.

For our experiments, we intentionally did not use LM inter-
polation because this might mask discount optimization effects.
For the LM of the full recognition systems described in [12],
we also used data from other sources. Among these sources,
the Quaero blog data were found to match the test data best in
terms of LM interpolation weight.

1Quaero research programme, see http://www.quaero.org.

The results regarding perplexity are summarized in Table 1.
We also give perplexity values for the development data to see
if the improvements obtained when optimizing on development
data translate to the test data. We observe that this is the case,
even when optimizing a large number of discounts, relative im-
provements closely match on both sets. This means that opti-
mizing the discounts does not produce overfitting on the devel-
opment data.

In general, optimizing discounts on held-out data as well
as using more discounts helps for all LM corpora investigated
here. While the improvements in perplexity are only small for
NAB, they are comparatively large for the Quaero corpora. For
English, the perplexity could be decreased from 209.2 to 197.9,
for French from 161.9 to 156.1. Careful tuning of count-cutoffs
may slightly reduce this difference: While LMs trained using
the standard formulas may benefit from discarding singletons
(see rows on modified (mod) KN), the converse is true for opti-
mized discounts (opt KN, not shown in the table). The fact that
more data—in the form of singletons—do not pay off in terms
of perplexity indicates that using the approximation formulas
does not produce appropriate values.

For all corpora, optimized discount values significantly dif-
fer from those predicted by the formulas. For highest order dis-
counts, on NAB we obtained an optimized value of b3+ = 1.70,
as opposed to 1.50 for the standard discount formula. For the
English Quaero data, these differences are even larger (1.32 vs.
2.55), and they seem to depend on the complexity of the train-
ing and test data as indicated by absolute perplexity values.

Our optimized discounts are in accordance with previous
assumptions stated in [13] concerning the monotonicity con-
straints r − br ≤ r + 1 − br+1 which we found usually to be
fulfilled if |b| not too large. On the other hand, our values con-
tradict the interval constraints from [14], requiring 0 < br < 1.

Due to the non-convexity of the optimization problem, in
principle it is possible that a different set of discount parameters
exists, yielding even better perplexity values.

For Quaero English, we also created lattices for the devel-
opment and evaluation data 2010 (41.0 K running words) using
the state-of-the-art acoustic models of the single best system
described in [12] and the 10-discount 1-1-2-2 LM. We then ap-
plied an LM rescoring step using the modified KN 1-1-1-2 and
the opt KN 50 1-1-1-1 LMs. We obtained slight improvements
in word error rate of 0.2 % absolute on both the development
and evaluation corpora (see Table 3). In practice, improvements
may be higher than those reported here since the two different
LMs were only applied in the LM rescoring step, but not in the
first recognition passes.
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Figure 1: Pruning results for count-cutoffs including optimized discounts vs. improved entropy criterion

Smoothing cutoffs dev eval
mod KN 3 1-1-1-2 21.2 % 20.7 %
opt KN 50 1-1-1-1 21.0 % 20.5 %

Table 3: Word error rate results for Quaero EN (LM rescoring).

Figure 1 shows results for LM pruning based on the 4-gram
LMs using 10 discount parameters. For the NAB corpus (left
hand side), it can be seen that the count-cutoff performance is
very close to the one of the improved entropy criterion, espe-
cially when pruning singletons only.

For Quaero English (right hand side), most of the time op-
timized count-cutoffs perform even better than the entropy cri-
terion. This may be due to the fact that the trigram Katz LM
used for the improved entropy pruning cannot be adapted on
held-out data. On the other hand, experiments seem to indicate
that it is more important to optimize the discounts after pruning
than to choose n-grams for pruning based on relative entropy.
At the same time, the count-cutoff approach is much simpler
and does not require the estimation of a second LM. (We do not
show results for French as these are similar in nature to those
for Quaero English.)

Finally, it should be noted that in case of the Quaero cor-
pora, the amount of development data is quite small. Further-
more, the optimization process can be done very efficiently. In
our experiments, the target function always converged within
less than 100 iterations. For the Quaero development set and
10 discounts, this takes about 80 seconds on a standard CPU
core.

4. Conclusions
In this paper, we investigated the optimization of discount pa-
rameters for large amounts of training data. Experiments show
that increasing the number of parameters and optimizing them
on held-out data can improve perplexity by up to 5 % relative,
also affecting word error rates. Second, the optimization of dis-
counts is relevant to LM pruning: Often, the entropy pruning
method is slightly outperformed by count-cutoffs as discounts
are not optimized after pruning.

The discount optimization already works well for small
amounts of in-domain development data which are usually
available in speech recognition. In our experiments, the per-
plexity on test data could always be improved, and it should
be stressed that this comes at negligible computational costs.
Therefore, we conclude that optimized discounts are favorable
to the standard estimation formulas.
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