
Shared-Memory Parallelization for
Content-based Image Retrieval

Christian Terboven1, Thomas Deselaers2,
Christian Bischof3, and Hermann Ney2

1 Center for Computing and Communication,
RWTH Aachen University, Aachen, Germany

terboven@rz.rwth-aachen.de
2 Human Language Technology and Pattern Recognition –

Computer Science Department,
RWTH Aachen University – Aachen, Germany

{deselaers,ney}@cs.rwth-aachen.de
3 Institute for Scientific Computing – Computer Science Department,

RWTH Aachen University, Aachen, Germany
bischof@sc.rwth-aachen.de

Abstract. In this paper we show how modern shared-memory paral-
lelization techniques can gain nearly linear speedup in content-based im-
age retrieval. Using OpenMP, few changes are applied to the source code
to enable the exploitation of the capabilities of current multi-core/multi-
processor systems. These techniques allow the use of computationally
expensive methods in interactive retrieval scenarios which has not been
possible so far. In addition, these ideas were applied to a clustering al-
gorithm where substantial performance improvements could be observed
as well.

1 Introduction

With the enormously growing amount of digitally available image data, the need
for adequate methods to access, sort, and store the data is heavily increasing. For
example medical doctors have to access immense amounts of images daily [1] and
home-users often have image databases of thousands of images [2]. Currently the
data are usually accessed by meta-data, e.g. the date when the image was taken.
But content-based methods, though computationally more expensive, promise
interesting possibilities [3].

In the computing industry, on the other hand, performance increases in com-
puters due to increased clock speed are tapering off. Instead, the compute power
is increased by replicating processing units, thus making parallel computing a
necessity even for ‘pizza-box’ sized computers [4].

Related work. Traditional parallelization approaches for image retrieval follow
the idea of distributed computing where several computers, connected by a net-
work, share the work. Various groups have proposed approaches to parallel image



retrieval: The Abacus group from City University of Hong Kong4 presents an
approach where a Beowulf cluster is used for a distributed image retrieval sys-
tem [5]. In [6] the authors present a method where features are dynamically
extracted in a distributed manner on a Linux cluster. In [7] methods to merge
results from distributed retrieval systems are presented.

In contrast to that, here we present an approach that uses several processors
in one computer that share the same memory. This approach has the considerable
advantage, as will be described in the sequel, that the changes that have to
be applied to the program are far less drastic and that the runtime overhead
incurred in parallelization is much smaller.

Furthermore, the same approach was applied to an expectation maximization
clustering algorithm and the results obtained are also very good.

In the remainder of this paper, we shortly discuss the content-based image
retrieval system FIRE [8], the clustering algorithm, possible approaches to paral-
lelization, and experimental results. Lastly, we summarize our findings and their
importance in the light of upcoming architectural developments.

2 FIRE – Flexible Image Retrieval System

The Flexible Image Retrieval Engine (FIRE)5 has been developed at the Human
Language Technology and Pattern Recognition Group of the RWTH Aachen
University. It is designed as a research system with flexibility in mind. That is,
it is easily extensible and highly modular. The FIRE system was successfully used
in the ImageCLEF 2004 and 2005 content-based image retrieval evaluations [9,
10]. The retrieval process is organized as follows:

Given a query image Q and the goal to find images from a database that are
similar to the given query image, we calculate a score S(Q,X) for each image
X ∈ B from the database B:

S(Q,X) = exp

(
I∑

i=1

wi · di(Qi, Xi)

)
(1)

Here, Qi and Xi are the ith features of the images Q and X, respectively, di

is the corresponding distance measure, and wi is a weighting coefficient. For
each di,

∑
X∈B di(Qi, Xi) = 1 is enforced by re-normalization. The K database

images with the highest score S(Q,X) are returned. This approach can easily be
extended toward user interaction with relevance feedback by considering several
positive and negative query images and combining the individual scores.

3 Expectation Maximization Clustering

Another application that could be greatly sped up using this parallelization ap-
proach is an expectation maximization clustering algorithm for Gaussian mixture
4 http://abacus.ee.cityu.edu.hk/
5 available under the terms of the GPL at
http://www-i6.informatik.rwth-aachen.de/∼deselaers/fire.html



densities [11] as it is used for the training in automatic speech recognition [12].
The particular program that we consider here is used for object detection and
recognition [13].

The algorithm proceeds as follows: Initially, the data is described by one
Gaussian. Then this density is iteratively split until a certain criterion is reached.
This criterion might be e.g. “the variance is below a certain threshold” or “there
are less than a certain number of observations in a cluster”. After each split, the
densities are reestimated for several iterations using the expectation maximiza-
tion algorithm. This reestimation consists of two steps: (i) In the expectation
step, for each observation the distances to all cluster centers are calculated and
(ii) in the maximization step, the means and the variances are recalculated.

4 Parallelization

In this section we present the approaches to parallelization that were considered
and the results we obtained using the parallelized implementations.

4.1 Image Retrieval

Given the image retrieval system, three different layers can be identified that
offer potential for parallelization:

1. Queries tend to be mutually independent. Thus, several queries can be pro-
cessed in parallel. This is of interest, if several users access the system at the
same time or if several queries are run in batch mode.

2. The scores S(Q,Xn) for the database images can be calculated in parallel as
the database images are independent from each other. This parallelization
has a strong impact if the number of images is large in comparison to the
number of threads as is normally the case.

3. Parallelization is possible on the feature level, because the distances di(Qi, Xi)
for the individual features can be calculated in parallel.

In this work, only the first two layers are considered as the third may require
larger changes in the code for some distance functions and we do not expect
it to be profitable as the parallelization in the first two layers already leads to
sufficient performance improvements in normal situations.

The FIRE system is written in the C++ language which allows a wide
choice of tools for parallelization. Our goal is to achieve a parallelization with
as few modifications to the source code as possible, in order to avoid interfer-
ence with ongoing development. Shared-memory parallelization is more suitable
than distributed-memory parallelization for the image retrieval task, as the image
database can then be accessed by all threads and does not need to be distributed.

Furthermore, shared-memory parallelization leads to better throughput as
most of the computers now have 2 or more processors which share the memory. If
one process consumes the whole memory of a machine, the remaining processors
cannot be used by other jobs as there is no memory available. In addition,



Program 1 The part of fire where parallelization on the second layer is applied.

1 #pragma omp parallel

2 {

3 #pragma omp for schedule(static) private(imgDists)

4 for(long i=0;i<long(N);++i) {

5 vector<double>&d=distMatrix[i];

6 imgDists=imgComp.cmp(q,db[i]);

7 for(long j=0;j<long(M);++j) {

8 d[j]=imgDists[j];

9 }

10 } // end of for-worksharing

11 } // end omp parallel

several program instances loading the image database concurrently might put
heavy pressure on the file server, as the image database can be several GB in
size.

Given these constraints and objectives, we considered three possibilities for
parallelization [14]:

– UPC 6 is an extension to the C programming language and as such can be
applied to C++ code as well. To obtain optimal performance using UPC,
for the proposed parallelization approaches, the memory management would
have to be rewritten and thus large changes to the existing code would have
been necessary [15].

– POSIX threads7 are a POSIX-conforming method for multi-threaded pro-
grams and are provided as a library. As such they can independently be
used in every programming language. To use POSIX threads, the changes
to the code would be moderate, but dynamic workload distribution on the
higher parallelization level would have to be implemented manually [16].

– OpenMP8 requires the fewest modifications to the source code, because it
mainly consists of compiler directives [17].

Among these options, OpenMP seems to be the ideal choice as it only requires
minor modifications to the source code and is supported by most current C++
compilers. Compilers that do not support these directives just print a warning
and ignore them; as a result, the portability of the code is not negatively affected.
In Program 1, an excerpt of the code and the necessary modifications are shown
for the second layer, where one query image q is compared to the database images
db[i]. It can be seen that only 4 lines (lines 1, 2, 3 and 11) are added in total, 2
of them containing only braces and the other ones containing compiler pragmas.

In line 1 the directive specifies that a parallel region starts. From this point
the code is processed in parallel. The parallel regions ends in line 11. Line 3
6 http://upc.lbl.gov/
7 http://standards.ieee.org/catalog/olis/posix.html
8 http://www.openmp.org



specifies that the for loop is executed in parallel and that the variable imgDists
has to be instantiated as a local variable for each of the threads. The loop
variable i is instantiated for each thread automatically. With static scheduling
the number of loop iterations is distributed equally to the threads, i.e. for p
threads each of them processes roughly N

p loop iterations.
A very similar structure can be found in batch mode for the processing of

queries. There, a loop over the queries to be processed is run in parallel. That
is, instead of processing query by query, several queries can be processed in
parallel. A combination of these two approaches can be achieved by allowing a
certain number P1 of queries to be processed in parallel such that these queries
can be processed in the second layer with P2 database images being processed
in parallel per query. Therefore the number of threads has to be P1 × P2 and
thus, this approach is applicable only for high numbers of processors or relatively
small P1 and P2.

Parallelization in the third layer could be implemented in a similar way as
shown above, but this parallelization would only lead to a better load balancing
if the number of queries and the number of database images is lower than the
number of processors available, which currently is usually not the case.

In contrast to this, the parallelization for the batch mode is on a very high
level and has hardly any effect on the structure of the program. A disadvantage
of this approach is that it can only lead to optimal speedup if the number of
queries to be processed is a multiple of the number of threads, otherwise the
load balancing is suboptimal and some processors are idle. The parallelization
on the second level is very advantageous in interactive mode as the number of
database images usually is very high in comparison to the number of processors
available and nearly linear speedup can be expected.

The object-oriented programming paradigm as employed in the FIRE C++
code simplified the parallelization of both levels. Though the code was not de-
signed with parallelism in mind, the datatype encapsulation originating from
the mathematical model of the image retrieval task prevents unintended data
dependencies and supports the data dependency analysis as well. In addition,
we observed a positive impact on the data locality for non-uniform memory
architectures (NUMA), as for example the AMD Opteron based systems.

We evaluated the performance of our parallelization on two architectures with
different characteristics, which are both available in the RWTH compute cluster
at the Center for Computing and Communication9. The Sun Fire E6900 servers
consist of 24 dual-core UltraSPARC-IV processors running at 1.2 GHz clock
speed with a total of 96 GB of RAM. The dual-core processors are treated as two
completely independant processors by the Solaris 9 operating system. Therefore,
from the user perspective, the Sun Fire E6900 systems have 48 processors.

Furthermore, two different types of Sun Fire V40z machines were used. They
have 4 AMD Opteron 875 dual-core processors and 16GB of RAM or 4 AMD
848 processors and 8GB of RAM, respectively. These processors have 2.2GHz
clock speed. The dual-core machines are running the Solaris 10 operating system

9 http://www.rz.rwth-aachen.de/computing/info/sun/primer/



 0
 5

 10
 15
 20
 25
 30
 35
 40

 44 32 16 8 4 1

sp
ee

du
p

threads

ideal
level 1
level 2
nested

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 44 32 16 8 4 1

ef
fi

ci
en

cy

threads

ideal
level 1
level 2
nested

Fig. 1. Speedup and efficiency for image retrieval on a SF E6900 system depending on
the number of threads.

that treats the cores as individual processors and the single-core machines have
Linux 2.6 as operating system.

While the Sun Fire E6900 systems provide a flat memory model, the Sun
Fire V40z systems have a NUMA architecture where data locality is important.
On the Solaris systems we used the Sun C++ Studio 10 compiler, on the Linux
systems we used the Intel C++ 9.0 compiler, as these both proved to deliver the
best serial performance with the FIRE code.

The effect on the retrieval speed can be seen in Figure 1 for the UltraSPARC-
IV machines and in Figure 2 for the Opteron machines with Solaris. The figures
show the speedup and the efficiency depending on the number of threads used.
The speedup is Tp

T1
, where Tp denotes the runtime of the parallel program using p

threads. The efficiency is the speedup divided by the number of processors used.
In both cases, the speedup is nearly optimal: using n processors, the runtime is
nearly reduced by a factor of n. From the graphs it can be seen that combining
(nesting) the two proposed parallelization techniques slightly outperforms the
use of a single level of parallelization. The UltraSPARC-IV machines were inten-
tionally not used with 48 threads in parallel to prevent a performance dropdown
due to operating system effects.

The database used here consists of 9,000 medical radiographs and 100 queries
are processed. The images are compared directly using the image distortion
model [18]. One image comparison needs approximately 0.012 seconds on the
Opteron machines and 0.034 seconds on the UltraSPARC-IV machines, respec-
tively. For one query, 9,000 image comparison have to be executed and thus, the
processing of one query takes 110 seconds for the Opteron machines and 303 sec-
onds for the UltraSPARC-IV machines. Using the maximal number of threads
measured, the processing time for the complete batch reduces from 3 hours to
23 minutes or 8.5 hours to 12 minutes for the two different systems, respectively.

For all these results it is important to note that the retrieval result is not
altered. That is, the results are the same no matter if parallelization is used or
not.



 0
 1
 2
 3
 4
 5
 6
 7
 8

 8 4 2 1

sp
ee

du
p

threads

ideal
level 1
level 2
nested

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 8 4 2 1

ef
fi

ci
en

cy

threads

ideal
level 1
level 2
nested

Fig. 2. Speedup and efficiency for image retrieval on a SF V40z system depending on
the number of threads.

 0

 1

 2

 3

 4

 4 3 2 1

sp
ee

du
p

threads

ideal
parallel

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 4 3 2 1

ef
fi

ci
en

cy

threads

ideal
parallel

Fig. 3. Speedup and efficiency for clustering on a SF V40z system depending on the
number of threads.

4.2 Clustering

The computationally most expensive part of the clustering algorithm are the
distance calculations in the expectation phase. The structure of the code is very
similar to the above described part of the image retrieval system and the dis-
tances are calculated independently for the observations. Thus, the paralleliza-
tion is possible in exactly the same way as described above. That is, the distance
calculations are distributed among the threads.

In the maximization phase, the means and the variances are reestimated by
calculating the empirical means and variances for the clusters. This phase could
also be parallelized but we have not done this yet, as more than 90% of the
computing time is needed for the distance calculation and thus the effect of
parallelizing the first phase was sufficient for our application.

The impact of using multiple threads on the performance of the program can
be seen in Figure 3. The clustering was only tested on the Opteron machines
under Linux but we expect the scalability on other machines to be similar to the
scalability of the image retrieval task. It can clearly be seen that the speedup is
nearly linear in the number of threads.



5 Conclusion and Outlook

In this work, we presented our approach to using shared-memory based paral-
lelization techniques in content-based image retrieval. Using OpenMP the per-
formance increase is nearly linear in the number of the processors used with
minimal modifications to the source code, thus not impacting either the algo-
rithmic structure or the portability of the code. It is clearly shown that shared-
memory parallelization is a suitable way to substantially sped up applications
in computer vision.

Experimental results with the FIRE code on a 8-processor Opteron Sun Fire
V40z and a 48-processor UltraSPARC-IV Sun Fire E6900 show almost perfect
speedup. The use of shared-memory parallelism is becoming also more and more
important, as recent architectures such as the Sun Fire T200010, which has 8
processors, each capable of executing 4 threads, on a shared memory in a 1-unit
rack (‘pizza-box’) form factor, are likely to be available before not too long with
substantial floating point capabilities.

With these expected future developments in the computing industry and the
results presented it is most probable that methods that currently cannot be used
interactively due to their high computational demands might be applicable for
interactive use in the not too far future.

Further speedup can likely be obtained using methods like pre-filtering results
and work is currently in progress.

Acknowledgement

This work was partially funded by the DFG (Deutsche Forschungsgemeinschaft)
under contract NE-572/6.

References

1. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based
image retrieval systems in medical applications – clinical benefits and future direc-
tions. International Journal of Medical Informatics (73) (2004) 1–23

2. Sun, Y., Zhang, H., Zhang, L., Li, M.: Myphotos a system for home photo man-
agement and processing. In: ACM Multimedia Confernce, Juan-les-Pins, France
(2002) 81–82

3. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval: The end of the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(12) (2000) 1349–1380

4. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (2005)

5. Cheung, C.H., Po, L.M., Wong, K.M.: Web-based beowulf-class parallel computing
on image database indexing and retrieval system. In: International Symposium on
Intelligent Multimedia, Video and Speech Processing, Hong Kong (2001) 457–460

10 http://www.rz.rwth-aachen.de/computing/hpc/hw/niagara.php



6. Kao, O.: On parallel image retrieval with dynamically extracted features. Journal
of Parallel Computing (2005)

7. Berretti, S., Bimbo, A.D., Pala, P.: Merging results for distributed content based
image retrieval. Multimedia Tools and Applications 24 (2004) 215–232

8. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval – a quantita-
tive comparison. In: DAGM 2004, Pattern Recognition, 26th DAGM Symposium.
Number 3175 in Lecture Notes in Computer Science, Tübingen, Germany (2004)
228–236

9. Clough, P., Müller, H., Sanderson, M.: The CLEF Cross Language Image Retrieval
Track (ImageCLEF) 2004. In: Fifth Workshop of the Cross–Language Evaluation
Forum (CLEF 2004). Volume 3491 of LNCS. (2005) 597–613

10. Clough, P., Mueller, H., Deselaers, T., Grubinger, M., Lehmann, T., Jensen, J.,
Hersh, W.: The clef 2005 cross-language image retrieval track. In: Workshop of
the Cross–Language Evaluation Forum (CLEF 2005). Lecture Notes in Computer
Science, Vienna, Austria (2005) in press

11. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantization design. In:
IEEE Transactions on Communications. Volume 28. (1980) 84–95

12. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press (1998)
13. Deselaers, T., Keysers, D., Ney, H.: Discriminative training for object recogni-

tion using image patches. In: IEEE Conference on Computer Vision and Pattern
Recognition. Volume 2., San Diego, CA (2005) 157–162

14. Terboven, C.: Shared-Memory Parallelisierung von C++ Programmen. Diploma
thesis, RWTH Aachen University, Aachen, Germany (2006)

15. UPC Consortium: UPC Language Specifications, v1.2. (2005)
16. Portable Application Standards Committee: IEEE Standard 1003.1, 2004 Edition.

(2004)
17. OpenMP Architecture Review Board: OpenMP Application Program Interface,

v2.5. (2005)
18. Keysers, D., Gollan, C., Ney, H.: Local context in non-linear deformation models

for handwritten character recognition. In: International Conference on Pattern
Recognition. Volume 4., Cambridge, UK (2004) 511–514


