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Abstract
This paper investigates the combination of different acoustic
features. Several methods to combine these features such as
concatenation or LDA are well known. Even though LDA im-
proves the system, feature combination by LDA has been shown
to be suboptimal. We introduce a new method based on neural
networks. The posterior estimates derived from the NN lead to
a significant improvement and achieve a 6% relative better word
error rate (WER).

Results are also compared to system combination. While
system combination has been reported to outperform all other
combination techniques, in this work the proposed NN-based
combination outperforms system combination. We achieve a
2% relative better WER, resulting in an improvement of 7%
relative to the baseline system.

In addition to giving better recognition performance w.r.t.
WER, NN-based combination reduces both, training and testing
complexity. Overall, we use a single set of acoustic models,
together with the training of the NN.
Index Terms: feature extraction, multi-layer neural network,
speech recognition

1. Introduction
Within different projects, several state-of-the-art LVCSR
speech recognizers have been set up at RWTH. In order to
take advantage of system combination, multiple complemen-
tary subsystems based on different acoustic front-ends [1, 2] are
built. Therefore, a complete GMM/HMM based training and
decoding have to be performed independently for each acoustic
front-end followed by a system combination step, resulting in
high computational costs.

In order to reduce and optimize the resources available, sev-
eral approaches for combining acoustic features have been pro-
posed in the last years. For example, in [3] the combination is
done explicitly on the feature level by linear discriminant anal-
ysis (LDA), though LDA has been shown to be suboptimal [4].
Furthermore, the combination in [4] is done in an acoustic re-
scoring framework. Even though both approaches achieve rea-
sonable improvements, system combination seems to be supe-
rior [5] and can be performed on different levels. Implemented
in the adaptation step of the system it is referred to as cross
adaptation and proves to give considerable improvements [6].
Alternatively, lattice or N -best-list based system combination
is applied to the final output of the individual systems [7].

In this paper, we focus on the question, how multiple acous-
tic features are combined in an acoustic front-end, resulting in a
reduction of the overall training and decoding effort, one acous-
tic model only, while achieving competitive results compared to
system combination. Specifically, we propose the combination
of several acoustic features by neural networks (NN) and ex-

plore the feature combination method of several acoustic front-
ends, continuing the work started in [3].

First, we compare LDA and the proposed neural network
feature combination method using one, two or three input fea-
ture streams. Finally, we show that our NN combination tech-
nique achieves competitive results with state-of-the-art system
combination techniques on a Spanish broadcast news task. We
almost achieve the same recognition result compared to system
combination even if one feature stream is used for NN-based
combination. Moreover, we outperform system combination by
the proposed NN combination technique when two or more fea-
ture streams are fed into the neural network. Now, we can op-
timize the overall process. Finally, instead of training multiple
system, training of one system containing all features is suf-
ficient and the overall training and decoding process could be
simplified.

The paper is structured as follows:
In Section 2 we describe the proposed NN combination method
based on multiple feature streams. Acoustic modeling and
the different acoustic features used are described in Section 3.
The experimental setup is explained in Section 4, followed by
the experimental results for LDA, NN combination and system
combination in Section 5. Finally, we end up with a summary
of the paper and the conclusions in Section 6.

2. Neural Network Feature Combination
In the last years phoneme posterior estimates derived from a
NN have recently become a major component of state-of-the-
art automatic speech recognition (ASR) systems [1, 2]. The
structure of the neural networks as well as the input features
for the neural network have been under investigation in the last
years. In [8] the hierarchical processing of NNs introduced in
[9] and the bottle neck topology in [10] are combined, resulting
in further improvements. Moreover, the resulting hierarchical
bottle neck structure benefits from both concepts. In [11] and
[12] long-term features such as features based on long temporal
pattern (TRAP) or multi-resolution RASTA features have been
introduced. These features use a large temporal context of up
to one second and therefore provide additional information to
the conventional short-term features with a temporal context of
25ms [1, 12].

These previous experiments report that NN features can
provide complementary information to the final ASR system.
The most important advantage of the neural network is the non-
linear transformation —most of the time the sigmoid function
is used— of the input features by the neural network. We want
to benefit from the nonlinearity of the NN to improve the com-
bination of several feature streams.

In order to analyze the NN combination techniques the
structure of the neural network is kept as simple as possible. We
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use the well known TANDEM approach first mentioned in [13].
There, a neural network is trained on short-term features. Poste-
rior estimates are derived from the NN and are transformed fur-
ther by logarithm and PCA. Finally, the log/PCA transformed
posterior estimates are used as input to train a HMM/GMM
based recognition system.

2.1. Input Features

We feed 9 consecutive frames of the classical short-term fea-
tures as input to the neural network. The short-term features
used are MFCC, and PLP, and Gammatone (GT) features. The
features are augmented with first order temporal derivatives and
the second order temporal derivatives of the first dimension, re-
sulting in a 33 dimensional feature vector for MFCCs and PLPs
and 31 components for Gammatone features. A short descrip-
tion of the Gammatone features is given in Section 3.2. Fi-
nally, mean and variance normalization are performed. In or-
der to focus on the different combination methods, we have
skipped any further transformation method of the input features
for the NN training. Overall, the input feature vector consist of
33 × 9 = 297 elements, and (33 + 33) × 9 = 594 elements
for single feature stream and two feature stream combination
respectively —(31× 9) and (33+ 31)× 9 when GTs are used.
When all short-term features are combined we end up with a
(33 + 33 + 31)× 9 = 873-dimensional feature vector.

2.2. Training

The training of the network is performed using a single feed-
forward NN consisting of three layers. While the first and last
layer are taken for I/O, we have enlarged the middle layer to
provide the necessary model power. We have taken 4000 nodes
in the hidden layer and 37 nodes in the output layer correspond-
ing to the 37 phonetic targets. These targets are derived from
a forced alignment of a previously trained ASR system based
on MFCC features only. On a cross set —containing 8% of
the training data— we achieve a frame accuracy of 71% for
single stream combination and 74% for multiple stream combi-
nation. In the training, up to 75% of the frames are classified
correctly. Finally, the TANDEM phoneme posterior estimates
derived from the NN are transformed by logarithm and reduced
by PCA. The final 15-dimensional feature vector keeps 95% of
the variability of the phoneme posteriors. In the acoustic front-
end the posterior features are augmented with the LDA reduced
MFCC features.

3. Acoustic Modeling
As in [1, 2], several systems that differ only in their acoustic
front-ends have been set up. The front-ends used are built by
different feature combination techniques —feature combination
done by LDA or a NN— and are based on the Spanish RWTH
speech recognition system developed for the Quaero 2010 Eval-
uation Campaign. The feature combination techniques differ
in the number of feature streams combined, the type of base
features used and the combination method applied. As shown
in [1, 2] our ASR systems are competitive to other ASR sys-
tems within the project. In the experiments some system uses
NN posterior estimates, while other systems, for comparison,
are based on classical features only. Nevertheless, the acous-
tic training is performed independently for each of the sys-
tems. The training of the neural network posterior estimates, de-
scribed in Section 2, as well as the training of the acoustic mod-
els are performed on the whole speech corpus of 60 hours. The

acoustic models are trained using the RWTH Speech Recogni-
tion system [14].

3.1. Acoustic Features

The acoustic front-ends of the systems consist of different base
features. The features used are MFCCs, and PLP, and Gamma-
tone features, which are described in detail in [15]. We will give
a short description of the Gammatone features in Section 3.2 as
well.

The base features, augmented with a voiceness feature, are
normalized by segment-wise mean and variance normalization.
All features within a sliding window of length nine are con-
catenated and are projected to a 45-dimensional feature space
by LDA. As proposed in [1, 3] we use a common LDA for the
whole feature stream. The HMM/GMM system trained on these
feature sets are used as baseline systems for all other experi-
ments.

For all experiments concerning NN estimates as described
in Section 2 we augment the 45-dimensional LDA transformed
MFCC features and the NN features. Overall, the final MFCC
+ NN feature stream contains of 60 components. For compari-
son, all two short-term feature combination approaches by LDA
consist of 60 components also.

3.2. Gammatone Features Extraction

As introduced in [15], the Gammatone (GT) features are ex-
tracted by auditory filter banks realized by Gammatone filters.
These filters are defined in the time domain by the following
impulse response:

h(t) = k · tn−1 exp(−2π ·B · t) · cos(2π · fc · t+ φ).

Here, k defines the output gain, B defines the bandwidth, n is
the order of the filter, fc is the filter’s center frequency, and φ is
the phase. In this work, 4th order Gammatone filters are used.
A similar filter bank has been used by [16] for robust speaker
identification.

The center frequencies of the filters are distributed over the
frequency range according to the Greenwood function with hu-
man parameters [17]:

ρ(x) = A · (10a·x − k)Hz
where A = 165.4, and a = 0.88, and k = 2.1.

The 68 Gammatone filter outputs are temporally integrated
followed by a spectral integration and a 10th root compression.
Finally, after cepstral decorrelation the 15 coefficients are mean
and variance normalized.

In [15] we have shown that Gammatone features are com-
petitive to MFCC features and that they are robust against noise
in the speech signal. Therefore, GT features could provide con-
trary information to the classical short-term MFCC features.

3.3. Acoustic Training

The acoustic models for all systems are based on triphones with
cross-word context, modeled by a 6-state left-to-right Hidden
Markov Model (HMM). A decision tree based state tying is ap-
plied resulting in a total of 4500 generalized triphone states.
The acoustic models consist of Gaussian mixture distributions
with a globally pooled diagonal covariance matrix.

In order to compensate for speaker variations we use con-
strained maximum likelihood linear regression speaker adaptive
training (SAT/CMLLR). In addition, during recognition, MLLR
is applied to the means of the acoustic models. For computa-
tional reason we have not performed a full training including
discriminative training.
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4. Experimental Setup
Approximately 60 hours of Spanish Broadcast News (BN) and
speech data collected from the web are used both for training the
neural network posterior estimates and for training the acoustic
models. The whole training data are provided within the Quaero
project.

We evaluate the performance of the different systems built
on the Quaero task also. While the system parameters are tuned
on the development corpus of 2010 (dev10) —marked by ∗ in
Table 1— the evaluation corpora of 2010 (eval10) and 2009
(eval09) are used for testing only. The development and evalu-
ation corpora consist of a mix of different speech sources. The
data contain broadcast news, speeches of the European Parlia-
ment, several pod cast shows and other speech data collected
from the web. Table 1 shows some statistics of the training and
testing corpora used.

Table 1: Acoustic data of the training and testing corpora. The
corpus marked by ∗ is used for tuning the parameters of the
individual systems.

Training and testing data
train dev10* eval10 eval09

total data 60h 2.8h 3.3h 3.2h
# segments 19519 1016 1267 924

In recognition a 4-gram language model (LM) is used
which consists of 60k words. The LM is trained on the final text
editions and verbatim transcriptions of the European Parliament
Plenary Sessions, and on data from the Spanish Parliament and
Spanish Congress, provided within the TC-STAR project. Lan-
guage model data provided within the Quaero project and the
training transcription have been included as well.

5. Multiple Feature Combination
5.1. Feature Combination by LDA

In the first experiments we continue the work started in [3]. We
use a single LDA matrix to combine several short-term acoustic
feature streams. Results, similar to the results of [3], are shown
in Table 2.

Table 2: Recognition results of a GMM/HMM trained system
using linear discriminant analysis to combine single (a) or mul-
tiple feature streams (b). The input features used are MFCCs,
PLPs or Gammatone features.

Test Corpora (WER[%])
Method Features dev10 eval10 eval09

(a) MFCC 22.0 18.5 17.0
PLP 23.0 19.6 17.8
GT 22.3 19.0 17.3

(b) LDA MFCC + PLP 22.2 18.7 17.0
MFCC + GT 21.7 18.4 16.9

While the first lines of Table 2, marked by (a), show LDA
combination results on a single stream, the last lines, marked
by (b), show results of combining two feature streams by LDA.
The best result for the single stream combination is achieved
by the MFCC system. The best multiple stream combination
result is obtained by adding GT features. Here, the system can
benefit from the Gammatone features, which are robust against
noise in the speech data. The single system is improved by

0.3% absolute for the development set, but only 0.1% absolute
on the evaluation corpora. Overall, the improvement by LDA
for multi feature combination is slight. As shown in Table 2
the LDA combined MFCC+PLP system even degrades in word
error rate. This is due to the effect of numerical problems in the
LDA estimation covered by [3].

5.2. Neural Network Feature Combination

Next, we have trained several neural networks based on differ-
ent number of input feature streams. The final posterior proba-
bilities are concatenated with the LDA reduced MFCC features
to train a GMM/HMM-based ASR system. Results are shown in
Table 3. As expected, adding neural network posterior estimates
improve the baseline system trained on LDA reduced MFCCs.
We gain up to 1.4% absolute on the development corpus and
up to 1% absolute on the evaluation corpora. Moreover, the re-
sults show that NN posteriors estimates provide complementary
information even if they are trained on the same input features
(here: 0.7-0.9% absolute improvements for MFCC-based NN
features, marked by (b) in Table 3).

Table 3: Recognition results of a GMM/HMM trained system
using MFCC features, marked by (a), and, in addition, neural
network posterior estimates trained on a single, marked by (b),
or multiple input feature streams, marked by (c) and (d).

Test Corpora (WER[%])
Method Features dev10 eval10 eval09

(a) MFCC 22.0 18.5 17.0
(b) NN MFCC 21.1 17.7 16.3

PLP 21.2 17.8 16.5
GT 20.6 17.5 16.2

(c) NN MFCC + PLP 20.6 17.4 16.2
MFCC + GT 20.4 16.9 15.9
PLP + GT 20.5 17.3 15.9

(d) NN MFCC+PLP+GT 20.4 17.0 15.7

As shown in Table 3 the combination of two or more fea-
ture streams outperforms the single NN feature approach. The
best single NN stream approach could be further improved by
0.2% absolute or more over all corpora by using all input fea-
ture streams. When we combine all short-term acoustic fea-
tures, MFCCs, PLPs, and GTs, we improve in the non-speaker
adapted case only (results not reported). After speaker adapta-
tion no improvement between the best two stream and the three
stream combination experiments is observable.

Nevertheless, the best results are achieved when several fea-
ture streams are combined. Compared to the multiple feature
stream combination by LDA of Section 5.1 we improve the best
system by more than 1% absolute or up to 6% relative.

5.3. System Combination

Finally, we have performed system combination of the base-
line systems, line (a) in Table 2. Results are shown in Table 4
marked by SC. While ROVER is the easiest method, we have
tested lattice based combinations as well as N -best-list combi-
nations. We achieve the best system combination results by the
min.fWER method [18]. As mentioned in [5], system combina-
tion seems to be superior to other combination techniques. As
shown in Table 4, this is no longer the case and neural network
feature combinations outperform the system combination of the
baseline systems.
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Even though system combination achieves improvements
of about 5% relative, the results for one stream NN combination
are slightly worse only. The best NN combination method using
two or more input streams even beat system combination. The
difference is around 2% relative for all corpora.

These results are very impressive, because we have used a
simple topology and short-term features for NN feature combi-
nation only.

Table 4: Recognition results for a GMM/HMM trained sys-
tem using MFCCs and posterior estimates of a neural net-
work trained on multiple input features, marked by (NN). Lines
marked by (SC) are results for system combination of the base-
line MFCC, PLP and GT system. System combination has been
performed by the min.fWER approach.

Test Corpora (WER[%])
Method Features dev10 eval10 eval09

SC MFCC +PLP 21.3 17.7 16.3
MFCC +GT 20.9 17.5 16.0
PLP +GT 21.4 18.1 16.6
MFCC +PLP +GT 20.9 17.5 16.0

NN MFCC +GT 20.4 16.9 15.9
MFCC +PLP +GT 20.4 17.0 15.7

6. Summary and Conclusions
In order to simplify the training and decoding process, the aim
of this paper was to make feature combination competitive to
system combination. Therefore, we compared different fea-
ture combination techniques such as LDA, system combination,
and our proposed neural network processing. We showed, that
the results for system combination on the development corpus
could be almost reached by the NN-based feature combination
when one feature stream is used. The NN-based combination
approach using all three feature streams outperformed system
combination of the baseline system by 2.4-2.9% relative on the
development and evaluation sets of 2010 respectively.

Instead of setting up several subsystems based on different
acoustic front-ends and combining these systems afterwards by
system combination, training of one system with all features
combined by the neural network approach is sufficient. The NN
feature combination method simplifies the system development
circle and optimizes the training and decoding. Instead of three
systems, we use a single set of acoustic models, together with
the training of the NN.

In addition, we verified that the LDA approach is subopti-
mal for feature combination. The LDA approach does not per-
form as well as the NN based posterior estimates trained on one
feature stream. By combining all three features streams the sys-
tem improved further up to 6% relative compared to LDA and
up to 7% relative to the baseline MFCC system.

Though the NN feature combination achieved significant
improvements, questions still remaining for optimal combina-
tion results. These questions concern the topology of the neu-
ral network, the combination of NN probabilistic features, the
training of several NN, and finally the best combination of the
short-term and long-term features for the NN training. In the
future, we will investigate this area to find the best feature com-
bination approach.
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