
Log-linear Optimization of Second-order Polynomial Features with
Subsequent Dimension Reduction for Speech Recognition

Muhammad Ali Tahir.1, Ralf Schlüter 1, Hermann Ney 1

1Human Language Technology and Pattern Recognition
Computer Science Department, RWTH Aachen University, Aachen, Germany

{tahir,schlueter,ney}@cs.rwth-aachen.de

Abstract
Second order polynomial features are useful for speech recog-
nition because they can be used to model class specific covari-
ance even with a pooled covariance acoustic model. Previous
experiments with second order features have shown word error
rate improvements. However, the improvement comes at the
price of a large increase in the number of parameters. This pa-
per investigates the discriminative training of second order fea-
tures, with a subsequent dimension reduction transform to limit
the increase in number of parameters. The acoustic model pa-
rameters and the transformation matrix parameters are modeled
log-linearly and optimized using maximum mutual information
criterion. The advantage of log-linear optimization lies in its
ability to robustly combine different kinds of features. Exper-
iments are performed for second order MFCC features on the
EPPS large vocabulary task and have resulted in a decrease in
word error rate.
Index Terms: speech recognition, log-linear modeling, poly-
nomial features

1. Introduction
The motivation for using polynomial features for speech recog-
nition stems from support vector machines (SVM) where a
polynomial kernel may be used to project feature vectors to a
higher space [1]. Classes which are not linearly separable may
become separable in that higher dimensional space, by fitting a
hyperplane between them. MFCC (mel frequency cepstral co-
efficients) are a popular way of extracting information from the
audio data, and projecting them to a higher dimension could in-
crease separation between different phone classes. In [2] second
order features have been used to train a large vocabulary system
and has resulted in WER improvement. Another reason for us-
ing second order polynomial features is the fact that for a pooled
covariance Gaussian HMM model they could be used to ap-
proximate a class specific covariance model. If the polynomial
projection step is followed by a dimension reduction, then the
number of additional parameters is small. This could bring the
benefit of using a class specific covariance model while avoid-
ing the overfitting risk associated with it. A similar work using
class specific covariance model is [3]

In [4] it has been shown that the posterior form of Gaussian
HMM can be represented as an HCRF model. For the case of a
pooled covariance HMM this simplifies to a CRF or log-linear
model. The usefulness of log-linear model lies in its convex-
ity property according to the maximum entropy principle [5].
For a fixed feature vector to state alignment and a single den-
sity per state, the corresponding log-linear model has a global
maximum, that can be reached regardless of the intial values of

parameters, also shown by experiments in [6]. Another similar
work is [7] although it assumes a different structure of Markov
model. In addition to the convexity, another useful property of
the log-linear models is that it could be used to combine features
from different knowledge sources [8].

2. Log-Linear Mixture Models
Let the speech feature vectors xT1 belong to one of s = 1, ..., S
triphone classes, each class with Gaussian parameter set θs =
{µs,Σs}. Then the posterior probability is

pθ(s|x) =
p(s)pθ(x|s)P
s′ p(s

′)pθ(x|s′)

=
exp(x>Λsx+ λ>s x+ αs)P
s′ exp(x>Λs′x+ λ>s′x+ αs′)

(1)

The conversion is done by expanding pθ(x|s) in its Gaus-
sian form and collecting the terms of x. In the final equation,
the new parameters Λs ∈ RD×D, λs ∈ RD and αs ∈ R
are present in log-quadratic form. Note that here the posterior
probability is directly modeled and the exponential term does
not conform to the constraints of a probability distribution.

Using a pooled covariance matrix Σ can lead to further sim-
plification.

pθ(s|x) =
exp(λ>s x+ αs)P
s′ exp(λ>s′x+ αs′)

(2)

the resulting form is log-linear with no squared term in the
exponent. However, a squaring of the input features x as in
Section 3 leads to a similar behavior as in equation 1.

In case of a mixture densities, the corresponding posterior
probability is

pθ(s|x) =

P
l exp(λ>s,lx+ αs,l)P

s′,l exp(λ>s′,lx+ αs′,l)
(3)

for l = 1...Ls mixture parameters in each class s.

2.1. Log-Linear Discriminative Training

The frame level objective function is

F (frame)(Λ, A) = −τA||A||2 − τΛ||Λ||2

+

RX
r=1

TrX
t=1

ws log pΛ,A(st|xt)
(4)

pΛ,A(st|xt) =
exp

“
λ>st

Axt + α̂st

”
P
s′ exp

“
λ>s′Axt + α̂s′

” (5)

Here the state parameters are Λs = {λs, αs} with a trans-
formation matrix A and a fixed alignment sT1 . τA and τΛ are
regularization parameters. ws are state weights which could be
tuned to give less weight to the accumulations of e.g. noise and
silence states. α̂s = αs + log p(s), p(s) is the prior probability
of state s and R is the total number of sentences in the train-
ing corpus. The state priors are added to αs for training, and
later subtracted at recognition time. The objective function is
a frame-level Maximum Mutual Information (MMI), with extra
regularization terms. The MMI optimization can also be done
at sentence level i.e. the prior probabilities are sentence level
language-model probabilities.

2.2. Training of the Feature Transformation Matrix

A dimension reducing transform A ∈ RD′×D such that y =
Ax can be included into Equation 2

pΛ,A(c|x) =
exp(λ>c Ax+ αc)P
c′ exp(λ>c′Ax+ αc′)

=
exp

“P
d′d ad′d(λc,d′xd) + αc

”
P
c′ exp

“P
d′d ad′d(λc′,d′xd) + αc

” (6)

A is a projective transformation. λc and αc are as in Equa-
tion 2. λc,d is the dth scalar component of vector λc, xd is the
d th component of x, and ad′d is the element of matrix A at d′th

row and d th column. The equation is log-linear with respect to
either λc,d or ad′d, provided the other one is held constant.

2.3. Optimization Procedure

Frame level log-linear optimization can be done using the GIS
algorithm [5], but for this case it is found to be slower than the
general purpose RPROP algorithm [9]. RPROP is a first order
optimization algorithm that takes only the sign of the partial
derivatives into account. The weights for parameters are in-
creased if there was no sign change in the partial derivatives in
the last iteration, and vice versa. Although the RPROP method
is dependent on the initial step size for the partial derivatives,
still it performs robustly in case of a poorly chosen initial step
size. In all the following experiments in section 4 the RPROP
algorithm is used for optimization.

Another issue is the use of Viterbi approximation for the
optimization of mixture densities. This means for each p(x|s)
using the score of the highest scoring density instead of the sum
of all the densities. In practice it was found to be detrimental for
the optimization process. When the Viterbi option is enabled,
only those feature vectors contribute to the partial derivatives of
λs,l which lie closer to it that all other λs,l′ . Therefore if a par-
ticular λs,l strays away from the solution due to a large step size,
it will not be brought back towards the solution because there
are no feature vectors to contribute towards its partial deriva-
tives. This leads to discontinuities in the partial derivatives. For
this reason we calculate the sum of all the densities for the ex-
periments.

3. Second Order Polynomial Features
Let us take the posterior probability in equation 1 as starting
point. This is the log-quadratic equation by directly converting
a class-specific covariance Gaussian model. By vectorizing the
matrices Λs and x>x , we get an equation in log-linear form

with respect to
»

vec(x>x)
x

–

pθ(s|x) =
exp

“
vec>(Λs) · vec(x>x) + λ>s x+ αs

”
P
s′ exp

“
vec>(Λs′) · vec(x>x) + λ>s′x+ αs′

”
(7)

here the vec operator denotes the vectorization of a matrix,
which converts an m×n matrix into an mn× 1 column vector
by stacking the columns of the matrix on top of one another.
Since the matrix Λs is obtained from the Gaussian covariance
as Λs = − 1

2
Σ−1
s , therefore it is symmetric too. Hence to avoid

redundancy, we use the half vectorization vech operator instead
of vec in equation 7. The above form of the posterior allows
us to implicitly model the class specific covariance model while
having the simplicity of optimization and robustness associated
with a log-linear model.

The dimension of the input vector
»

vech(x>x)
x

–
can be

large, therefore a projective transformation matrix A could be
used to reduce the number of parameters

pθ(s|x) =

exp
“
λ̂>s ·A

»
vech(x>x)

x

–
+ αs

”
P
s′ exp

“
λ̂>s′ ·A

»
vech(x>x)

x

–
+ αs′

” (8)

where λ̂s are the log-linear parameters to be trained. The
resulting form is no longer convex due to the use of a projective
transformation. However, in practice the loss in the objective
function is not large provided a good initial guess for the pa-
rameters λ̂s is given.

4. Experiments and Results
4.1. Speech Corpus and Baseline System

For the performance analysis of second order features, a large
vocabulary continuous speech recognition task European Par-
liament Plenary Sessions (EPPS) is used. It is a part of
2006 TC-STAR ASR evaluation campaign. It is composed of
recorded speeches of the European Parliament in British En-
glish under clean conditions. The training corpus is 40.8 hours
and the evaluation corpus is 3.5 hours. The newer versions of
EPPS English corpus contain more than 100 hours of training
data. The lexicon size is 54k words.

The acoustic model of the baseline system is cross-word
using triphones. A trigram language model is used. The initial
features are 16 MFCC features and a voiced feature, and 9 con-
secutive frames are concatenated together. This vector of size
17× 9 is then projected by a classical LDA matrix to 45 dimen-
sions. The classes are 4501 triphone CART leaves and a pooled
covariance is used.

4.2. Experimental Setup

The output vector x of classical LDA matrix is used to create
second order features vec(x · x>) which is then concatenated

to x. This gives a new vector of 1080 dimensions. Another
classical LDA is done on this new vector and the dimension is
reduced again to 45. A Generative Maximum Likelihood mix-
ture density estimation is used to calculate Gaussian means and
a pooled covariance. This gives a starting word error rate of
34.4 %, which is worse than the maximum likelihood error rate
of 28 % for first order features. The reason for this is that the
classical LDA algorithm does not work so well for this implicit
class specific covariance case. The LDA algorithm assumes ho-
moscedasticity. Secondly, the number of parameters for the sec-
ond LDA transformation matrix is much larger i.e. 1080 × 45,
which leads to poorly determined estimates. Therefore we op-
timize the transformation matrix log-linearly, by a procedure
called log-LDA as described in [10].

The single density Gaussian model is converted to log-
linear parameters λs as in equation 2, and RPROP algorithm
is used to optimize the objective function of equation 4. This
brings the WER to 26.7 %. This is followed by two alterna-
tions of transformation matrix optimization via log-LDA and
λs log-linear optimization. Surprisingly this causes a signifi-
cant decrease in the WER and it comes down to 21.3 %. This
is 2.2 % absolute better than if the same procedure is repeated
with normal first order MFCC features.

4.3. Training of Mixture Densities

The log-linear training is only convex for a single density per
state s. For mixture density training this presents challenges as
the initial guess in very important and can influence the final
objective function and WER. For 2 densities per state, the ML
word error for second order features is 31.1 %, and after log-
linear density training it drops to 29.1 %. This is even worse
than the WER for log-linear training of 1 density per state!
(which was 26.7 %). Therefore we need a method to specify
a better initial guess to the training of mixture densities, so that
the WER is at least as good as the word error rate of a similar
but less complex model. To solve this problem we adopt an ap-
proach similar to the iterative density splitting algorithm used in
a maximum likelihood framework. All the λs,l in state s are du-
plicated and a small offset is added to both new lambdas to put
them away from each other. Since the log-linear model does not
have any covariance (it is covariance normalized), therefore the
direction of the offset does not matter. Subsequent training of
this newly split model causes a decrease in the objective func-
tion as the new lambdas discriminatively adapt themselves to
the data. In this way, training of the 2 densities per state model
using the initial guess from single densities leads to a WER of
18.6 %, which is a 2.7 % absolute improvement after the split.

Table 1: EPPS: WER(%) for first and second order MFCC sys-
tems

Mixture Model single densities 16 dens./state
1st order ML 28.3 18.6
1st order log-linear 23.5 17.0
2nd order ML 34.4 23.0
2nd order log-linear 21.3 16.5

4.4. Effect of Additional Parameters

If full second order polynomial features without dimension re-
duction were used, it could be argued that the improvement in
the word error rate is coming from the large number of addi-

0 0.5 1 1.5 2 2.5 3 3.5

x 106

16

18

20

22

24

26

28

30

No. of parameters

W
E

R
 (

%
)

ML first order MFCC
log−linear first order MFCC
log−linear second order MFCC

L=1

L=8

L=16

L=4

L=2
L = No. of densities per state

Figure 1: EPPS: Comparison of discriminatively trained sec-
ond order and first order MFCC systems

tional parameters. Instead of (d + 1) × S as for the first order
MFCC system now we would have (d

2+3d
2

+1)×S parameters
λs,d and αs . Here d is the number of dimensions in λs and S is
the total number of CART states. However, in our experiments
we use a second transformation matrix for dimension reduction,
therefore the number of additional parameters is very small. In
this case there are (d+1)×S lambda parameters as previously,
plus d

2+3d
2
×d transformation matrix elements. This just means

a 23 % increase in the number of parameters for single densities
and a mere 1.4 % increase for 16 densities per state. Secondly,
this means a negligible overhead at recognition time, as the ad-
ditional parameters are in the feature extraction phase. During
recognition, the feature extraction phase is less computation-
ally intensive as compared to the beam search phase, therefore
moving parameters from the acoustic model into the feature ex-
traction part will invariably speed up the recognition process.

4.5. Effect of Unconstrained αs

Another interesting fact about the log-linear mixture models is
the unconstrained nature of the constant parameter αs. It is
initialized from the Gaussian model by the following equality

αs = −1

2
µ>s Σ−1

s µs −
1

2
log det(2πΣs) + log p(s) (9)

this equality implies a dependence of αs on the λs parame-
ters. However in case of log-linear training, αs are optimized as
parameters too. This means that they could deviate away from
the equality if this means an increase in the value of the ob-
jective function. Therefore although theoretically the Gaussian
and log-linear posterior models are equivalent, they may not be
equal at the recognition time because for recognition the pri-
ors are calculated from the language model and not from state
priors. To test the effect of this extra degree of freedom, the dis-
criminatively trained log-linear models were converted again to
Gaussian models and recognition was done using these models.
Experiments show that for single densities, this conversion had
a significant effect and the newly converted Gaussian models

0 1 2 3 4

x 106

15

20

25

30

35

No. of parameters

W
E

R
 (

%
)

Maximum likelihood
Gaussian discriminative
log−linear discrimative

L=16

L=4

L = No. of densities per state

L=8

L=2

L=1

Figure 2: EPPS with Second order features: Comparison of
discriminatively trained Log-linear model versus the Gaussian
mixture model obtained from that

performed about 4 % worse than the corresponding log-linear
models. This is because for a small number of densities per
state, a free αs can significantly alter the decision boundaries.
On the other hand, for 256 densities per state acoustic model,
there was no WER difference between the log-linear model and
the converted Gaussian model.

5. Conclusion
In this paper we have presented results for a speech recognition
system which uses second order polynomial features with a sub-
sequent dimension reduction transform. This gives us the ad-
vantage of second order features while the number of additional
parameters is small. We present results for an MFCC system
that has been trained discriminatively by log-linear frame level
MMI optimization. The mixture density splitting is also done
during the process and the acoustic model parameters before
each split are used for initial guess of the new parameters. The
dimension reduction transformation applied to the second or-
der features has also been trained log-linearly. This setup has
been experimentally found to achieve better WER as compared
to the baseline MFCC system. One reason for this improve-
ment is the implicit modeling of class specific covariance while
undergoing only a slight increase in the number of parameters.
Secondly, it has been found that the unconstrained optimization
of the priors plays a role in the log-linear optimization; it is one
of the reasons why log-linear model parameters can achieve bet-
ter WER than the corresponding Gaussian mixture model. The
envisioned future work in this direction is integrating speaker
specific feature and model transformation techniques such as
MLLR and CMLLR into such a framework. Secondly, better
methods for initializing a mixture density system are needed,
since the initial guess is very important in that case. Higher or-
der polynomial features also need to be investigated i.e. making
the feature extraction system more complex in order to make
the acoustic model simpler; thereby creating more robust mod-
els. This can also speed up the recognition process as the feature

extraction is generally computationally less expensive than the
Viterbi search phase.

6. Acknowledgments
This work was partly realized as part of the Quaero Programme,
funded by OSEO, French State agency for innovation, and also
partly based upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract No. HR001-
06-C-0023. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the DARPA.

7. References
[1] C. J. C. Burges, “A tutorial on support vector machines for pattern

recognition,” Data Mining and Knowledge Discovery, vol. 2, pp.
121–167, 1998.

[2] S. Wiesler, M. Nußbaum, G. Heigold, R. Schlüter, and H. Ney,
“Investigations on features for log-linear acoustic models in con-
tinuous speech recognition,” in IEEE Automatic Speech Recogni-
tion and Understanding Workshop, Merano, Italy, Dec. 2009.

[3] M. K. Omar and M. Hasegawa-Johnson, “Maximum conditional
mutual information projection for speech recognition,” in Proc.
INTERSPEECH’03, Geneva, Switzerland, Sep. 2003.

[4] G. Heigold, P. Lehnen, R. Schlüter, and H. Ney, “On the equiv-
alence of Gaussian and log-linear HMMs,” in Proc. INTER-
SPEECH’08, Brisbane, Australia, Sep. 2008.

[5] J. Darroch and D. Ratcliff, “Generalized iterative scaling for log-
linear models,” Annals of Mathematical Statistics, vol. 43, pp.
1470–1480, 1972.

[6] G. Heigold, D. Rybach, R. Schlüter, and H. Ney, “Investigations
on convex optimization using log-linear HMMs for digit string
recognition,” in Proc. INTERSPEECH’09, Brighton, U.K., Sep.
2009.

[7] H.-K. J. Kuo and Y. Gao, “Maximum entropy direct models for
speech recognition,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 14, no. 3, pp. 873 – 881, May 2006.

[8] J. Fayolle, F. Moreau, C. Raymond, G. Gravier, and P. Gros, “Crf-
based combination of contextual features to improve a posteriori
word-level confidence measures,” in Proc. INTERSPEECH’10,
Makuhari, Japan, September 2010, pp. 1942–1945.

[9] M. Riedmiller and H. Braun, “A direct adaptive method for
faster backpropagation learning: The RPROP algorithm,” in Proc.
ICNN’93, San Francisco, USA, 1993, pp. 586–591.

[10] M. A. Tahir, G. Heigold, C. Plahl, R. Schlüter, and H. Ney, “Log-
linear framework for linear feature transformations in speech
recognition,” in IEEE Automatic Speech Recognition and Under-
standing Workshop, Merano, Italy, Dec. 2009.

