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ABSTRACT

Models for silence are a fundamental part of continuous speech
recognition systems. Depending on application requirements, audio
data segmentation, and availability of detailed training data anno-
tations, it may be necessary or beneficial to differentiate between
other non-speech events, for example breath and background noise.
The integration of multiple non-speech models in a WFST-based dy-
namic network decoder is not straightforward, because these models
do not perfectly fit in the transducer framework. This paper de-
scribes several options for the transducer construction with multiple
non-speech models, shows their considerable different characteris-
tics in memory and runtime efficiency, and analyzes the impact on
the recognition performance.

Index Terms— LVCSR, WFST

1. INTRODUCTION

Acoustic models for non-speech events like silence and noise are
a fundamental part of a speech recognition system. If the silence
model does not match with non-speech parts of the signal, the sys-
tem will produce insertion errors, while a vague silence model may
cause deletion errors. Depending on the kind of audio data to be pro-
cessed and the upstream audio segmentation, different kinds of non-
speech events have to be considered, for example breath, laughter,
hesitations, or background noise. For some systems it may therefore
be beneficial to train separate models for these non-speech events.
Such models require of course respective precise annotations in the
training data.

The WFST framework offers a clear and consistent way of mod-
eling the parts of a speech recognition system [1]. However, non-
speech events do not perfectly fit in this framework, because they are
usually not covered by the LM [2]. The search graph construction is
implemented by a chain of token sequence expansions, from words
down to HMM states. Hence, non-speech models need to be present
also at the word level. If the non-speech tokens do not occur as labels
in the LM transducer, they cannot appear in the decoder output (un-
less the decoder implements some less generic special treatment),
which is necessary for some applications. Furthermore, the non-
speech labeled arcs in the LM transducer require a weight, which is
generally not consistent with the rest of the LM [3].

In this paper, we analyze different options for integrating multi-
ple non-speech models in the individual transducers involved with-
out modifying the generic decoder itself. Some of these options al-
low for a significant reduction in size of the LM transducer. We
use a dynamic network decoder, which integrates the LM on-the-fly
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as needed during recognition, allowing us to deal with huge vocab-
ularies and complex language models (LM) in a memory efficient
way [4]. In contrast to fully expanded static search graphs, the LM
transducer is kept separately, thus the reduction in transducer size
results in lower memory consumption of the speech recognizer. We
also describe specifics of the context dependency transducer con-
struction, which improve the runtime efficiency.

The remainder of this paper is organized as follows. Section 2
briefly describes the decoder used. In Section 3 we detail the con-
struction of the individual speech recognition transducers. Section 4
presents the experimental results, followed by conclusions in Sec-
tion 5.

2. DECODER

In the WFST framework, the LM is represented by a transducer G,
L is a phone to word transducer derived from the pronunciation dic-
tionary, and C encodes the context dependency of the acoustic mod-
els. These transducers are combined by the finite-state operation of
composition as C ◦L ◦G. The composed transducer has tied HMM
labels on the input side and words as output labels. The HMM states
are generated dynamically during decoding in our system. In the
dynamic network decoder, the composition of (C ◦ L) with G is
computed on demand (lazy evaluation) using special composition
filters which provide on-the-fly pushing of labels and weights [5].
We use determinized and minimized L and C transducers and per-
form no further transducer optimizations. Our decoder is based on
the OpenFst toolkit [6].

3. TRANSDUCER CONSTRUCTION

The non-speech models need to be considered in all three transduc-
ers. In this section, we describe the construction options for the G
and L transducer as well as special treatments of context indepen-
dent models in the C transducer.

3.1. Language Model
In a G transducer representing a commonly used n-gram LM, the
states encode word histories h and the arcs are labeled with words
w. The weight of an arc is the LM probability p(w|h). The backing
off structure is implemented by epsilon arcs to a state with reduced
history size [7].

Non-speech events are not part of the LM because a) they do
not occur in the text data used to estimate the LM, b) their occur-
rence generally does not depend on the predecessor words, and c)
they are not useful for predicting following words. Nevertheless, as
mentioned in the introduction, it may be necessary to integrate to-
kens for non-speech events in theG transducer. As silence and noise
can occur at any position in the spoken word sequence, non-speech



labeled arcs have to be reachable in G before and after any other
arc. The non-speech arcs are constructed as self-loops, because they
shall not modify the word history.

Adding loop arcs for all non-speech events to all states in the
G transducer allows for the insertion of these tokens without any
constraints and without reducing the context size. This construc-
tion heavily increases the transducer size though. An alternative pro-
ducing significantly less arcs is to add non-speech loops only at the
initial and the unigram (empty history) state. Thereby, non-speech
events remove the history of subsequent words.

3.2. Lexicon
The L transducer has words as output labels and phones as input
labels. If the non-speech tokens are included in the G transducer, L
integrates the pronunciations for these tokens like any other word.

We can add the non-speech tokens as optional arcs after each
word in L. These arcs have epsilon output labels, thus the non-
speech tokens do not need to be handled by the G transducer. This
construction introduces a limitation of recognizable sequences: af-
ter each word at most one non-speech token can be inserted, but not
sequences of different non-speech tokens. The length of the non-
speech events is not limited though, as loop transitions are added at
the HMM state level. A simple solution for this problem would be
to add self loops at the word end state. However, the computation of
the reachable (output) label lookahead which is used for the compo-
sition filter (cf. [5]), requires that all cycles in the transducer contain
at least one output label (implementation in OpenFst).

A compromise between constraining the sequences of non-
speech events by adding optional arcs in L and reducing the LM
context by introducing loops arcs at the unigram state in G, is to
do both. Thereby, we can insert one non-speech token after each
regular word without modifying the LM history and we can rec-
ognize longer sequences of several non-speech tokens by forcing a
path trough the unigram state in G. This construction is reasonable,
because it can be assumed that words following a longer pause do
not depend on the preceding words. By adding only arcs for silence
in L, we get a model which is very similar to the short silence model
described in [2].

3.3. C Transducer
TheC transducer is used to transform sequences of context indepen-
dent (CI) phones, the input labels of theL transducer, to sequences of
context dependent (CD) phone models by applying transducer com-
position as C ◦ L. Therefore, C has CI phones as output labels and
the CD units are used as input labels. The states in C encode the CI
phone history (2 phones for triphone models). In the construction
of an (output) deterministic transducer, as used in our system, the
output label is the right context of the triphone model used as input
label. This introduces a delay of CD labels by one symbol [8].

The models for non-speech events are usually context indepen-
dent. In theC transducer, arcs with a CI pseudo phone (output) label
s lead to a state (∗, s) with encodes just s as history. This state will
have arcs for all phones π with the non-speech model #s# (empty
left and right context) as input label and state (#, π) as target. The
state (#, π) represents an empty left context. See Figure 1 (a) for an
illustration.

The composed transducer C ◦ L has at word ends a separate
state for each phone model with empty right context and for each
non-speech model. The non-deterministic outgoing arcs of this state
all have the same input label (the respective non-speech model), as
illustrated in Figure 1 (d). In contrast to arcs for CD models, whose
input labels depend on the output label, the breakdown of output
label dependent arcs is not required for CI models.
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Fig. 1. C transducers with shifted CI phones (a), un-shifted CI
phones (b); a phone sequence P (c) and the composition of the C
transducers with P (d, e). s and n are CI non-speech pseudo phones,
a, b, c, d, π are CD phones. Triphone models are denoted as abc with
left context a, right context c.

The non-determinism can be eliminated by locally un-shifting or
synchronizing the CI models in the C transducer. As shown in Fig-
ure 1 (b), we redirect the arcs with CI model input labels to the initial
state (empty history) and replace the output label by epsilon. When
composed with L, all arcs with non-speech input labels, whose pre-
decessor states are deterministic now, will merge at one state (see
Figure 1 (e)). A similar result can be obtained by applying trans-
ducer determinization to C ◦L. The determinization however would
require the insertion of disambiguation symbols, because of the am-
biguous transduction from HMM label strings to word label strings.

The described partially un-shifted construction does not reduce
the size of C ◦ L much, but it improves the runtime performance
in case of a acoustic model containing several CI models. Dur-
ing decoding, all state hypotheses for non-speech events at word
boundaries will be recombined before being expanded to word initial
states. Thereby, the number of active state hypotheses is significantly
reduced and consequently the runtime performance.

4. EXPERIMENTAL RESULTS

We analyze the impact of the various options for the transducer con-
struction on the recognition performance in terms of both recogni-
tion quality and efficiency.



4.1. Recognition System
We performed experiments on two different tasks: European Parlia-
ment Plenary Sessions (EPPS) in English and data from the Quaero
Project in English, which contains broadcast news and unconstrained
broadcast conversations in English. The systems differ in vocabulary
size, complexity of the LM, the annotation of non-speech events in
the training data, and the audio segmentation. The EPPS test data is
segmented automatically resulting in a considerable amount of non-
speech, while the Quaero data has a precise (manual) segmentation.
EPPS English: We use the system as described in [9]. The dictio-
nary contains 53K words with 59K pronunciations, modeled using
45 phones and (unless noted otherwise) 5 non-speech pseudo phones
(silence, hesitation, breath, laughter, general noise). The acoustic
models (AM) consist of 4500 Gaussian mixtures modeling general-
ized triphone states with across word context dependency and us-
ing word boundary information. Triphones are modeled by 3-state
HMMs, except for silence which has only one HMM state. The
AM used for the first speaker independent recognition pass consists
of 900K densities. A second AM, consisting of 800k densities, es-
timated using speaker adaptive training and discriminative training
(minimum phone error criterion) was used in the second recogni-
tion pass, which applies speaker adaption using fMLLR. We used
two 4-gram LMs of different size. The smaller LM contains 7.4M
n-grams, the larger one has 25.8M n-grams. The test set comprises
644 segments with a total duration of 2.85h with about 27K words
in total.
Quaero English: The Quaero ASR system uses 150K words with
180K pronunciations, using the same phoneme set as the EPPS sys-
tem. The speaker independent AM consists of 1M densities for 4500
Gaussian mixture models. The MFCC features are augmented with
phone posterior features. The 4-gram LM contains 50.4M n-grams.
We used a simple one-pass decoding strategy for this task. A de-
tailed description of the system is given in [10]. The test set used
consists of 1482 segments with a total duration of 3.3h and contains
about 40K words.

4.2. L and G Transducer
Table 1 illustrates the reduction in transducer size, in particular in
the number of arcs inG. The table shows the size of C ◦L built with
and without optional non-speech arcs at word ends, as described in
Section 3.2, plus the size of G with and without non-speech loop
arcs as described in Section 3.1. The quantity of additional loop arcs
added (number of non-speech tokens times number of states in G)
is clearly relatively large, especially for complex language models
like the larger EPPS LM and the Quaero LM. With an arc size of
16 bytes in memory, the additional arcs allocate around 520MB for
the larger EPPS LM and 630MB for the Quaero LM. Considering
that the LM often consumes the biggest fraction of memory of a
speech recognition system, the transducer size reduction yields a no-
ticeable decrease in memory requirements in practice. The increase
in transducer size for additional optional non-speech arcs in C ◦L is
comparatively small.

Trading memory for speed or accuracy is easy in many cases. In-
teresting is therefore how the removal of non-speech arcs inG affects
the recognition performance. The results achieved using the various
construction options of G and L are shown in Table 2 for EPPS and
Table 3 for the Quaero task. The baseline in these tables is a system
which has loop arcs at all states in G. If loops are added only to the
initial and the unigram states of G, the WER increases significantly.
Adding non-speech arcs to L only yields an even worse result, be-
cause it is impossible to recognize sequences of different non-speech
events this way. The increased number of insertion errors illustrates

Table 1. Transducer size for both systems. The number of arcs for
the G transducer is given for the transducers with and without non-
speech (non-sp.) loop arcs, for C ◦ L with and without optional
non-speech arcs.

arcs

system transducer states w/ non-sp. w/o non-sp.

EPPS
C ◦ L 65.2K 253.4K 214.2K
small G 1.8M 18.1M 9.2M
large G 6.2M 62.7M 31.9M

Quaero C ◦ L 164.5K 515.5K 459.6K
G 8.3M 100.1M 58.7M

Table 2. Recognition results for the EPPS task using the small LM
(upper part) and the large LM (lower part). Optional non-speech arcs
were added in G at all states or only at the initial (i) and the unigram
(u) state. Optional non-speech arcs in L were added either for all
non-speech events, for silence (sil.) only, or not at all.

non-sp. arcs pass 1 pass2

LM L G WER WER sub. del. ins.

small

- all 14.4 12.0 8.2 2.0 1.8
- i, u 16.7 14.1 9.7 2.6 1.7
all - 17.3 14.6 9.0 2.0 3.6
all i, u 14.5 12.1 8.3 2.0 1.8
sil. i, u 14.6 12.4 8.5 2.0 1.9

large
- all 13.8 11.3 7.7 1.9 1.7
all i, u 14.0 11.4 7.9 1.8 1.7
sil. i, u 14.1 11.7 8.0 1.9 1.8

that. The combination of both options yields results nearest to the
baseline, at least for the EPPS system. Adding only optional silence
arcs to word ends in L deteriorates the results slightly.

The Quaero system has slightly different characteristics. The du-
ration of non-speech events in the test data is shorter here, because of
the more precise segmentation. In addition, the non-speech models
are less accurate due to less precise training data annotations. Even
though the difference is quite small, the best option here is to add
only silence instead of all non-speech tokens as optional word end
arcs to L.

4.3. Non-speech Modeling
Instead of dealing with multiple non-speech events, we can also train
just one non-speech model, whose mixture model accounts for the
different acoustic realizations. We evaluated this option by compar-
ing systems having one 3-state HMM model for noise in addition to
the 1-state silence model with systems considering all non-speech
tokens as described in Section 4.1. All systems were bootstrapped
from the multiple non-speech system used for the experiments in the
previous section, which might distort the results a little bit.

The baseline EPPS system has in total 12 non-speech (tied) state
models (including one silence model), while the Quaero system has
only 8. The lower number of non-speech models in the Quaero AM
is mainly caused by a higher ambiguity in training data annotations
and less observations for some of the events. The re-trained AM
with one noise model has 4 non-speech HMM state models.

The results in Table 4 show that the EPPS system benefits from
differentiated non-speech models, only slightly though. The Quaero
system is not affected from pooling the noise models, which is not
surprising because of the small difference in models as described
above. All systems have noise and silence loop arcs on all G states.



Table 3. Recognition results for the Quaero task. Optional non-
speech arcs were added in G at all states or only at the initial (i) and
the unigram (u) state. Optional non-speech arcs in L were added
either for all non-speech events, for silence (sil.) only, or not at all.

non-sp. arcs

L G WER sub. del. ins.

- all 22.0 14.8 4.5 2.8
all - 24.8 15.5 4.1 5.2
all i, u 22.3 14.9 4.4 3.0
sil. i, u 22.0 14.5 4.7 2.9

Table 4. Recognition results comparing acoustic models with one
noise model vs. 4 noise models, both containing an additional one
state silence model.

system # noise m. WER sub. del. ins.

EPPS 4 14.4 9.8 2.7 1.9
1 14.8 10.0 2.6 2.1

Quaero 4 22.0 14.7 4.5 2.8
1 21.9 14.7 4.4 2.8

4.4. C Transducer
Figure 2 shows the effect of the C transducer construction described
in Section 3.3 on the size of the active search space. The plot depicts
the number of active state hypotheses (after pruning) in relation to
the absolute number of word errors. Due to the earlier recombination
of partial hypotheses after non-speech between words, the number of
active state hypotheses is reduced by up to 40%.

The improvement in runtime efficiency is shown in Figure 3
(measured on a 2.8 GHz Intel Core2). Due to caching of acous-
tic scores, the decrease in real-time factor (processing time divided
by audio duration) is lower than the reduction in search space size.
Nevertheless, the RTF can be improved by up to 20%, which is no-
ticeable in practice.

The construction also improves the runtime performance of the
system with two noise models. The reduction of the active state
space is smaller, but still around 20%.

5. CONCLUSION

Whether or not multiple non-speech models improve a speech recog-
nition system depends on the targeted application, the training data,
and the pre-processing. In our experiments the gain in recognition
quality from including more than one non-speech model (in addition
to a silence model) is small, if any.

If multiple non-speech models are present in the AM however,
the construction using loop arcs at the unigram state in the G trans-
ducer combined with optional non-speech arcs at word ends in L,
reduces the memory requirement significantly with a minor degra-
dation in recognition accuracy. The adjusted construction of the C
transducer decreases the size of the active search space and therefore
improves the runtime efficiency of the decoder.
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