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Abstract

This paper describes a log-linear modeling framework
suitable for large-scale speech recognition tasks. We in-
troduce modifications to our training procedure that are
required for extending our previous work on log-linear
models to larger tasks. We give a detailed description of
the training procedure with a focus on aspects that im-
pact computational efficiency. The performance of our
approach is evaluated on the English Quaero corpus, a
challenging broadcast conversations task. The log-linear
model consistently outperforms the maximum likelihood
baseline system. Comparable performance to a system
with minimum-phone-error training is achieved.
Index Terms: acoustic modeling, discriminative models

1. Introduction
Conventional speech recognition systems rely on Gaus-
sian mixture HMMs (GHMMs). The training of the
acoustic model begins with a maximum likelihood (ML)
training with the expectation maximization (EM) algo-
rithm. The performance of the generative GHMM can
further be improved by subsequently optimizing the pa-
rameters according to a discriminative criterion, e.g. the
minimum phone error (MPE) criterion [1] .

Recently, the interest in discriminative models has
greatly increased. They are conceptually advantageous
because they do not depend on a maximum likelihood ini-
tialization. In particular, log-linear models are promising
because they fit into the probabilistic framework of hid-
den Markov models (HMMs). Another important prop-
erty of log-linear models is that their training according to
the conditional maximum likelihood (CML) criterion is a
convex optimization problem. This property guarantees
that the optimization can not get stuck in local optima.
Algorithms with guaranteed convergence, e.g. steepest
descent and other more sophisticated optimization algo-
rithms, converge to the global optimum from any initial-
ization. This is in contrast to discriminative training of
GHMMs, where the performance depends on the quality
of the initialization, the choice of the optimization algo-
rithm, and internal parameters of the optimization algo-
rithm. Therefore, log-linear models require less engineer-

ing work than conventional discriminative training.
Convex log-linear models have been successfully ap-

plied to phoneme recognition [2, 3], promising results
have also been obtained on continuous speech recogni-
tion tasks, e.g. in [4, 5].

Since the training time for discriminative models is
very high, the efficient training of log-linear models is
of great interest. In this paper, we extend our previous
work on log-linear models [4, 6] from the small-sized
Wall Street Journal task to a challenging large-vocabulary
broadcast conversation (BC) task. We provide a detailed
description of our modified training procedure and point
out critical issues for computational efficiency. An im-
portant new aspect in the training procedure is the uti-
lization of linearly transformed features without explic-
itly applying the transformation.

The paper is organized as follows. Section 2 describes
the form of the log-linear model and the training criterion.
A detailed description of the training procedure is given
in Section 3. Experimental results are given in Section 4.
Finally, Section 5 presents the conclusion.

2. Model Definition and Training Criterion
Let X ⊂ RD denote the observation space and S =
{1, . . . , S} a finite set of classes. A log-linear model
with parameters Λ = (λ1; . . . ;λS) ∈ RN×S and α =
(α1; . . . ;αs)

T ∈ RS is a model for class posterior prob-
abilities of the form

p(Λ,α)(s|x) =
exp

(
λTs f(x) + αs

)
S∑
s̄=1

exp
(
λTs̄ f(x) + αs̄

) , (1)

where the components of f : X → RN are called fea-
ture functions. In this work, we consider log-linear mod-
els that are defined on frame-level, i.e. s ∈ S denotes
an HMM state and x ∈ X an acoustic observation. The
posterior probabilities can be used in HMM speech rec-
ognizers via the hybrid approach [7].

The regularized CML criterion is often regarded as the
natural training criterion for log-linear models. With the



above notation, it minimizes the objective function

F : R(N+1)×S → R

(Λ, α) 7→ − 1

T

T∑
t=1

ln p(Λ,α)(st|xt) + C‖(Λ, α)‖22 .
(2)

Here, (xt, st)t=1,...,T is the training sample. The objec-
tive function is convex for C ≥ 0 and strictly convex for
C > 0. The gradient of the unregularized objective func-
tion is

∇λsF(Λ, α)=
1

T

T∑
t=1

(
p(Λ,α)(s|xt)− δs,st

)
f(xt), (3)

where 1 ≤ s ≤ S, and δ denotes the Kronecker delta.
The gradient with respect to αs is analogous with f re-
placed by the constant one.

3. A Training Recipe
In this section, we give a detailed description of our train-
ing procedure for log-linear models. Our goal is a system
that is independent from a generative system, in particu-
lar it should not require an initialization from a genera-
tive system. The training should use only standard rou-
tines, require few tuning parameters, and give at least as
good results as a discriminatively trained generative sys-
tem. Furthermore, the training needs to be scalable to
large datasets.

3.1. Choice of Model

Conventional discriminative training of generative mod-
els is typically performed on sequence-level. In con-
trast, we use a log-linear model defined on frame-level in
this work. Conceptually, the approach of working on se-
quence level is preferable because it directly corresponds
to the application of the model in recognition. However,
in practice, the competing hypotheses are approximated
by word lattices, which are generated with an ML model
[8]. In addition, only the Viterbi alignment is considered
within the word boundaries.

For training discriminative models from scratch, the
lattice approach has several drawbacks. First, the lattices
have to be generated with an existing generative model,
which is in contrast to our goal of designing a system in-
dependent from the generative system. Second, generat-
ing useful lattices for discriminative training requires a lot
of engineering work which we aim to avoid. In particular
for spontaneous speech, care has to be taken that word-
fragments and non-speech events as coughing, laughter,
and noises do not dominate the word lattice.

For frame-wise models, only an HMM-state alignment
is required. In principle, the alignment can be derived
from scratch, starting from a linear alignment [4]. In our
experiments, we observed only a weak dependence on the
quality of the alignment. Therefore it is more convenient
to work with the ML alignment on large datasets.

3.2. Choice of Features

A crucial aspect in the application of log-linear models
is the definition of appropriate feature functions. In our
previous work [4], we used a combination of two types
of feature functions. First, we used second-order polyno-
mial feature functions, i.e.,

f : X → RN , x 7→
(

x
xxT

)
(4)

with N = D + D(D + 1)/2. Polynomial features are
global in the sense that their support is the whole ob-
servation space. Therefore, they generalize well to un-
seen data. However, training models with these high-
dimensional dense features is computationally demand-
ing. Furthermore, by increasing the polynomial degree,
the number of features increases exponentially.

In [4], we investigated sparse features, similar to the
features employed in fMPE [9]. These features mimic the
locality of Gaussian mixture models (GMMs). They are
derived from a GMM for the marginal probability p(x),
which can be trained without an existing GHMM system.
Given the probabilities (p(x|l))1≤l≤L from a GMM, the
features are defined as

fl : X → R, x 7→ p(x|l)∑
l′ p(x|l′)

l = 1, . . . , L . (5)

By setting a small threshold, sparse features are obtained,
which strongly reduces the computational demands of
the gradient accumulation. The number of sparse fea-
tures can further be increased by including features of
neighboring time frames. Using such local features, log-
linear models can approximate the training data much
better. However, models with sparse features overfit more
quickly. In previous experiments on smaller tasks, we
found that using a combination of both polynomial fea-
tures and sparse features gives a good compromise.

3.3. Regularization vs. early stopping

In order to control model complexity, usually multiple
trainings with different regularization constants are per-
formed. Each training is run until convergence to the
global optimum and the best model is chosen on the de-
velopment set. Since this approach is very time consum-
ing, we use early stopping in this work, i.e., the optimiza-
tion is stopped as soon as the error rate on the devel-
opment set increases. As regularization, early stopping
bounds the norm of the parameters and therefore has a
similar effect, see e.g. [10].

3.4. Optimization

In literature, the Quasi-Newton algorithm L-BFGS is
commonly regarded as the best optimization algorithm
for log-linear models [11]. In [6], we found that an im-
proved version of Rprop [12] converges faster than L-
BFGS when using very high-dimensional features. An



advantage of Rprop is its insensitivity to internal tuning
parameters. The only critical parameter is the initial step
size. In our experiments, we used the largest step size
that leads to a reduction of the objective function in the
first step. We used a backtracking procedure for finding
the best initial step size, starting with a value of 0.01.

One possibility for accelerating log-linear training
might be the choice of a good initialization. In initial ex-
periments, we compared zero initialization, random ini-
tialization, and initialization with a generative model. It
turned out that starting from zero led to fastest conver-
gence. In addition, the first iteration can be accelerated
strongly because in this case the posterior probabilities
are all uniform and do not have to be computed.

3.5. Gradient Accumulation

Most of the computation time for training log-linear mod-
els is spent on the accumulation of the gradient, which
requires the calculation of the posterior probabilities and
updating the gradient for each observation.

The posterior probabilities require the calculation of
high-dimensional inner products (scores) of the class-
specific parameter vector and the feature vector. Calcu-
lation of the scores can be performed as a matrix-vector
product of the parameter matrix and the feature vector. If
multiple features are processed at once, a matrix-matrix
product is required. The gradient update is a weighted
vector sum. For these computations, it is important to use
optimized libraries. In our implementation, we observed
a speedup of the whole training by a factor of two, sim-
ply by using the optimized linear algebra routines in the
AMD Math Core Library1 instead of a naive implemen-
tation.

A simple way for accelerating the gradient update is
to prune the posterior probabilities. Then, the parame-
ters of the classes with zero probability do not need to be
updated, cf. Equation (3).

3.6. Implicit Feature Transformation

In our previous work [6], we found that the optimization
problem (2) can be poorly conditioned, in particular when
using polynomial features. It turned out to be crucial
to improve the conditioning of the optimization problem
by normalizing means and variances of the features and
decorrelating them.

In principle, the features can be preprocessed once
before training and then stored to disk. However, for
log-linear models, typically very high-dimensional fea-
tures are derived from low-dimensional observations. For
large datasets, these high-dimensional features can not
be stored and have to be computed on-the-fly in every
iteration. The decorrelation requires an expensive high-
dimensional matrix-vector product. Here, we show that

1http://developer.amd.com/libraries/acml

these computations can be avoided by performing the
transformation on model side.

In order to simplify notation, we do not distinguish be-
tween the observations and their high-dimensional repre-
sentations, i.e., f(x) = x. Let W ∈ RN×N̄ and b ∈ RN̄
denote the parameters of an affine feature transformation.
Then the scores are

λTs (Wx+ b) + αs = (WTλs)
Tx+ λTs b+ αs . (6)

Thus, the posterior probabilities of transformed features
can be calculated by transforming the model instead of
the features. Let

(Λ̄, ᾱ) = (WTΛ,ΛT b+ α) (7)

denote the transformed model parameters. Then

∇λsF =
1

T

T∑
t=1

(
p(Λ,α)(s|Wxt + b)− δs,st

)
(Wxt + b)

= W
1

T

T∑
t=1

(
p(Λ̄,ᾱ)(s|xt)− δs,st

)
xt

+
1

T

T∑
t=1

(
p(Λ̄,ᾱ)(s|xt)− δs,st

)
b.

(8)

An analogous identity holds for the gradient with respect
to αs. Thus, accumulation of the gradient with trans-
formed features can be performed by accumulation with
the original features but with the transformed model (7)
and transforming the gradient via (8). This procedure re-
duces the complexity from O(TNN̄) to O(SNN̄) and
is therefore beneficial when the number of data points is
larger than the number of classes.

4. Experimental Results
In this section, we describe experiments with log-linear
models on the English Quaero corpus, a challenging
broadcast conversations task, see Table 1 for corpus
statistics. Our GHMM baseline system is a simplified
version of our evaluation system, which performed best
in the Quaero evaluations in 2010 and 2011 [13]. In con-
trast to our evaluation system, the baseline system is only
a single one-pass system without multi-layer perceptron
(MLP) features.

The baseline system uses MFCC features with vocal
tract length normalization and a voicedness feature. Con-
text is incorporated by concatenating features from a win-
dow of nine frames. The dimension of the resulting fea-
ture vector is reduced to 45 by means of an LDA. The
GMM has a pooled, diagonal covariance matrix and mod-
els 4500 generalized triphones. An ML model is trained
with the EM algorithm with a splitting procedure. The
ML model is used as initialization for an MPE training.



train dev10 eval10 eval11

Amount of data 103h 3.3h 3.7h 3.3h

WER ML - 25.5 25.1 32.2
WER MPE - 24.0 24.0 30.6
WER log-lin - 24.2 24.0 30.8

WER syscomb 22.2 22.3 28.9

Table 1: Results and corpus statistics for the 2010 English
Quaero corpus. Word error rates (WER) of the ML and
MPE baseline systems, the log-linear system, and system
combination are given.

The number of splits of the GMM is tuned with respect to
performance of the MPE model, leading to a model with
roughly one million densities. The best MPE model is
obtained after 21 Rprop iterations. The recognition lex-
icon consists of 150k words. The language model is a
smoothed 4-gram, trained on roughly three billion words.

The log-linear system uses the same baseline features
and the same state tying as the GHMM system. The train-
ing follows the description in Section 3. Second-order
polynomial features and sparse features with an acous-
tic context of nine frames are computed from the base-
line features. The best log-linear model is obtained with
sparse features derived from a GMM with 12 splits. The
resulting feature vector has 36864 sparse and 1080 dense
components. The best word error rate is achieved after 17
Rprop iterations.

The training time per iteration for the log-linear model
is still larger than the training time for MPE by a factor
of around five. On the other hand, the frame-wise log-
linear approach does not require the creation of lattices,
and requires less tuning. Since our training scheme can
easily be parallelized, the log-linear approach is feasible
for large datasets.

The experimental results are summarized in Table 1.
The log-linear system consistently outperforms the ML
model. The MPE model and the log-linear model per-
form equally well. In addition, we performed a confusion
network system combination (as in [13]) of the MPE and
the log-linear system. Strong improvements are obtained
although both systems use the same baseline features and
the same state tying.

5. Conclusions
In this paper, we extended our previous work on log-
linear models from a small database for read speech (Wall
Street Journal) to a challenging broadcast conversation
task. The increased amount of training data required im-
provements to our implementation and several modifica-
tions to our training setup.

It is interesting to note that one new aspect in our modi-
fied training scheme, the feature transformation on model
side, can be applied to other models as well, in particu-

lar to neural networks. However, this trick only reduces
training time, when the number of accumulated samples
is larger than the number of classes. This is typically the
case for batch training or mini-batch training with large
batch sizes.

Our proposed training scheme for log-linear acous-
tic models is scalable to large tasks. It requires only
standard routines and is therefore implemented relatively
easily. It depends on only few tuning parameters, and
therefore avoids much engineering work commonly re-
lated to discriminative training. Still, we observed consis-
tent improvements over an ML trained generative model
and comparable performance to a discriminatively trained
generative model. Furthermore, the log-linear system
provides valuable complementary information for system
combination. It remains to verify that these findings hold
for systems with MLP features and in combination with
speaker combination.
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