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Abstract

Gaussian Mixture Model (GMM) and Multi Layer Perceptron
(MLP) based acoustic models are compared on a French large
vocabulary continuous speech recognition (LVCSR) task. In
addition to optimizing the output layer size of the MLP, the ef-
fect of the deep neural network structure is also investigated.
Moreover, using different linear transformations (time deriva-
tives, LDA, CMLLR) on conventional MFCC, the study is also
extended to MLP based probabilistic and bottle-neck TANDEM
features. Results show that using either the hybrid or bottle-
neck TANDEM approach leads to similar recognition perfor-
mance. However, the best performance is achieved when deep
MLP acoustic models are trained on concatenated cepstral and
context-dependent bottle-neck features. Further experiments re-
veal the importance of the neighbouring frames in case of MLP
based modeling, and that its gain over GMM acoustic models is
strongly reduced by more complex features.

Index Terms: HMM, GMM, MLP, bottle-neck, hybrid, ASR,
TANDEM

1. Introduction

Nowadays, neural networks (NN) are widely used in LVCSR
systems. However, due to the efficiency of the back-propagation
algorithm, it is a special class of feed-forward NNs, MLP, which
is applied in practice, and can be trained on hundreds of hours
of speech data. Estimating the class (phone, phone state, tied
triphone state) posterior probabilities, MLPs are applied in two
different ways in current Hidden Markov Model (HMM) based
automatic speech recognition (ASR) systems.

First, the probabilistic TANDEM [1] approach — after the
logarithmic and feature reduction (PCA or LDA) transforma-
tion — uses the posteriors as features in a GMM based system.
In the more specific bottle-neck TANDEM concept proposed
by [2], an MLP consisting of at least 5 layers with a narrow
one in the middle is trained, whereas the linear output of the
middle (bottle-neck) layer is taken as output instead of the pos-
teriors. The biggest advantage of the TANDEM approach is that
all techniques developed for GMMs in the previous decades re-
main applicable, e.g. speaker adaptive (SAT) and discriminative
training.

Second, like in classical artificial neural network based
HMMs proposed in the early 90’s [3], the GMM based emis-
sion probabilities are replaced by the class posterior probabili-
ties estimated by an MLP. As an alternative to GMM in LVCSR,

this hybrid approach recently became popular since it had been
discovered that the MLP based estimation of posterior probabil-
ities of thousands of tied triphone states is feasible. Moreover,
the introduction of deep structures (many hidden layers) further
increased the effectiveness of the MLP as acoustic model [4].
In order to remedy the convergence difficulties arising from the
deep structure, different MLP pre-training algorithms [5, 6, 7]
have been proposed.

Comparing speaker-independent, discriminatively trained
GMMs and deep MLP acoustic models, more than 24% rela-
tive gain was reported on a conversational speech transcription
task [4]. Even the MLP with a single but wide enough hidden
layer was able to outperform the GMM based system. However,
according to [8] the use of speaker adapted and discriminatively
trained cepstral features decreased the performance gap signif-
icantly between the GMM and MLP models, and only MLPs
with deep structures were able to outperform the traditional
GMM on English broadcast news task.

Since in the state-of-the-art ASR systems [9, 10] MLPs are
mainly used in TANDEM approach as features, in this paper
our main goal is to compare the two different acoustic mod-
eling techniques not only on MFCC, but also on concatenated
cepstral and posterior features. Therefore, evaluating several
feature transformation techniques (SAT, LDA) developed for
GMM, the study is also extended to context-dependent MLP
features.

The paper is organized as follows. Section 2 describes the
corpus used in our experiments. The details of our experimental
setups are given in Section 3. Section 4 reports the results. The
study finishes with conclusions in Section 5.

2. Corpus description

The comparison of the different acoustic models is carried out
on a French broadcast news and conversations task. Focus-
ing on transcription of web data, different speech types (news,
comedy, cooking sessions, interviews, and talk-shows, etc.) are
collected within the QUAERO project. At the current state of
the project about 250 hours of transcribed French speech data
are available to train the acoustic models and neural networks
(Train). While the feature extraction and system parameters are
tuned on the development corpus (Dev10) of 2010, the evalua-
tion set (Eval10) of 2010 is used for measuring the recognition
performance. To mitigate the “training-on-testing-data” prob-
lem our final conclusions are drawn from the recognition per-



formance achieved on the evaluation data from 2011 (Evalll).
For the evaluation of 2011 a new language model (LM) is esti-
mated, where the LM scale parameter is tuned on Devl1l. Ta-
ble 1 summarizes the corpus statistics of training and testing
data.

Table 1: Training and testing corpora

total data [h]  # running words
Train 257 9,800k
Devl10 3.7 41k
Evall0/Dev11 2.9 36k
Evalll 3.1 38k

3. Experimental setups
3.1. Features
3.1.1. Cepstral features

From the audio files, vocal tract length normalized cepstral fea-
tures are extracted. The pre-emphasized power spectrum is
computed every 10 ms over a window of 25 ms. After integra-
tion of the warped power spectrum — 20 triangular filters are
used, equally spaced on Mel-scale — the features are logarith-
mized. Finally, we compute the 16 MFCCs from the logarith-
mic critical band energies and apply mean and variance normal-
ization. When linear discriminant analysis (LDA) is applied,
features within a sliding window of length 9 are projected to a
45 dimensional subspace.

3.1.2. TANDEM MLP features

To select the best posterior features for our experiments two
types of MLP features are tested: classical 3-layer MLP based
posteriors which are further transformed by logarithm [1], and
5-layer MLP based bottle-neck features [2], where the linear
output of the bottle-neck layer was taken as features. Both fea-
ture sets are reduced by Principal Component Analysis (PCA)
according to 95% of the variability. All MLPs are trained us-
ing the cross-entropy criterion and approximate class posterior
probabilities. The size of the output layer — from 42 phones up
to 4500 tied triphone states using the decision tree estimated for
GMM — is optimized experimentally, see Section 4.2. All acti-
vations of the nodes within the output layer are transformed by
the softmax function — all outputs sum up to 1, whereas the sig-
moid transfer function is applied in all other layers. Nine con-
secutive frames of acoustic feature vectors are fed to the MLP.
The number of nodes in the hidden layer is fixed to 7000, ex-
cept the bottle-neck layer which has 42 nodes. Furthermore, the
net is trained using back-propagation algorithm in mini-batch
(512 frames) mode. Ten percent of the training set (chosen ran-
domly) is used as cross validation set for adjusting the learning
rate and to prevent overfitting.

3.2. Acoustic models
3.2.1. GMM-HMM

In order to obtain the GMM acoustic models, the steps from
[11] are followed. Instead of training the acoustic models from
scratch, an initial alignment is generated by the previous best
system [10], and used to estimate the decision tree of the state-
tying, the LDA matrix for cepstral features, and the mixture pa-
rameters in the first iteration steps. To extract the speaker nor-
malized (SAT) features, the Constrained Maximum Likelihood
Linear Regression (CMLLR) speaker normalization is applied
using the simple target model approach [12].

3.2.2. Hybrid MLP-HMM

To use an MLP as acoustic model in the HMM system instead of
GMM the class posterior probabilities are converted to emission
likelihoods p(x|s):

P(s|z)
P(s)>”

p(als) ~ (1)

where x denotes the observation vector (e.g. the 9 consec-
utive MFCC frames), and s refers to the HMM state. The state
prior probabilities, P(s), are estimated on the training corpus,
and its scale, «, is optimized on the development set. For single
hidden layer MLPs the nets are the same as in Section 3.1.2.
In our experiments with deep MLP structures, MLPs with three
hidden layers each having 3072 nodes are trained. In order to
train deep structures we followed [6], where the layers are ini-
tialized by discriminative pre-training (DPT). As it was shown,
DPT initialized NN slightly outperformed the nets pre-trained
with Restricted Boltzmann Machines.

3.3. Language model

In order to be able to compare the performance of the hybrid
systems with our previous results, the same LM is used as in
[11] during the recognition experiments on Dev10 and Eval10.
The details about this LM are available in [10]. Moreover, the
recognition results obtained on the Dev11 and Evalll sets are
achieved by a new LM estimated on the available data collected
in the QUAERO project (4.2 billion words), where the vocabu-
lary contains 200k words. To smooth the 4-gram LM, the dis-
count parameters are estimated on held-out data according to
[13]. The perplexity value of the new unpruned LM is 111.2.
As speech recognizer the RASR [14] is used.

4. Experimental results

4.1. Comparison of GMM and MLP acoustic modeling us-
ing cepstral features

In the first two experiments the different acoustic modeling are
compared using the cepstral (MFCC) and speaker normalized
cepstral features (MFCCsar). The previously optimized GMMs
with 4500 tied states estimated on LDA transformed (9 frames)
MFCC:s are considered as baseline acoustic model [11]. The re-
sults in word error rate (WER) on Evall0 are shown in Fig. 1.
Investigating the optimal size of the MLP output, we can con-
clude that the hybrid acoustic model reaches the lowest WER,
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Figure 1: Effect of the output layer size on Word Error Rate
(WER) obtained on EvallO test set using hybrid MLP acoustic
models and cepstral features

when the 3-layer MLP are trained using 4500 tied triphones
states as output labels. Therefore, for the further experiments
the output layer of the hybrid model is fixed to this size. As can
be seen, the speaker independent hybrid MLP system performs
more than 1.5% absolute better than the GMM based. In ad-
dition, it achieves an even lower WER than the GMM system
trained on speaker normalized data. Doubling the hidden layer
size up to 14000, we did not observe any significant improve-
ment. Furthermore, repeating the experiment with deep MLP,
the performance gap increased further between the GMM and
MLP based acoustic models. The relative improvement is over
10% in the speaker independent case, whereas the relative gain
reduces to 8% using more complex SAT features. The improve-
ment achieved by the MLP over the GMM are consistent with
the results reported previously in the literature [4, 8].

4.2. Selection of context-dependent MLP features

In order to compare the two acoustic modeling techniques on
TANDEM features, first the MLP features trained on 9 frames
context are optimized. Since in our previous work [10] the MLP
features are extracted from phone class posteriors, in this study
the effect of the output layer size is investigated for both the
classical probabilistic and bottle-neck TANDEM features, as
well. The MLP features are always concatenated with MFCCs
in these experiments, and the results are compared after speaker
adaptive training and two-pass GMM based recognition. As
Figure 2 shows, increasing the output layer could lead to bet-
ter TANDEM features. The bottle-neck features (BN) outper-
form the probabilistic TANDEM (pTANDEM) features in all
cases. Furthermore, the bottle-neck features also benefit from
the wider output layer, although the bottle-neck layer size is not
changed. Considering also the fact that the dimension of the
probabilistic TANDEM features is increasing with the growing
output size of the MLP, the context-dependent bottle-neck fea-
tures seem to be more attractive. For subsequent experiments,
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Figure 2: Effect of the output layer size on Word Error Rate
(WER) obtained on EvallO test set after SAT using concatenated
cepstral and probabilistic TANDEM (pTANDEM) or bottle-
neck (BN) features

the BN features are chosen, where the output layer is fixed to
2500. Exploiting context-dependent bottle-neck features lead
to more than 3% relative gain over the phone posterior based
BN features and to 9% relative improvement over the stand-
alone MFCCsar features. Moreover, BN features and GMM
acoustic modeling shows slightly better result on Evalll set af-
ter the second pass than the hybrid acoustic model trained on
MFCCSAT (Table 2)

4.3. Comparison of GMM and MLP acoustic modeling us-
ing MFCC+BN features

Using the optimized MLP features, in the next step the different
acoustic modeling techniques are compared on the more sophis-
ticated speaker normalized, concatenated cepstral and bottle-
neck features, (MFCCLpa+BN)sar. As can be seen in the last
row of the Table 2, better performance is achieved with the deep
MLP acoustic modeling. Using context-dependent MLP fea-
tures and deep MLP acoustic model together results in the best
recognition rate. However, training a single hidden layer MLP
as acoustic model (result not reported) or using the same num-
ber of input feature frames as in case of GMM, no improvement
over GMM is observed.

4.4. Effect of the number of input frames

As a more fair comparison with GMMs, the hybrid acoustic
models are also trained on single frame of state-of-the-art fea-
tures. Nevertheless, a single feature vector can implicitly con-
tain information over longer context, e.g. LDA transforma-
tion is trained on 9 consecutive MFCC frames. Investigating
the effect of the number of input frames to train the MLP, we
observed that the MLP acoustic model could be even less ef-
fective than the GMM. As can be seen in Table 2, using the
same feature context the MLP acoustic models perform slightly
better than GMM. Based on the results on Evalll set, the im-
provement over GMM is about 3% relative when MFCCypa or



Table 2: Comparison of GMM (baseline) and deep MLP based acoustic modeling (AM) with different features. Results are given as

word error rate (WER).

Test set Dev10 Evall0 Devll Evalll
AM GMM MLP GMM MLP GMM MLP GMM MLP
# input frames 1 ! 9 1 1 9 1 T 1 1 9
, MFCC+A+AA || 274 273 219 | 298 293 230 | 285 278 218 | 267 272 205
5 MFCCuoa 246 236 221 | 265 253 232 | 253 240 219 | 236 228 208
2 MFCCsur 238 235 220 | 251 245 225 | 238 231 214 | 216 211 194
(MFCCioa+BN)sar|| 216 218 214 | 227 227 219 | 216 214 206 | 190 191 184

MFCCsar features are applied. However, using the time deriva-
tives of the cepstral features (MFCC+A+AA) or the complex
(MFCCyLpa+BN)sar features the GMM acoustic model outper-
formed the hybrid MLP. Therefore, the results in Table 2 con-
firm an essential property of MLP based modeling: despite
the strong correlation between the neighbouring frames, MLP
could directly benefit from the longer context of 9 frames which
usually leads to performance degradation in case of GMM with-
out additional dimension reduction. E.g. GMM takes longer
context into account using LDA on 9 consecutive frames of
MEFCC.

5. Conclusions

Using French broadcast news and conversation LVCSR task,
the present study has investigated several MFCC based fea-
tures in GMM and MLP acoustic modeling. From the results
in Table 2 we can conclude that MLP based acoustic modeling
outperforms the GMM based one. The difference between the
two acoustic modeling method is over 10% relative when lin-
ear transformed (derivatives, LDA, CMLLR) MFCC features
are applied. Nevertheless, the performance gap decreases us-
ing more general transformation. Moreover, a non-linear trans-
formation of MFCC, the bottle-neck features, was also inves-
tigated. Using either hybrid modeling or bottle-neck TAN-
DEM approach similar recognition performance was observed.
However, the best performance was achieved when deep MLP
was trained on the speaker normalized concatenated MFCC and
context-dependent bottle-neck features (bottle-neck-TANDEM
hybrid MLP acoustic model). Further experiments also revealed
the importance of the neighbouring frames to train high per-
forming MLP acoustic model.

Since our research was limited to short-term TANDEM fea-
tures, we intend to carry out further experiments with long-term
features (e.g. MRASTA) and even deeper MLPs, as well. Fur-
thermore, other discriminative features (e.g. fMMI) should be
also part of the future work.
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