
Investigations on Hessian-Free Optimization for Cross-Entropy Training of
Deep Neural Networks

Simon Wiesler1∗, Jinyu Li2, Jian Xue2

1Human Language Technology and Pattern Recognition
Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany

2Microsoft Corporation, Redmond, WA, 98052, USA
wiesler@cs.rwth-aachen.de, {jinyli,xue}@microsoft.com

Abstract

Context-dependent deep neural network HMMs have been
shown to achieve recognition accuracy superior to Gaussian
mixture models in a number of recent works. Typically, neu-
ral networks are optimized with stochastic gradient descent.
On large datasets, stochastic gradient descent improves quickly
during the beginning of the optimization. But since it does not
make use of second order information, its asymptotic conver-
gence behavior is slow. In regions with pathological curvature,
stochastic gradient descent may almost stagnate and thereby
falsely indicate convergence. Another drawback of stochastic
gradient descent is that it can only be parallelized within mini-
batches. The Hessian-free algorithm is a second order batch op-
timization algorithm that does not suffer from these problems.
In a recent work, Hessian-free optimization has been applied
to a training of deep neural networks according to a sequence
criterion. In that work, improvements in accuracy and training
time have been reported. In this paper, we analyze the proper-
ties of the Hessian-free optimization algorithm and investigate
whether it is suited for cross-entropy training of deep neural
networks as well.
Index Terms: deep learning, optimization, Hessian-free

1. Introduction
Recently, there has been a resurgence in the use of neural
networks for acoustic modeling in automatic speech recogni-
tion (ASR). In particular, context-dependent deep neural net-
work hidden Markov models (CD-DNN-HMMs), which di-
rectly model the tied context-dependent states of HMM speech
recognizers have been shown to work very well [1, 2, 3, 4].

The standard training algorithm for deep neural networks
(DNNs) is stochastic gradient descent (SGD). Typically, the
stochastic gradient is computed on mini-batches. On large and
redundant datasets, SGD quickly reaches a region with accept-
able performance. Further, the computation within one mini-
batch can be parallelized well on GPUs. Still, the use of SGD is
not fully satisfactory for two reasons. First, with typical mini-
batch sizes, the computation can not be parallelized efficiently
across a large number of devices. Second, the training of DNNs
is a very difficult and highly non-convex optimization problem.
Therefore, the quality of the model strongly depends on the
choice of the optimization algorithm. In regions with patho-
logical curvature, SGD converges very slowly or may even fail

∗The author performed the work at Microsoft.

to improve the training objective further. Therefore, better er-
ror rates may be achieved by improving the optimization. Both
of these issues are especially important for large-scale learning
tasks as speech recognition.

In contrast to SGD, batch algorithms can be parallelized
straight-forwardly. Further, most batch algorithms efficiently
exploit second-order information, preventing them from stag-
nating in regions with pathological curvature. The most widely
used batch algorithm for large-scale optimization is LBFGS [5],
which builds up a low-rank second order model from a limited
history of the previous gradients. In a recent publication [6],
LBFGS has been applied to a large-scale training of DNNs.

The Hessian-free (HF) algorithm [7] is a second-order batch
algorithm which has been specifically designed for the training
of deep neural networks. The advantage of HF over LBFGS is
that it directly uses a full second-order model. In a recent work
[8], Kingsbury et al. applied the HF algorithm to a training of a
DNN acoustic model according to a sequence criterion. In com-
parison to SGD, Kingsbury et al. reported a speedup by a factor
of 5.5 by parallelizing HF. In addition, they achieved a relative
word error rate (WER) reduction by roughly four percent.

It is a natural question, whether these advantages of HF over
SGD hold for the conventional cross-entropy (CE) training of
DNNs as well. Martens [7] considered only small-scale tasks.
Further, he did not compare HF to SGD. In Kingsbury’s paper
[8], HF has only been applied to sequence training, which dif-
fers strongly from CE training, because it is initialized with a
very good model that is obtained from CE training. The goal of
this work is to study the properties of the HF algorithm and to
investigate whether it is beneficial for large-scale cross-entropy
training of DNNs.

2. The Hessian-Free Algorithm
In this section, we present the HF algorithm and discuss the im-
plications of Martens’s specific design choices and its relation
to other algorithms in optimization literature.

2.1. Newton-CG method

The starting point for all second order algorithms is Newton’s
method. Let W ∈ RD denote the parameters of the neural net-
work, F (W ) the training criterion. Newton’s method is based
on a quadratic approximation of F around W :

m(P ) =
1

2
PTBP +∇F (W )TP + F (W ) . (1)



The matrix B is chosen as the Hessian matrix H(W ) of F at
W . For positive definite B, the Newton step PN is defined as
the optimum of the quadratic approximation

PN := argmin
P

m(P ) , (2)

which is the solution of the linear system

H(W )PN = −∇F (W ) . (3)

In every iteration of Newton’s method, the model is updated by
PN . Newton’s method converges rapidly in terms of iterations.
For high-dimensional problems as the training of DNNs, New-
ton’s method is prohibitive, because the number of parameters
of the Hessian matrix is in the order of O(D2).

A well-known modification of Newton’s method for high-
dimensional problems is the Newton-CG method, see e.g. [9,
Chapter 6]. In the Newton-CG method, the linear system (3)
is solved with the iterative conjugate gradient (CG) algorithm
[10]. The CG algorithm only requires products of B and an
arbitrary vector, but does not require B itself. For problems,
where an algorithm exists which computes these matrix-vector
products efficiently, Newton-CG can be applied.

2.2. Martens’s Algorithm

Martens modified the Newton-CG method in several ways in
order to apply it to the optimization of DNNs. In the following,
we discuss these modifications.

The most important question for the application of the
Newton-CG algorithm is how to compute the required matrix-
vector products. For neural networks, Hessian-vector products
can be computed by a forward-backward pass. In neural net-
work literature, this is known as the Pearlmutter trick [11].

Since the Hessian matrix of the CE criterion is not posi-
tive definite, Martens decided to use the positive semi-definite
Gauss-Newton (GN) matrix instead. The GN matrix has orig-
inally been defined for the squared error criterion, but can be
generalized to the CE criterion [12]. GN-matrix-vector products
can be calculated by a forward-backward-pass as well [12].

The per-sample cost of a GN-matrix-vector product is
roughly twice the cost of a gradient calculation. For large-scale
tasks, calculating GN-matrix-vector products on the complete
training data, is highly expensive. A key idea of Martens is to
use a stochastic approximation of the GN matrix, i.e., to com-
pute matrix-vector products on mini-batches. In contrast, gradi-
ents and objective function values are computed exactly.

The quadratic approximation (1) is only reliable in a neigh-
borhood around W . Therefore, the Newton-CG method must
be prevented from taking too large steps. This is in particu-
lar important when using a stochastic approximation of B. In
optimization literature, it is suggested either to perform a line-
search in the direction P , or, to assume a trust region (TR)
around W . In TR algorithms, the minimization (2) is replaced
by the constrained minimization

PN = min
P

m(P ) such that ‖P‖ ≤ ∆ . (4)

The trust region radius ∆ is dynamically adapted based on the
progress of the algorithm. Problem (4) can be solved with
matrix factorizations [13], but these are prohibitive for high-
dimensional problems. A widely used cheap approximation of
(4) is given by Steihaug’s method [14], which simply termi-
nates CG when the trust region is left. Martens found the well-
understood Steihaug method not to be effective for DNN train-
ing and therefore uses a damping heuristic instead. This means

that the matrix B in (1) is replaced by B + λI with a damping
parameter λ > 0. Here, I denotes the identity matrix. Similar
to TR algorithms, the damping parameter λ is adapted based on
the ratio of the actual and the expected improvement

ρ = (F (W )− F (W + P ))/(m(0)−m(P )) . (5)

For large values of ρ, the damping parameter is decreased,
which results in larger steps. For small ρ, the damping param-
eter is increased. In principle, a damped GN step is equivalent
to a trust region GN step. The heuristic lies in the update of the
damping parameter, because it is not related to a trust region ra-
dius. Furthermore, the update of the damping parameter is only
consistent if CG is run until convergence and ρ is evaluated with
the final CG iterate. The advantage of the damping approach is
that it is cheaper to solve for the damped update than solving
(4), and it avoids the approximation of Steihaug’s algorithm.

An important property of HF is that CG is initialized with
the solution of the previous CG run multiplied with a constant
scalar. This is in contrast to most other Newton-CG implemen-
tations, where CG is initialized with zero. Martens reported that
this initialization speeds up HF by “an order of magnitude”[7].
Indeed, a suitable initialization of CG may save CG iterations.
On the other hand, a non-zero initialization may have a strongly
negative effect when a hard-limit on the number of CG itera-
tions is set. In addition, Steihaug’s algorithm and related ap-
proaches require a zero initialization.

Another possibility for speeding up CG is the use of a pre-
conditioner. Martens suggests the use of a diagonal precondi-
tioner based on the accumulated squared gradient. Accumu-
lating this preconditioner causes additional computations and
memory usage, but can save CG iterations.

Finally, Martens introduced a CG backtracking. This means
that some intermediate results of the CG run are stored. After
the termination of CG, a backtracking along the intermediate
results is performed. CG backtracking is helpful if there is a
strong mismatch between the quadratic modelm and the objec-
tive function F . In this case, the intermediate CG results can
lead to much better updates than the final CG result. However,
the backtracking procedure causes an objective function evalu-
ation for every tested model and is therefore highly expensive.
It would be preferable to avoid CG backtracking by improving
the damping or using a trust region method.

When using CG backtracking, it is not clear which model
should be used for calculating ρ in Equation (5). Martens uses
the best model obtained from CG backtracking [7]. However,
this counteracts the damping approach. It means that the damp-
ing factor may be decreased although the solution of the CG
algorithm corresponds to a much too large step. This is unde-
sirable, because it causes many backtrackings in the subsequent
steps. Furthermore, the linear system (3) gets ill-conditioned
with small damping parameters and therefore CG converges
very slowly. In Section 3, we compare Martens’s variant with
using the final CG iterate for updating ρ.

3. Empirical Analysis of the HF algorithm
In this section, we empirically analyze the consequences of
Martens’s design choices and the performance of HF in a large-
scale setting. In order to be able to compare our results to
Martens’s results [7], we performed experiments on MNIST, a
small-scale handwritten digit recognition task. Additional ex-
periments are performed on a short-message dictation task.

The implementation of the algorithm has been realized in the
Microsoft DNN training tool and makes use of GPU accelera-



Algorithm Preconditioning Damping CG initialization 1st epoch with 100% acc CG iterations

Gradient descent - - zero (40.2% after 500 ep.) -
Steihaug - - zero (99.9% after 500 ep.) 2810
Hessian-free no backtracking iterate zero 237 55532
Hessian-free no final iterate zero 79 2308
Hessian-free no backtracking iterate previous solution 56 1443
Hessian-free no final iterate previous solution 60 1377
Hessian-free squared gradient backtracking iterate previous solution 63 1505
Hessian-free squared gradient final iterate previous solution 56 1458

Table 1: Results on MNIST. The third column lists the model that is used for calculating ρ in (5). The last column lists the total number
of CG iterations until 100% training accuracy has been achieved.

tion. As the conventional SGD training [2], all computations
are performed on the GPU without synchronization to the main
memory. The computation of the gradients and likelihoods can
be parallelized to multiple GPUs or a large number of CPUs
straight-forwardly, but we simply used one GPU in this work.

3.1. Handwritten Digit Recognition

The task of the MNIST dataset is the classification of images
of handwritten digits. The dataset consists of 60, 000 training
samples and 10, 000 test samples. The features are the gray
values of the images with a resolution of 28 × 28 pixels. We
used DNNs with the same structure as in [7]: four hidden layers
with dimensions 1000, 500, 250, and 30.

We trained a baseline system with SGD with a momentum
term. It turns out that with this network architecture, zero train-
ing error can be achieved after 420 epochs. By using early stop-
ping, we obtained similar results on the test set with all algo-
rithms that can achieve zero classification error on the training
data. The goal of this investigation is to improve the optimizer.
Therefore, we focus on the accuracy on the training data. As
a measure of convergence speed, we compare the number of
epochs that are required for separating the training data. For all
experiments, we set the maximal number of epochs to 500. For
HF, we used the recommended settings of [7], in particular we
used a maximum of 250 CG iterations and ten percent of the
training data for the computation of matrix-vector products.

In a first test, we compared the batch algorithm gradient de-
scent with a basic HF implementation, in order to verify that
the second order information accelerates the optimization. The
basic HF implementation does not use preconditioning and al-
ways initializes CG with zero. The results in Table 1 show that
batch gradient descent is not useful for optimizing deep net-
works. Even after 500 epochs, the training accuracy is only
40.2 percent. In contrast, the basic HF implementation sepa-
rates the training data after 237 epochs.

In addition, we tested Steihaug’s method. As Martens, we
observed that it is not effective for optimizing deep networks.
The reason is that the CG iterates move out of the trust region
after only very few iterations. Therefore, Steihaug’s method
does not fully exploit the second order information.

The computation time per epoch of the basic HF implemen-
tation is very high, because a large number of CG iterations
and CG backtrackings is performed. The performance of HF is
greatly improved by using the final CG iterate for the damping
parameter update. This reduces the number of epochs to 79 and
the number of CG iterations from 55532 to 2308. This result
clearly shows that the correct update of the damping parameter
is crucial and our proposed update performs best.

The initialization of CG with the previous solution has two

effects. First, the non-zero initialization reduces the number
of CG iterations per epoch. For the variant where the back-
tracking iterate is used for calculating ρ, the damping parame-
ters are very small. Therefore, the resulting linear problems are
poorly conditioned and the number of CG iterations per epoch
is strongly decreased by a factor of 10.2. When the final iterate
is chosen for updating ρ, the number of CG iterations is only
reduced by a factor of 1.3. Secondly, the number of epochs is
reduced. The intermediate results which are used for CG back-
tracking are between the initialization and the exact solution of
the linear system. Including the previous solution in the search
direction weakens the effect of unrepresentative mini-batches,
similar to the momentum term in stochastic algorithms.

Interestingly, we could not observe a decrease in the num-
ber of CG iterations by using preconditioning. Furthermore,
the preconditioner proposed in [7] requires the accumulation of
the squared gradient, which causes additional computations and
memory usage. From these results, we can not recommend the
use of the squared-gradient preconditioner for HF.

An obvious way for accelerating HF is to compute the likeli-
hoods for CG backtracking and the damping parameter update
on a small subset of the training data or as in [8] on the valida-
tion set. However, we found that this approach does not work at
all when training models from scratch. The reason is that small
improvements on the training data do not necessarily carry over
to the smaller dataset. This causes the algorithm to increase the
damping parameter repeatedly and thereby testing smaller and
smaller steps. Thus, the algorithm stagnates although it has not
reached an optimum. This problem did not occur in [8], because
there a very good initialization has been used.

In comparison to SGD, HF requires less epochs until conver-
gence. Since the computation time of HF per epoch is much
higher, the total computation time of SGD and HF is compara-
ble. On large-scale tasks, HF can be accelerated by paralleliza-
tion. On the other hand, the stochastic approximation of SGD
is much more beneficial on large-scale task.

In terms of test set accuracy, HF does not perform better than
SGD, because underfitting is not an issue on this task. This
situation is different on large-scale tasks.

3.2. Short Message Dictation

In addition to the small-scale experiments on MNIST, we per-
formed experiments on SMD R3, a short message dictation
task. The training set consists of 63.4 hours audio data. The
dev and test set have 16028 and 22809 running words.

The baseline acoustic model is a DNN with five hidden lay-
ers, each with 1024 nodes. The input to the network is a 572-
dimensional vector obtained by concatenating MFCC features
with up to third-order derivatives in a window of eleven frames.



Model Algorithm Epoch Acc. (%) WER (%)

5×1024 SGD 25 66.8 23.8
5×1024 SGD +25 67.7 23.4
5×1024 SGD +75 69.3 23.7
5×1024 HF +25 72.9 23.4
5×1024 HF +45 75.2 23.3
5×1024 HF +75 77.0 23.8

5×512 SGD 10 62.1 26.1
5×512 SGD +40 63.4 25.5
5×512 HF +10 64.7 25.2
5×512 HF +40 66.2 24.3

4×1024 SGD 10 65.8 24.5
4×1024 SGD +40 67.3 24.2
4×1024 HF +10 69.5 23.7
4×1024 HF +30 71.8 23.4
4×1024 HF +40 72.5 23.8

Table 2: Results on SMD R3. In the third column, a plus de-
notes the number of additional epochs that are performed on top
of the SGD initialization. The fourth column lists the frame ac-
curacy on the training data, and the fifth column the word error
rate on the development set.

The DNN is initialized with a layerwise RBM pretraining. The
finetuning is performed with SGD with a momentum term. The
initial learning rate of SGD is set to 0.08 and later reduced to
0.002. After 25 epochs, SGD seems to stagnate with a frame
accuracy of 66.8% on the training data. The WER of the corre-
sponding model on the development set is 23.8%, see the results
with a 5×1024-model in Table 2. We used the best configura-
tion of HF from the MNIST experiments, i.e., ρ is updated with
the final CG iterate, CG is initialized with the previous solution,
and no preconditioning is used. The larger size of this dataset
allowed for using only one percent of the training data for com-
puting the matrix-vector products.

In an initial experiment, we tested whether HF is suited for
replacing SGD on ASR tasks. It turned out that HF converges
orders of magnitude slower than SGD. On large-scale tasks, it
did not seem reasonable to train DNNs directly from pretraining
with HF, even with the use of parallelization, Therefore, we did
not investigate this possibility further.

In the following experiments, we tried to improve the SGD
result with HF. Surprisingly, it turned out that the SGD param-
eters were not in the neighborhood of an optimum at all. Af-
ter additional 75 HF iterations, the training accuracy increased
from 66.8% to 77.0%. Knowing the HF result, a natural ques-
tion is whether the training accuracy can be improved with SGD
as well. After additional 75 SGD epochs, the training accuracy
slowly increased to 69.3%, but it was not possible to achieve
the training accuracy of HF with limited computation time.

Unfortunately, these large gains on the training set did not
carry over to the development set. The best HF result on the
development set which we achieved was 23.3% WER, corre-
sponding to an HF model with 75.2% training accuracy. This
is only a tiny improvement of 0.1% over the SGD result. With
increased accuracy on the training set, the error rate on the de-
velopment set increases, i.e., the model overfits. The behav-
ior on the test set is the same as on the development set. The
SGD result of 22.9% WER is improved by 0.1% WER as well.
When comparing the results of the best HF model and the best
SGD model, it is noticeable that the training accuracy of the HF

model is higher although the word error rate is almost the same.
In the following experiments, we investigated whether im-

provements can be obtained with HF optimization on smaller
models, where overfitting is less an issue. This would be of
great practical value, because reducing the decoding costs of
hybrid DNN speech recognizers is one of the biggest challenges
for their large-scale application. In these experiments, we ini-
tialized HF with the result of SGD after ten epochs in order to
reduce computation time. Using only half of the nodes per layer,
the best SGD result is 25.5% WER, 2.1% worse than with the
large model. This gap is reduced to 0.9% when HF is applied.
With such a deep but narrow model, overfitting does not occur,
but some accuracy is sacrificed. Another experiment is on a
DNN with only four layers of 1024 nodes. Here, the best SGD
result is 24.2% WER. Interestingly, the best WER with HF is
23.4%. This means, we can achieve the same error rate with a
four-layer network as with the five-layer network baseline.

4. Discussion
In this work, we empirically analyzed the properties of the HF
algorithm, a second order batch optimization algorithm which
has been proposed in [7]. Some techniques that are used in the
algorithm are rather heuristic and their effect is not well under-
stood. In particular, we observed in experiments on MNIST that
the damping heuristic has a critical impact on the performance
of the algorithm. In our opinion, it is highly desirable to re-
place this damping heuristic with a procedure that is justified by
theory. Furthermore, the experiments show that preconditioner
proposed in the original HF paper [7] is not effective.

In speech recognition experiments, we observed that HF is
not efficient for training DNNs from scratch in large-scale ap-
plications. But when starting from a reasonable initialization,
making use of second order information is highly beneficial.
Since HF can be parallelized well, it seems most attractive to
perform only few epochs with SGD, and then continue with HF.
We could obtain strong improvements in terms of training accu-
racy using HF. However, these improvements did not carry over
to the test set due to overfitting. This behavior may be differ-
ent on larger datasets. In future work, we plan to address the
overfitting problem more directly by using regularization or by
including a sparsity constraint in the optimization algorithm.

Another conclusion that can be taken from the experiments
is about local optima in the context of neural network learn-
ing. When SGD stagnates, it is often argued that a local opti-
mum has been reached. However, our experiments show that
the slow asymptotic convergence behavior of SGD can falsely
indicate convergence. The objective function can still be im-
proved strongly by continuing the optimization with a second
order algorithm. Note that Martens argued in this direction too
when analyzing the role of pretraining [7].

Using HF optimization, we could obtain the same perfor-
mance with a four-layer model as with a five-layer model. This
result is very interesting, because reducing the decoding costs
of DNN speech recognizers is currently a big challenge. Also,
the result suggests that less deep architectures are possible if a
more sophisticated optimization than SGD is used. It certainly
requires further research in order to investigate this suggestion.

5. Acknowledgments
The first author would like to thank Frank Seide and Dong Yu for their
help with the DNN software and Yifan Gong for the supervision of the
internship.



6. References
[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-

dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 20, no. 1,
pp. 30–42, 2012.

[2] F. Seide, G. Li, and D. Yu, “Conversational speech tran-
scription using context-dependent deep neural networks,”
in Proc. Interspeech, 2011, pp. 437–440.

[3] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Appli-
cation of pretrained deep neural networks to large vocab-
ulary speech recognition,” in Proceedings of Interspeech
2012, 2012.

[4] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek,
P. Novak, and A.-R. Mohamed, “Making deep belief net-
works effective for large vocabulary continuous speech
recognition,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2011 IEEE Workshop on. IEEE,
2011, pp. 30–35.

[5] D. Liu and J. Nocedal, “On the Limited Memory BFGS
Method for Large-Scale Optimization,” Math. Program.,
vol. 45, no. 1, pp. 503–528, 1989.

[6] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Y. Ng, “Large scale distributed deep net-
works,” in Advances in Neural Information Processing
Systems, 2012.

[7] J. Martens, “Deep learning via hessian-free optimization,”
in Proceedings of the 27th International Conference on
Machine Learning (ICML), vol. 951, 2010, p. 2010.

[8] B. Kingsbury, “Scalable minimum bayes risk training of
deep neural network acoustic models using distributed
hessian-free optimization,” in Interspeech, 2012.

[9] J. Nocedal and S. Wright, Numerical Optimization.
Springer, 1999.

[10] M. R. Hestenes and E. Stiefel, “Methods of conjugate gra-
dients for solving linear systems,” Journal of Research of
the National Bureau of Standards, vol. 49, no. 6, pp. 409–
436, 1952.

[11] B. Pearlmutter, “Fast exact multiplication by the hessian,”
Neural Computation, vol. 6, no. 1, pp. 147–160, 1994.

[12] N. Schraudolph, “Fast curvature matrix-vector products
for second-order gradient descent,” Neural computation,
vol. 14, no. 7, pp. 1723–1738, 2002.

[13] J. J. Moré and D. C. Sorensen, “Computing a trust region
step,” SIAM Journal on Scientific and Statistical Comput-
ing, vol. 4, no. 3, pp. 553–572, 1983.

[14] T. Steihaug, “The conjugate gradient method and trust re-
gions in large scale optimization,” SIAM Journal on Nu-
merical Analysis, vol. 20, no. 3, pp. 626–637, 1983.


