The Deep Learning Revolution

Alex Acero

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Agenda

The Deep Learning Revolution

Fundamentals of Deep Learning

Why now? A brief history

Transforming our Digital Lives

Acknowledgments

John Bridle and the Siri team

Josh Suskind, Sofien Bouaziz, and Apple's Video Team

The Deep Learning Revolution

Technology Disruptions

Content Creation:

Text

Photography

Content Consumption:

Text

Photography

Music

Video

Our daily lives:

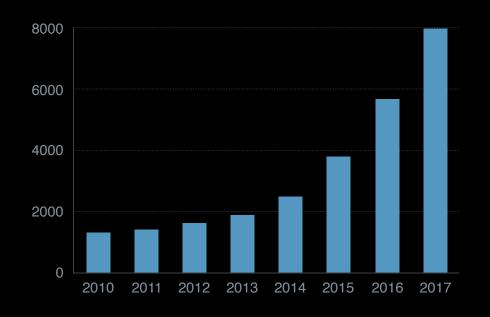
Transportation

Communication

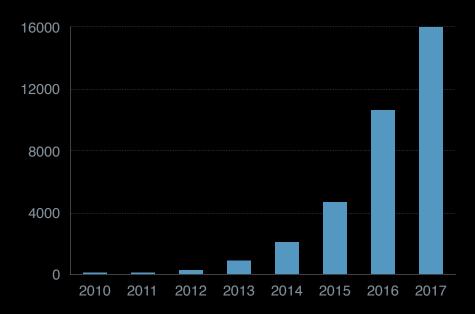
Shopping

Travel

The Deep Learning Revolution



Neural Information Processing Systems (NIPS) Attendees

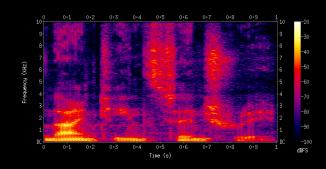


Papers with "Deep Neural Networks"

Fundamentals of Deep Learning

Binary Classification

TouchID



Speaker Verification

Face ID

Email Spam

Motion Detection

Credit Card Fraud

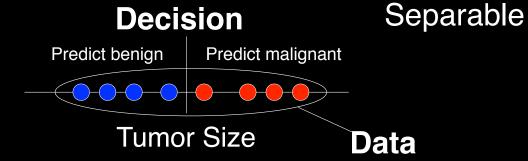
Binary Classification

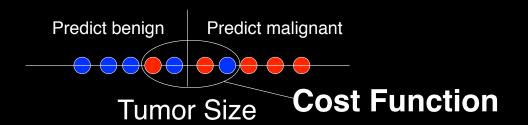
Output Labels

Breast Cancer

- Benign
- Malignant

Input FeaturesTumor Size





Not Separable

Binary Classification

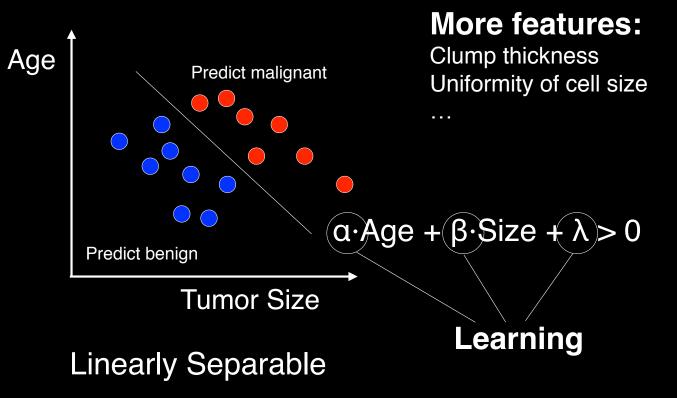
Output Labels

Breast Cancer

- Benign
- Malignant

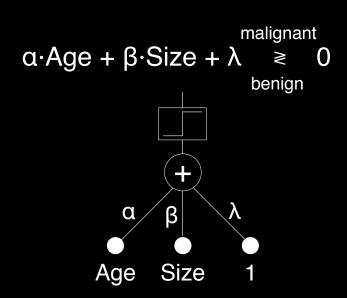
Input Features

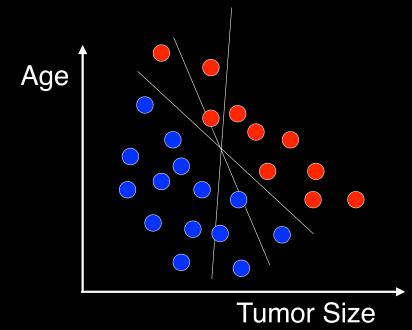
Tumor Size Age



Perceptron Learning

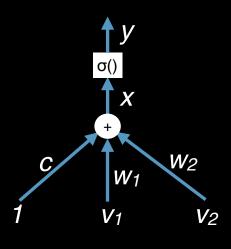
Rosenblatt, 1958





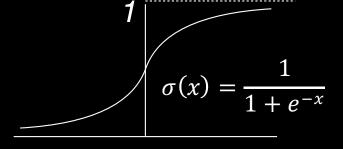
$$\begin{split} \alpha(i) &= \alpha(i-1) + \eta \cdot \{Target(i) - Output(i)\} \cdot Age(i) \\ \beta(i) &= \beta(i-1) + \eta \cdot \{Target(i) - Output(i)\} \cdot Size(i) \\ \lambda(i) &= \lambda(i-1) + \eta \cdot \{Target(i) - Output(i)\} \end{split}$$

Stochastic Gradient Descent (SGD)



$$y = \sigma(x)$$

$$x = c + \mathbf{v}^T \mathbf{w}$$

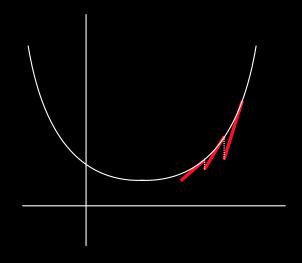


$$p(t|\mathbf{v}) = y^t (1-y)^{1-t}$$

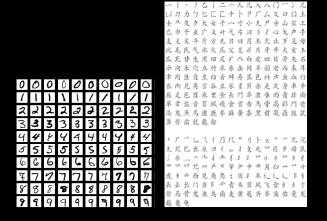
$$p(t|\mathbf{v}) = y^t(1-y)^{1-t}$$
 $L = \ln p(t|\mathbf{v}) = t \ln y + (1-t) \ln(1-y)$

$$\frac{\partial L}{\partial w_1} = \left(\frac{\partial L}{\partial y}\right) \left(\frac{\partial y}{\partial x}\right) \left(\frac{\partial x}{\partial w_1}\right) = (y - t)v_1$$

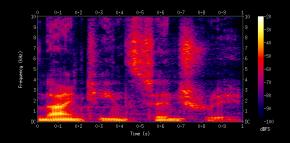
$$w_j^{(i)} = w_j^{(i-1)} - \eta \frac{\partial L}{\partial w_i} = w_j^{(i-1)} + \eta v_j (t - y^{(i-1)})$$



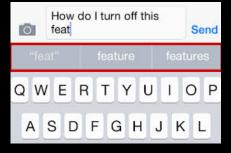
N-ary Classification



Handwriting Recognition

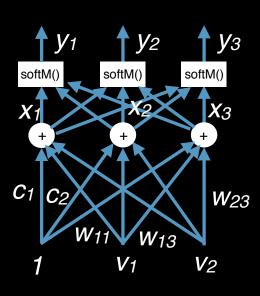


Speaker Identification



Word prediction

N-ary Classification



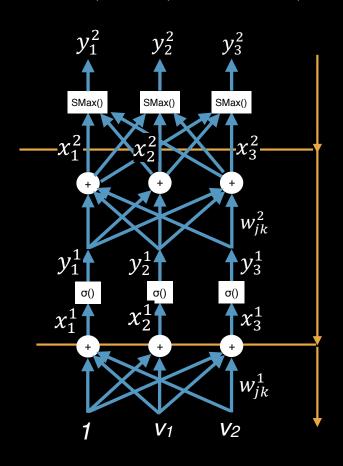
$$y_i = p(i|\mathbf{v}) = \frac{e^{x_i}}{\sum_{l=1}^{N} e^{x_l}}$$
 Softmax

$$W_{23} \qquad L = \sum_{i=1}^{N} t_i \ln y_i$$

$$w_{nj}^{(i)} = w_{nj}^{(i-1)} + \eta v_n^{(i-1)} \left(t_j - y_j^{(i-1)} \right)$$

Perceptron Learning

Werbos, 1974; Rumelhart, Hinton, Williams 1986



Two-layers

2 input features

3 output labels

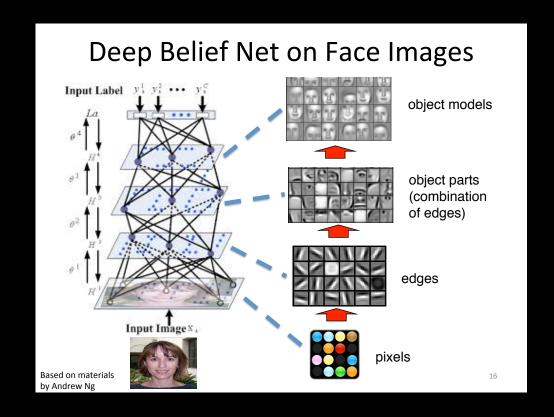
$$\nabla_n^2(m) = y_n^2(m) - t_n(m)$$

$$[w_{jn}^2]^{(i)} = [w_{jn}^2]^{(i-1)} - \eta \frac{1}{M} \sum_{m=1}^M y_n^1(m) \nabla_n^2(m)$$

$$\nabla_n^1(m) = y_n^1(m) (1 - y_n^1(m)) \sum_{k=1}^N w_{nk}^2 \nabla_k^2(m)$$

$$\left[w_{jn}^1\right]^{(i)} = \left[w_{jn}^1\right]^{(i-1)} - \eta \frac{1}{M} \sum_{m=1}^M v_j(m) \nabla_n^1(m)$$
 backpropagation Mini-batch

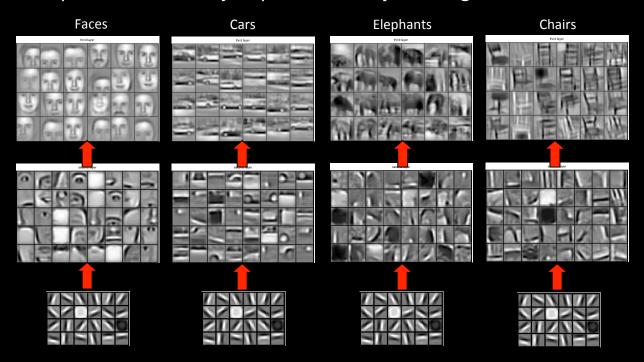
CNN on Face Images 2012



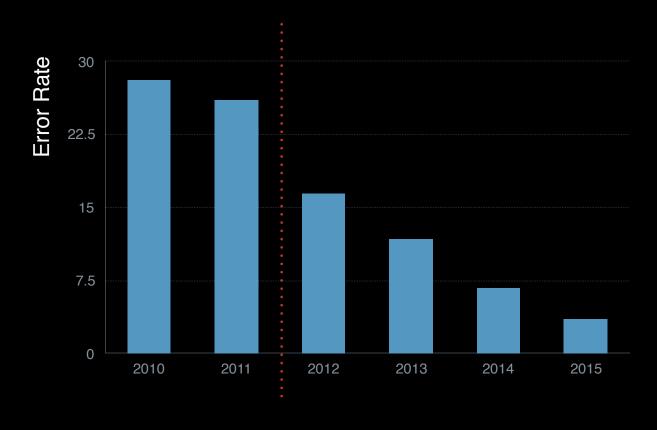
ImageNet Large Scale

Visual Recognition Challenge, 2012

Examples of learned object parts from object categories

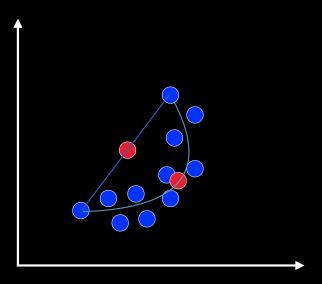


ImageNet Task Progress



Non-Linear Manifolds

Such non-linearity requires multiple layers

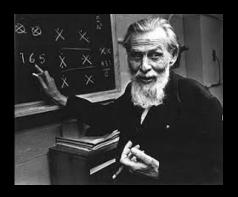


Why Now?

A brief history

McCulloch-Pitts Neurons

1943

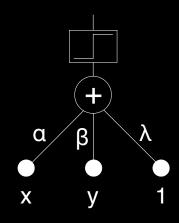


BULLETIN OF MATHEMATICAL BIOPHYSICS VOLUME 5, 1943

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO



Norbert Wiener

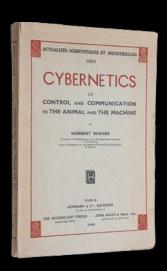
Wiener–Khinchin Theorem (1930) Wiener Filter (1949)

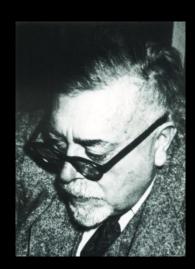
McCulloch & Pitts joined Wiener at MIT (1943)

Cybernetics (1948)

- 5. Computing Machines and the Nervous System
- 10. Brain Waves and Self-Organising Systems

Suggested chess playing programs





Checkers

Arthur Samuel, 1956

ELIZA

Weizenbaum, 1966

```
EEEEEEEE
                     IIIIIII ZZZZZZZ
                                    AAA
                                   A
                                      A
       EEEEE
                                   AAAAAA
                                       A
ELIZA > (PLEASE TYPE IN ALL CAPS) WHAT'S YOUR NAME DEAR ?
AMIT
ELIZA > HI, I'M ELIZA. WHAT DO YOU WANT TO TALK ABOUT ?
AMIT > CAN'I TALK ABOUT MY PROBLEM ?
ELIZA > SURE...!
AMÍT > DÚE TO ON GOING EXAMS IN COLLEGE, I HAVE A LOT OF STRESS.
ELIZA > PLEASE RELAX A LITTLE. SLEEP WELL.
AMIT > THANKS FOR YOUR ADVICE.
ELIZA > NO MENTION.
AMIT > BYE
ELIZA > BYE AND KEEP IN TOUCH...
```

2001 Space Odyssey

Stanley Kubrick, 1968

I'm afraid I can't do that.

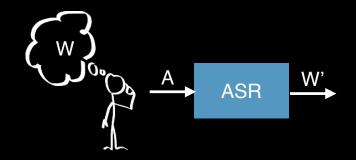
Al Winter

Fundamental Equation of Speech Recognition

PROCEEDINGS OF THE IEEE, VOL. 64, NO. 4, APRIL 1976

Continuous Speech Recognition by Statistical Methods

FREDERICK JELINEK, FELLOW, IEEE

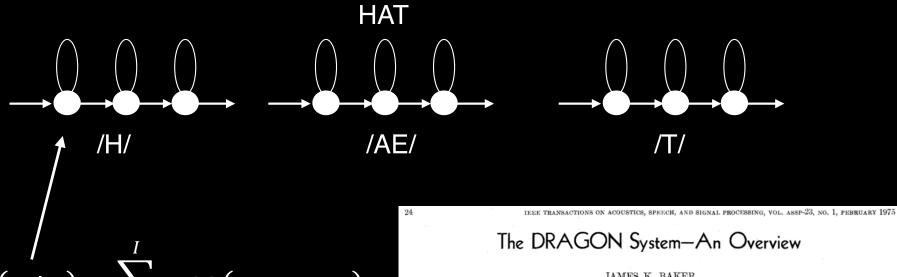


$$\widehat{W} = \underset{W}{\operatorname{argmax}} p(W|A) = \underset{W}{\operatorname{argmax}} p(A|W)p(W) = \underset{W}{\operatorname{argmax}} \{\ln p(A|W) + \ln p(W)\}$$

$$\widehat{W} = \underset{W}{\operatorname{argmax}} \{\lambda \ln p(A|W) + \ln p(W)\}$$
Acoustic Model Language Model

Acoustic Model

Hidden Markov Models



JAMES K. BAKER

PROCEEDINGS OF THE IEEE, VOL. 64, NO. 4, APRIL 1976

Continuous Speech Recognition by Statistical **Methods**

FREDERICK JELINEK, FELLOW, IEEE

Neural Networks for Speech Recognition in the 1990's

328 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 37, NO. 3, MARCH 1989

Phoneme Recognition Using Time-Delay Neural Networks

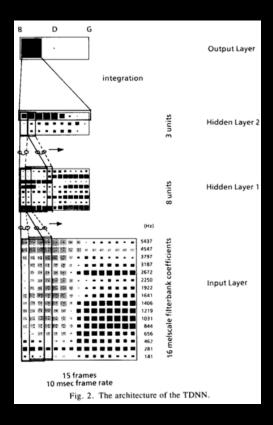
ALEXANDER WAIBEL, MEMBER, IEEE, TOSHIYUKI HANAZAWA, GEOFFREY HINTON, KIYOHIRO SHIKANO, MEMBER, IEEE, AND KEVIN J. LANG

Merging Multilayer Perceptrons and Hidden Markov Models: Some Experiments in Continuous Speech Recognition

H. Bourlard¹, N. Morgan²

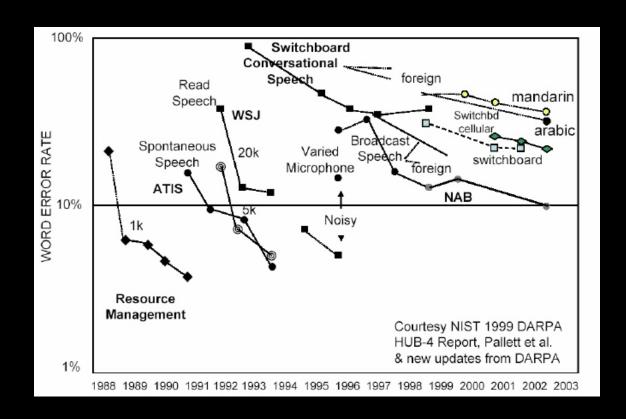
TR-89-033

July 1989



Neural Network Winter for Speech Recognition

Open Challenge TasksDARPA



Deep Learning

Reducing the Dimensionality of Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

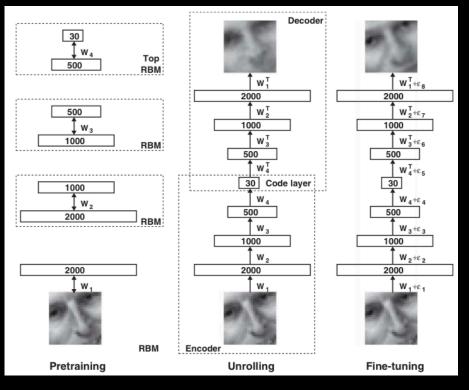
28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org

Deep Boltzmann Machines

Ruslan Salakhutdinov

Department of Computer Science University of Toronto rsalakhu@cs.toronto.edu Geoffrey Hinton

Department of Computer Science University of Toronto hinton@cs.toronto.edu



Deep Belief Networks → **Deep Neural Networks**

Investigation of Full-Sequence Training of Deep Belief Networks for Speech Recognition Abdel-rahman Mohamed 1*, Dong Yu², Li Deng² 1 Department of Computer Science, University of Toronto, Toronto, ON Canada 2 Microsoft Research, Redmond, WA USA

INTERSPEECH 2011

Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks

Frank Seide¹, Gang Li,¹ and Dong Yu²

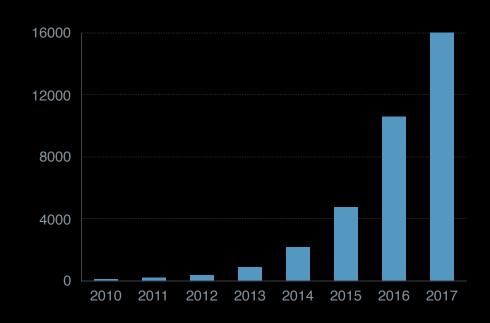
¹Microsoft Research Asia, Beijing, P.R.C.
²Microsoft Research, Redmond, USA

30

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 1, JANUARY 2012

Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition

George E. Dahl, Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Alex Acero, Fellow, IEEE



Papers with "Deep Neural Networks"

Deep Learning for Speech

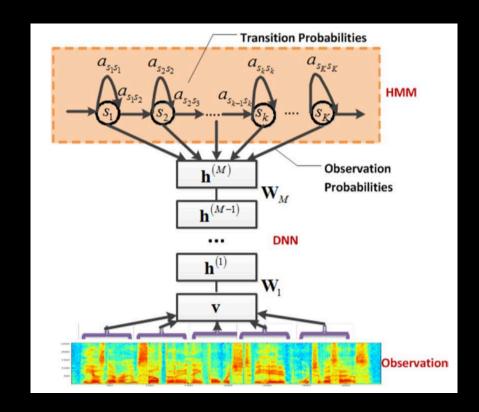
Deng et al., 2010

DNNs for large vocabulary

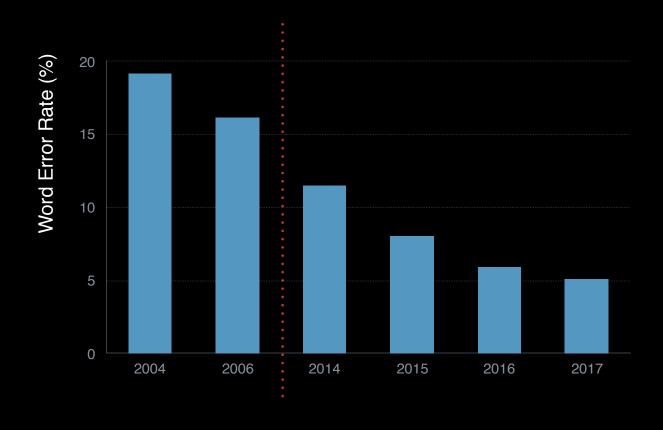
- 800 input features
- 5 layer network
- 1000 neurons per layer
- 8000 output labels
- 12 Million weights

Training

- 300 hours of speech with transcripts
- 1 week training time on a GPU

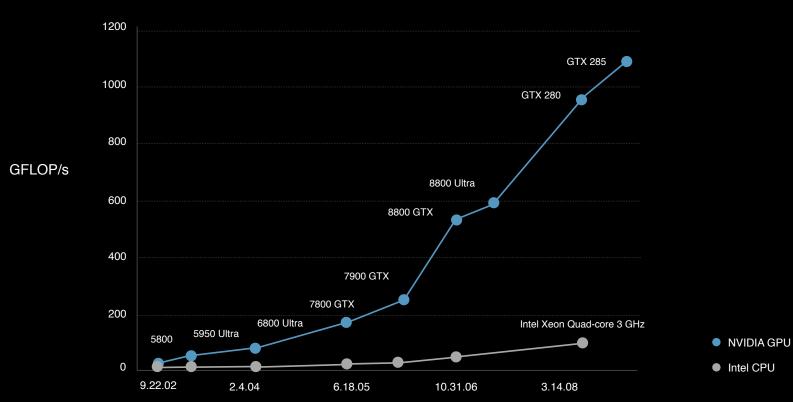


Switchboard



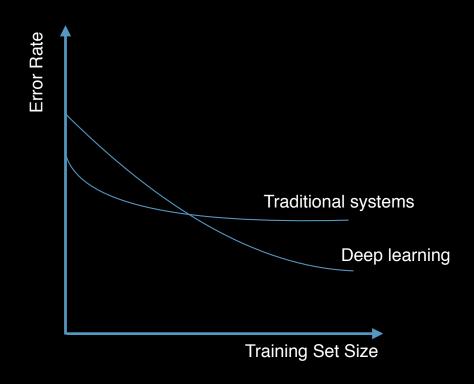
Why Now? GPUs

Raw Performance Trends



Why Now?

Large Amounts of Data



Why Now?

Algorithms

- Direct modeling of context-dependent (tied triphone states) through the DNN
- Unsupervised Pre-training
- Deeper networks

Why Now? Open sharing

U. Toronto Microsoft Google IBM

Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury

Deep Neural Networks for Acoustic Modeling in Speech Recognition

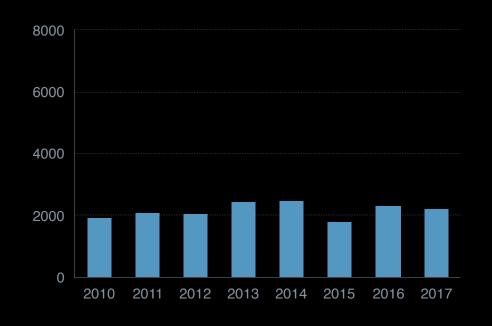
The shared views of four research groups

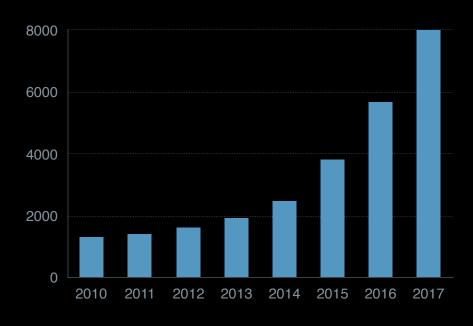
Why Now?

Tools

theano

Deep Learning Has Roots in Signal Processing



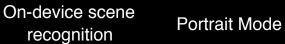


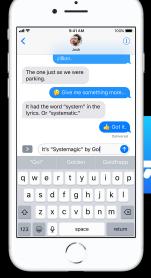
ICASSP Attendees

NIPS Attendees

Transforming Our Digital Lives

ML Becomes Mainstream

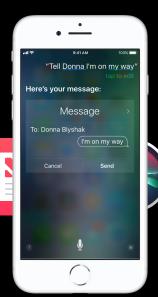




Language modeling

Handwriting recognition

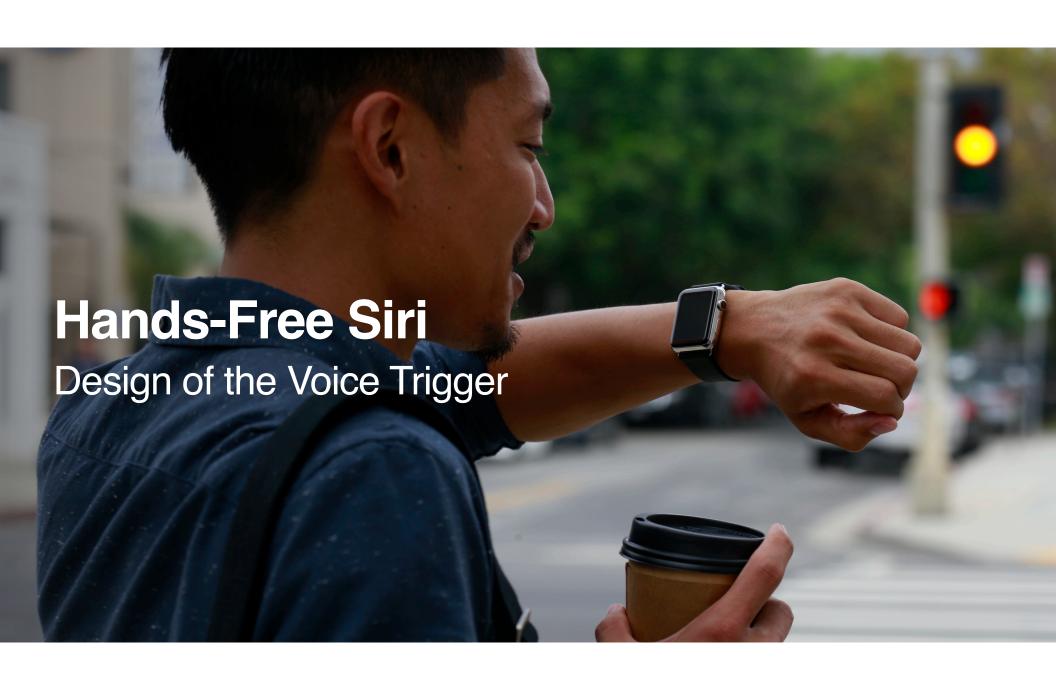
News recommendation



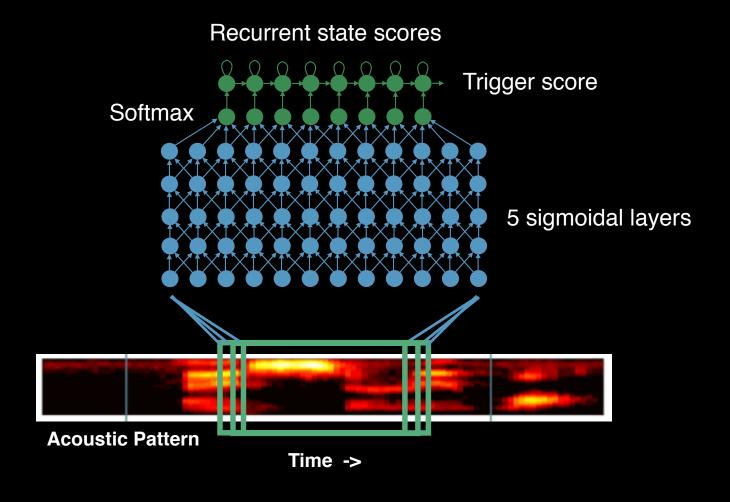
Intelligent assistant

Siri

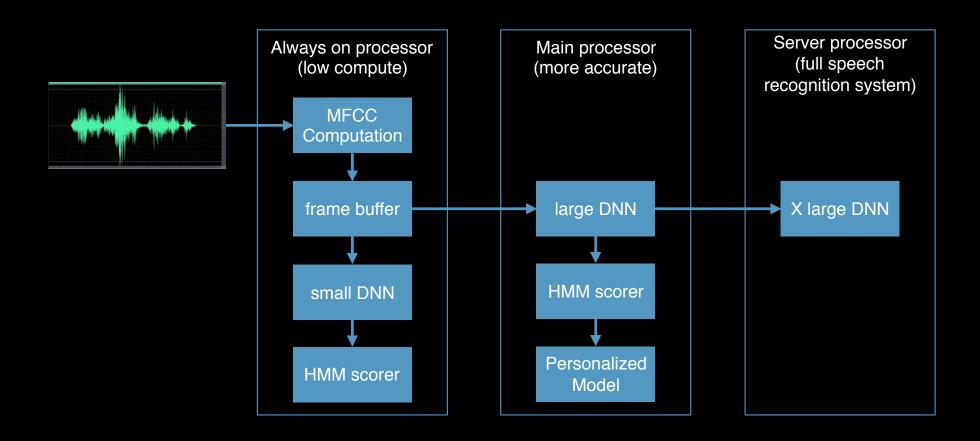
Apple, 2011



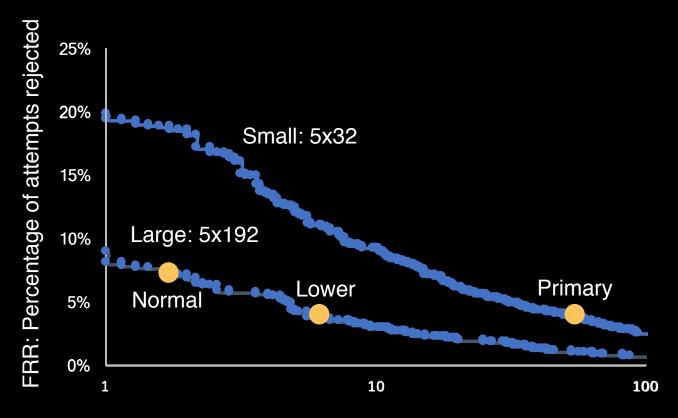
Hey Siri DNN



Multi-Pass Detection

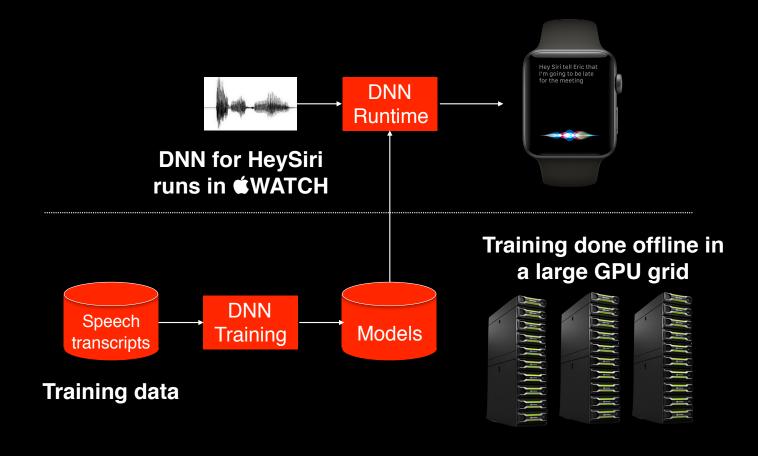


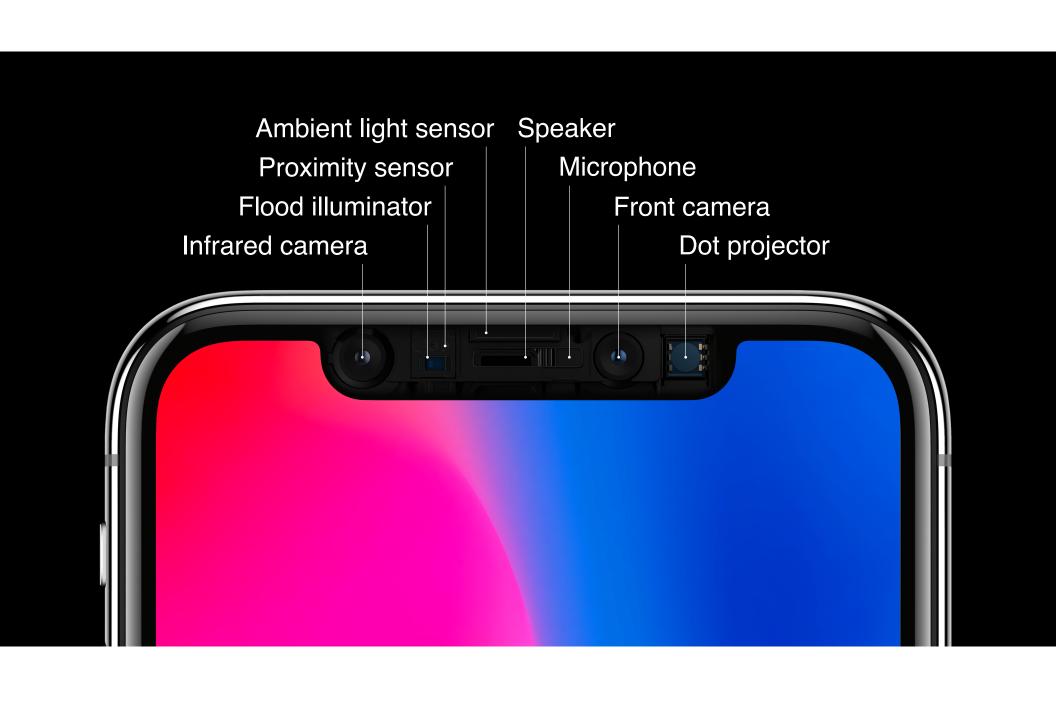
Two-Pass Detection



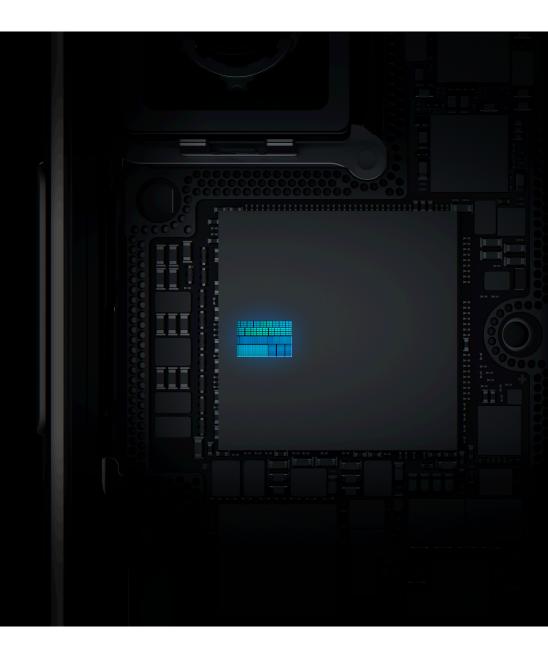
FAR: False Alarms per 100 hours

Computing for Deep Learning





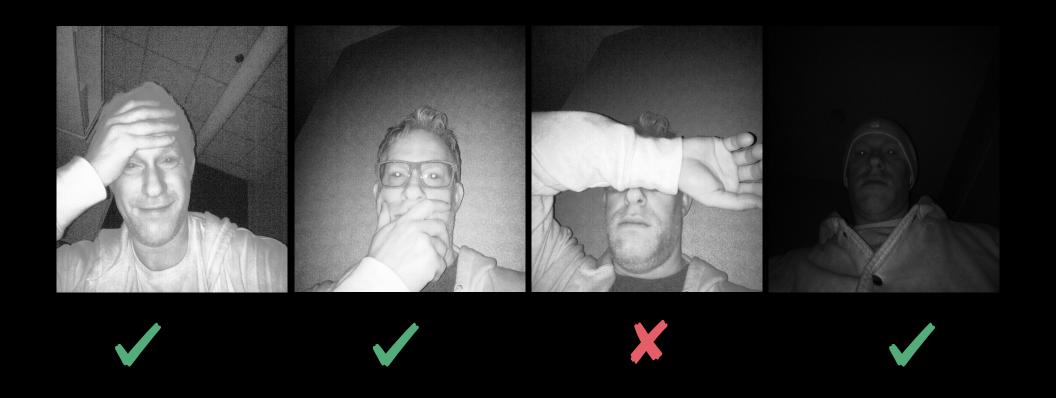
Neural engine
Dual-core design
600 billion operations per second
Real-time processing

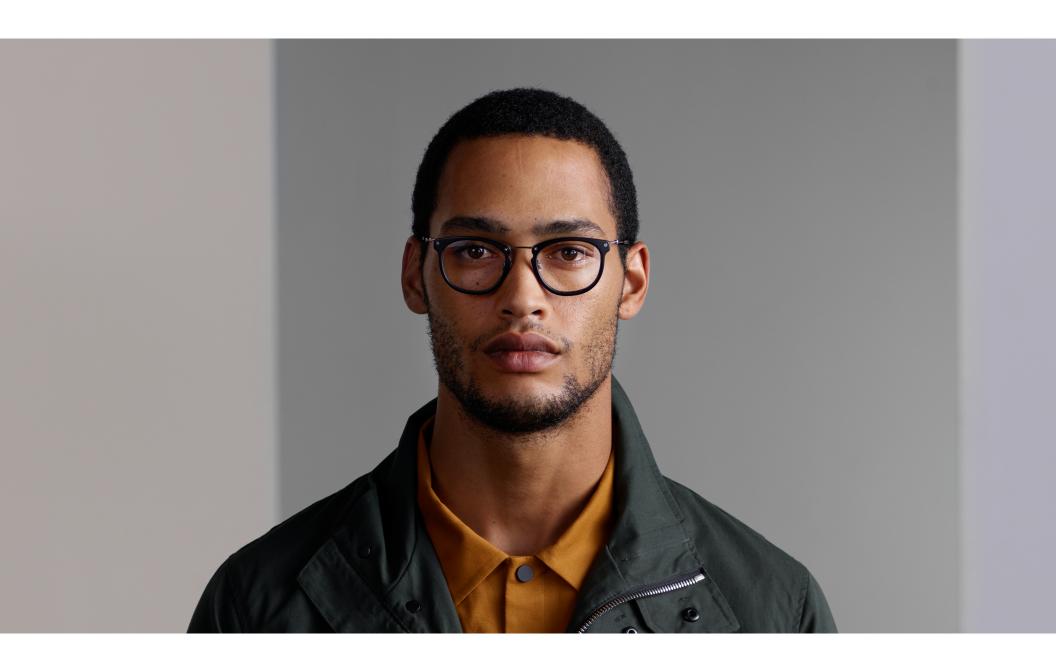


Unconstrained Face Matching

Works in Bright Sunlight and Shadows

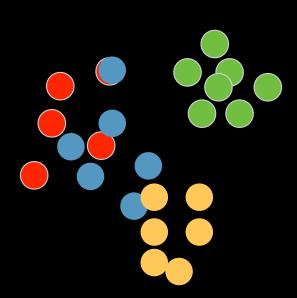
Robust to Occlusions



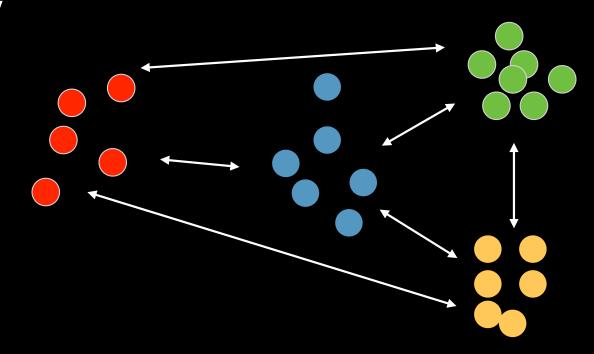


Anti-Spoofing

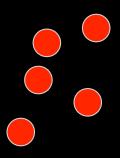
Goal is to pull same identity pairs together and push different identity pairs apart

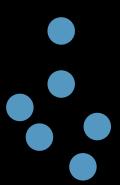


Goal is to pull same identity pairs together and push different identity pairs apart



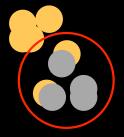
Most faces are not similar—needles in a haystack



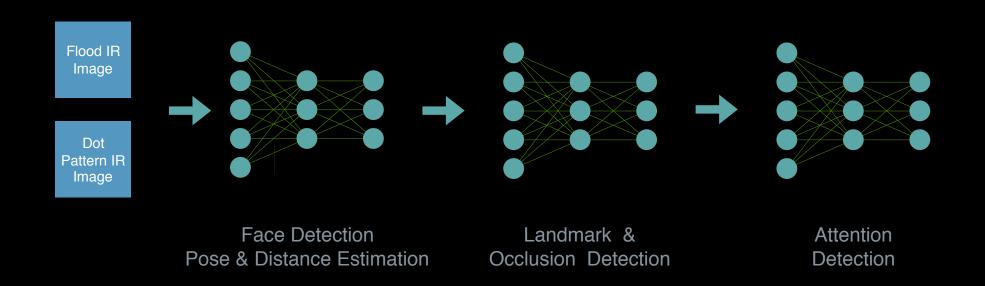


Sometimes it is very hard to find patterns that separate people that are not spurious

A model that is better at all the easy cases is not necessarily better at solving the hard cases

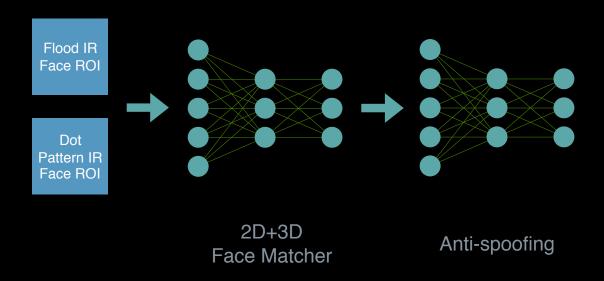


Neural Network Face Matching Pipeline: Detection



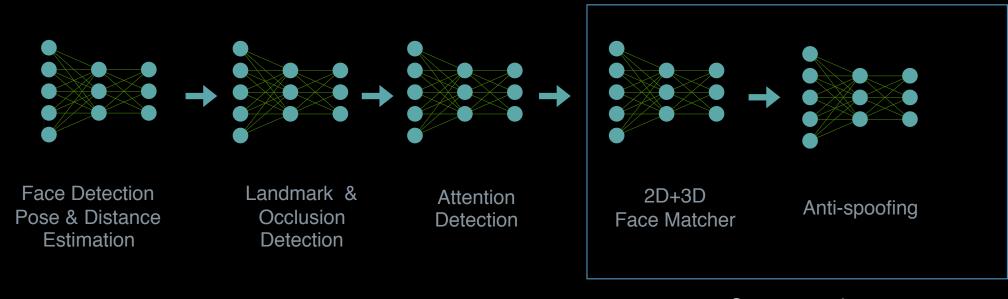
Makes decision at any point (no face, out of spec, inattention) Localizes faces for matching

Neural Network Face Matching Pipeline: Verification



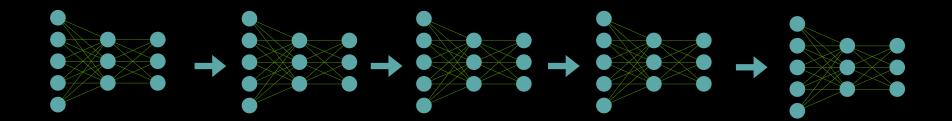
Multimodal learning problem (how to fuse 2D and 3D representations)

Neural Network Face Matching Pipeline: End-To-End



Secure enclave

Neural Network Face Matching Pipeline: End-To-End



Has to be really fast

Small memory footprint

Limited power impact

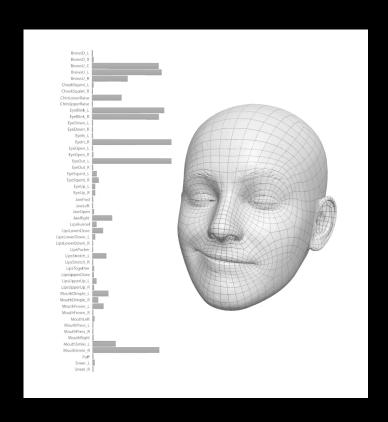
Optimized for full system performance

Animoji Apple, 2017

Realtime Facial Animation

Blendshape Model

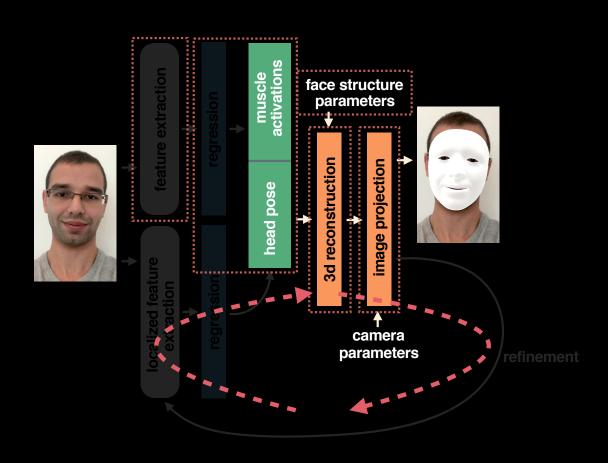
51 blendshapes ("muscles") driving more than 100 shapes



Animojis Driven by Blendshape Model

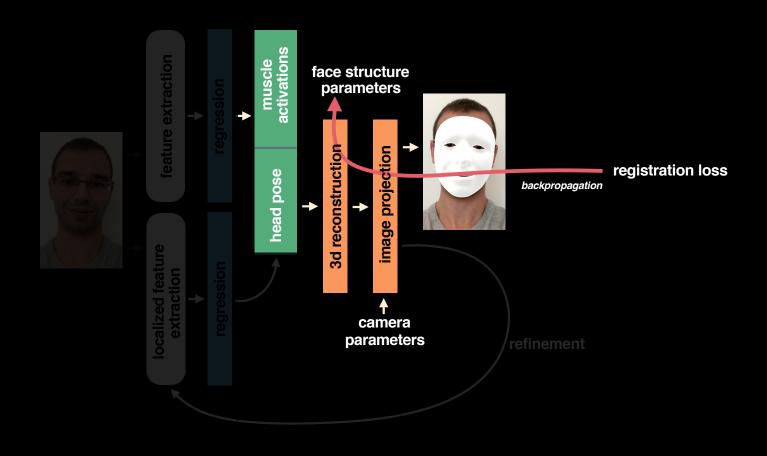
Realtime Facial Animation

Model-based RNN



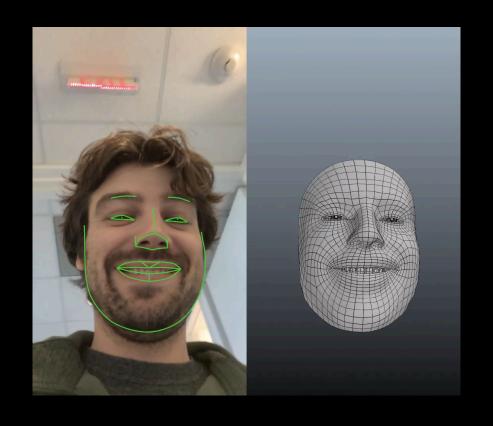
Online Identity Adaptation

Geometric backpropagation

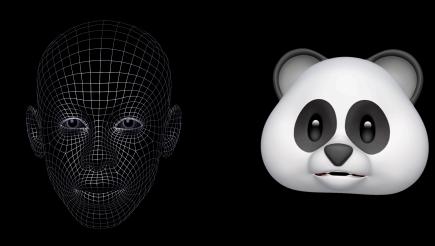


Results

Indoor and outdoor

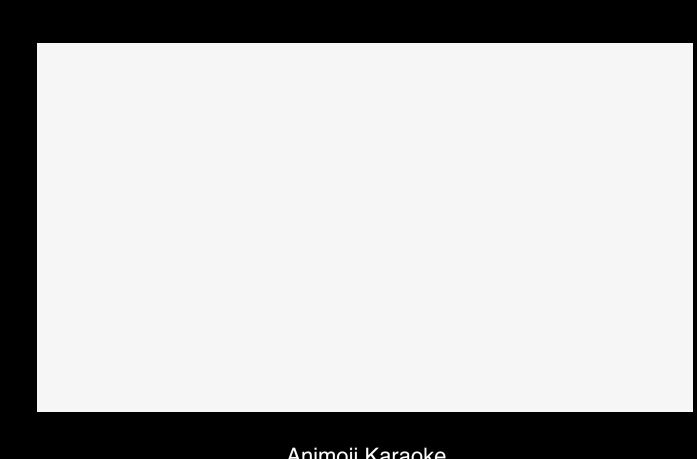


Animoji



The animation runs sustainably at 60fps

And of course...



Animoji Karaoke

