

Building far-field speech recognition for Amazon Alexa: Challenges and Solutions

Björn Hoffmeister

Amazon Alexa Speech

Derver with Jude Torony and Walky at Caffil

1000000

Amazon Alexa Device Family

Outline

Overview

Containing Speech

- Wakeword Detection
- End-of-Speech Detection
- Combining Wakeword and End-of-Speech Detection
- Device-Directedness Detection

Recognizing Speech

- Active Learning
- Multi-lingual and low-resource ASR
- Context Modeling

Outline

Overview

Containing Speech

- Wakeword Detection
- End-of-Speech Detection
- Combining Wakeword and End-of-Speech Detection
- Device-Directedness Detection

Recognizing Speech

- Active Learning
- Multi-lingual and low-resource ASR
- Context Modeling

Old-Style Wakeword Detection

- Move sliding window of DNN/CNN classifier over the acoustic features (25ms analysis window, 10ms shift)
- Train DNN/CNN directly on wakeword instances
- Requires training data with thousands of wakeword instances

[Small-Footprint Keyword Spotting using Deep Neural Networks. G. Chen et.al., Google, ICASSP 2014]

- DNN posteriors per acoustic feature => sliding window over posteriors => "max-pooling" over smoothed posteriors
- Whole word modeling, no time warping

[Convolutional Neural Networks for Small-footprint Keyword Spotting. T. N. Sainath et.al., Google, Interspeech 2015]

- sliding window over acoustic features => CNN
- Whole word modeling, CNN patches can learn sub-words, limited time warping
- Large accuracy improvements

Hybrid Wakeword Detection

[Monophone-based Background Modeling for Two-Stage On-Device Wake Word Detection. *M. Wu et.al., Amazon, ICASSP 2018*]

- Direct wakeword sub-word unit modeling
- DNN posteriors per acoustic feature => HMM alignment of wakeword and BG model => DNN "sequence" classifier
- BG: speech/non-speech or monophone model

[Direct Modeling of Raw Audio with DNNs for Wake Word Detection. K. Kumatani et.al., Amazon, ASRU 2017]

• DNN posteriors directly from audio signal

Hybrid Wakeword Detection

[Monophone-based Background Modeling for Two-Stage On-Device Wake Word Detection. *M. Wu et.al., Amazon, ICASSP 2018*]

Audio-based End-Point Detection

Old-style audio-based

- Energy based + sophisticated thresholding scheme
- DNN/LSTM VAD, frame-wise speech/non-speech classification + thresholding scheme
- Problem: end-of-sentence or within-sentence pause?

What if audio signal contains enough information?

• LSTM/RNN powerful enough to distinguish end-of-sentence vs within-sentence pause?

[Improved End-of-Query Detection for Streaming Speech Recognition. M. Shannon et.al., Google, Interspeech 2017]

Audio-based End-Point Detection

[Improved End-of-Query Detection for Streaming Speech Recognition. M. Shannon et. al., Google, Interspeech 2017]

Decoder-based End-Point Detection

Trust the speech recognition system:

- ASR system is the better VAD
- Language model (LM) predicts end-of-sentence, but ...
- ... limited LM history, typically three or four words
- ... sentence end ambiguous ": "What's the weather -- tomorrow?"
- Combine end-of-sentence prediction with non-speech thresholding
 => "pause duration after sentence end"

How to handle decoder uncertainty?

Use expectation over active decoder hypotheses
 => expected "pause duration after sentence end"

[Accurate Endpointing with Expected Pause Duration. B. Liu et.al., Amazon, Interspeech 2015]

Decoder-based End-Point Detection

[Accurate Endpointing with Expected Pause Duration. B. Liu et. al., Amazon, Interspeech 2015]

Hybrid End-Point Detection

Why hybrid? Why not trusting the decoder?

- Acoustic model (AM) not optimized for speech/non-speech discrimination
- Language model (LM) not optimized for end-of-sentence prediction
- Technical considerations: separate ASR and end-point detector

Hybrid end-point detector

- Features
 - Audio-based end-point detection LSTM => acoustic embeddings
 - Lexical sentence-end prediction LSTM (based on best decoder hypothesis)
 => lexical embeddings
 - expected "pause duration after sentence end"
- DNN classifier

[Combining Acoustic Embeddings and Decoding Features for End-of-Utterance Detection in Real-Time Far-Field Speech Recognition System. *R. Maas et.al., Amazon, ICASSP 2018*]

Hybrid End-Point Detection

features	WERR	EEPR	P50	P90	P99	
$[T_{\min} = 400, T_{\max} = 1500]$						
$[d_t]$	—	—	380	720	1500	
$[h_t]$	-17%	-68%	380	1500	1510	
$[a_t]$	-11%	-43%	380	750	1500	
$[a_t,d_t]$	-15%	-54%	370	730	1500	
$[a_t,h_t]$	-16%	-61%	360	760	1500	
$\left[a_{t},h_{t},d_{t} ight]$	-16%	-59%	360	720	1500	

[Combining Acoustic Embeddings and Decoding Features for End-of-Utterance Detection in Real-Time Far-Field Speech Recognition System. *R. Maas et.al., Amazon, ICASSP 2018*]

Combining Wakeword and End-Point Detection close talk distant speech in the state of th distant with bac

Anchored End-Point Detection

[Anchored Speech Detection, R. Maas et.al., Amazon, Interspeech 2016]

Anchored End-Point Detection

Desired vs interfering speech classification

- Frame error rate [%]
- LFBE: input to encoder/decoder
- LFBE+MS: causal mean subtraction applied to LFBE features
- LFBE+AS: "anchored" mean subtraction (mean computed over wake word)

Encoder	Decoder	raw LFBE	LFBE +MS	LFBE +AS
None	FF	19.4	17.2	15.4
None	RNN	19.5	17.3	15.5
LSTM	FF	15.7	15.2	15.2
LSTM	RNN	15.8	15.4	15.6

[Anchored Speech Detection, R. Maas et.al., Amazon, Interspeech 2016]

2nd Turn Device Directedness Detection

Hybrid Device Directedness Detection

"Follow-up mode"

- Second interaction without wake word
- Example:

"Alexa, set alarm for 7am" "What's the weather tomorrow?"

Hybrid device-directedness detector

- Features similar to hybrid end-point detector
 - acoustic embedding
 - decoder features
 Viterbi score, avg. token confidence, avg. arcs in CN, etc.
 - lexical embedding embedding over 1-best character sequence
- DNN classifier

[DeviceDirected Utterance Detection, S.H. Mallidi et.al., Amazon, Interspeech 2018]

Hybrid Device Directedness Detection

features	EER(%)
decoder features (d)	9.3
acoustic embedding (a)	10.9
char embedding (c)	20.1
$[\mathbf{a},\mathbf{d}]$	6.5
$[\mathbf{c},\mathbf{d}]$	6.9
$[\mathbf{a}, \mathbf{c}]$	8.6
$[\mathbf{a}, \mathbf{c}, \mathbf{d}]$	5.2

[Device Directed Utterance Detection, S.H. Mallidi et.al., Amazon, Interspeech 2018]

Anchored Device Directedness Detection

[unpublished]

Outline

Overview

Containing Speech

- Wakeword Detection
- End-of-Speech Detection
- Combining Wakeword and End-of-Speech Detection
- Device-Directedness Detection

Recognizing Speech

- Active Learning
- Multi-lingual and low-resource ASR
- Context Modeling

Active Learning for ASR

Active Learning for ASR

Active Learning for ASR

- What are my features (derived from current model)?
- What is the optimal distribution over features?
- What is the optimal distribution over human vs machine transcription?
- How to find the subset yielding the desired distribution?

Utterance features:

- Device type
- Domain/Intent (NLU)
- Phoneme/Triphone distribution
- SNR
- Confidence
- Acoustic embedding (i-vector)
- Transcription occurrence (how many "Alexa Stop", etc.)

Uniform Phoneme Distribution

Phoneme distribution:

- Skewed distribution: "Alexa stop", "Alexa, what's the weather", etc.
- "what's" vs "watch", "repeat" vs "reheat", etc.
- Target distribution?
 - => Has to work everywhere (message dictation, contact names, skills, etc.)
 - => Uniform distribution (Maximum entropy principle)

Uniform Phoneme Distribution

Data sub-selection

	Random Selection [WERR%]	Uniform phoneme dist. [WERR%]
Full (3.8K hours)	-	-
Half (1.9K hours)	-4%	1%
Third (1.15 hours)	-8%	-2%

WERR := relative reduction in WER

Active Learning:

- Use criterion for selecting data for transcription
- Require only 1/3 of data (need to trust semi-supervised labels)

Active and Semi-Supervised Learning for LM

Experimental setup

- Baseline: 50h random selection
 => trainer for semi-supervised learning
 => supervised portion
- AL pool: 100h confidence based selection
- RS pool: 550h random selection

Conclusion

- 1. Using all data helps
 - combine human and machine transcription
- 2. Active learning helps
 - "smart" selection what to send to human transcription

amazon alexa

[Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic and Language Models, Th. Drugman et.al., Amazon, Interspeech 2016]

Active Learning with Sub-modular Functions

Data selection with sub-modular functions

• Function with diminishing return property

 $A \subseteq B \text{ and } v \notin B \Longrightarrow f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$

• Linear greedy algorithm with certain optimality guarantees

 $\tilde{V} := \underset{V \subseteq S, |V|=B}{\operatorname{argmax}} f(V) \text{ for given budget } B$

Sub-modular function for feature-based data selection

• Relevance function for feature *i*

$$r_i(V) \coloneqq \sum_{v \in V} r_i(v)$$

• Sub-modular feature function with feature weights w_i and concave function ϕ

$$f(V) \coloneqq \sum_{i} w_i \phi(r_i(V))$$

• $\phi \coloneqq \log, w_i \coloneqq$ "target distribution" => entropy-based selection Example: $r_{\pi}(v)$ occurrence of phoneme π in utterance v, w_{π} desired phoneme distribution

[Submodular subset selection for for large scale speech training data, ! "#\$%#%'" () "*#+ \$*#, -'%. /0%%12 3456]

Multi-dialect Acoustic Modeling

Multiple British-English dialect modeling

• Problem: skewed data distribution

Unified AM

- Pooled AM (LSTM, XENT + bMMI)
- Adapt to locale (bMMI)

Unified AM with locale and speaker embedding

- Additional input to AM
 - speaker embedding: frame-wise updated i-vector
 - locale embedding: one-hot vector
- Build unified AM
 - add locale-specific last layers (work in progress)

Multi-dialect Acoustic Modeling

Training data for British-English locales

	training data [hours]		
en-GB	3.2K		
en-IN	1.5K		
en-ANZ	0.7K		
total	5.4K		

Data pooling for British-English locales

	en-GB [WERR%]	en-IN [WERR%]	en-ANZ [WERR%]
Pooled AM	-11%	-13%	-16%
+ speaker and locale embedding			-23%

WERR := relative change in WER

Contextual Language Model Adaptation

Contextual LM for a chatbot

- Unsupervised clustering of LM training data
 => 26 "topic" LMs
- Linear interpolation of "topic" LMs
- Predict interpolation weights from
 - previous utterance (1-pass)
 - current utterance (2-pass)
- Optimize predictor MLP (2x200) for
 - unsupervised topic label
 - perplexity

Features

- prev: average word embedding over all past turns prev-d: average with decaying weight
- cur: average word embedding over 1-best
- meta: day of week, time of day

[Contextual Language Model Adaptation for Conversational Agents, A. Raju et.al., Amazon, Interspeech 2018]

Contextual Language Model Adaptation

Chatbot ASR system on a Chatbot test set (Alexa Prize)

Model	Feats	P	PL V	WERR(%)	Entity WERF	R(%)
	decoder	: 1-pass				
No Adapt).77			aire S
NN (PPL)	prev. meta	58.14	-1.619	6 -2. ⁰)8%	D
N (PPL)	prev-d, meta	55.66	-2.76%	6 -10	.92%	Dì
	decoder: 2-pa	155				
N (PPL)	prev, cur, meta	42.03	-5.589	6 -15	.15%	D
IN (PPL)	prev-d, cur, meta	42.83	-5.92%	6 -14	.67%	DI
IN(PPL)	cur, meta	42.72	-5.98%	6 -15	.32%	DI
pic model	cur	45.08	-5.52%	6 -13	.14%	То

[Contextual Language Model Adaptation for Conversational Agents, A. Raju et.al., Amazon, Interspeech 2018]

Thanks

https://developer.amazon.com/alexa/science