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Overview

Containing Speech

 Wakeword Detection

* End-of-Speech Detection

* Combining Wakeword and End-of-Speech Detection
* Device-Directedness Detection

Recognizing Speech

* Active Learning

e Multi-lingual and low-resource ASR

e Context Modeling
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DNN/CNN-based Wakeword Detection
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W

* Move sliding window of DNN/CNN classifier over the acoustic features (25ms analysis window, 10ms shift)
* Train DNN/CNN directly on wakeword instances
* Requires training data with thousands of wakeword instances

[Small-Footprint Keyword Spotting using Deep Neural Networks. G. Chen et.al., Google, ICASSP 2014]
* DNN posteriors per acoustic feature => sliding window over posteriors => “max-pooling” over smoothed posteriors
* Whole word modeling, no time warping

[Convolutional Neural Networks for Small-footprint Keyword Spotting. T. N. Sainath et.al., Google, Interspeech 2015]
* sliding window over acoustic features => CNN

* Whole word modeling, CNN patches can learn sub-words, limited time warping

e Large accuracy improvements
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[Monophone-based Background Modeling for Two-Stage On-Device Wake Word Detection. M. Wu et.al., Amazon,
ICASSP 2018]

* Direct wakeword sub-word unit modeling

 DNN posteriors per acoustic feature => HMM alignment of wakeword and BG model => DNN “sequence” classifier
* BG: speech/non-speech or monophone model

[Direct Modeling of Raw Audio with DNNs for Wake Word Detection. K. Kumatani et.al., Amazon, ASRU 2017]
 DNN posteriors directly from audio signal
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6.16 DET curves (one stage Vs. two stages on baseline) 6,16 DET curves (one stage Vs. two stages on monophone)
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[Monophone-based Background Modeling for Two-Stage On-Device Wake Word Detection. M. Wu et.al.,
Amazon, ICASSP 2018]
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Audio-based End-Point Detection

Old-style audio-based
* Energy based + sophisticated thresholding scheme
* DNN/LSTM VAD, frame-wise speech/non-speech classification + thresholding scheme

* Problem: end-of-sentence or within-sentence pause?

What if audio signal contains enough information?

* LSTM/RNN powerful enough to distinguish end-of-sentence vs within-sentence pause?

[Improved End-of-Query Detection for Streaming Speech Recognition. M. Shannon et.al., Google, Interspeech 2017]
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Audio-based End-Point Detection
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[Improved End-of-Query Detection for Streaming Speech Recognition. M. Shannon et. al., Google, Interspeech 2017]
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Decoder-based End-Point Detection

Trust the speech recognition system:

e ASR system is the better VAD

* Language model (LM) predicts end-of-sentence, but ...

e ...sentence end ambiguous “: “What’s the weather -- tomorrow?”

How to handle decoder uncertainty?

* Use expectation over active decoder hypotheses
=> expected “pause duration after sentence end”

[Accurate Endpointing with Expected Pause Duration. B. Liu et.al., Amazon, Interspeech 2)6015] ’

... limited LM history, typically three or four words

Combine end-of-sentence prediction with non-speech thresholding
=> “pause duration after sentence end”
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Decoder-based End-Point Detection
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[Accurate Endpointing with Expected Pause Duration. B. Liu et. al., Amazon, Interspeech 2015]
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Why hybrid? Why not trusting the decoder? 8

« Acoustic model (AM) not optimized for speech/non-speech discrimination Q(Cn tle1; 22, mtD

* Language model (LM) not optimized for end-of-sentence prediction T

* Technical considerations: separate ASR and end-point detector .-~ Classification >
layer

Pause duration features

from ASR decoder
Hybrid end_pOint detGCtOr _______-‘-__-___-—-“--_---‘-‘____-_-’--‘- -------------
* Features E |
* Audio-based end-point detection LSTM Acoustic

_ . Embeddin
=> acoustic embeddings ¢

* Lexical sentence-end prediction LSTM
(based on best decoder hypothesis)

. ) L x | .
=> |exical embeddings - m*‘ |
» expected “pause duration after sentence end” E s -y i‘ - ¥ st by f
. o E 20 A 6( 80 00 20 0 :E -best yp rom
DNN classifier : | ASR decoder

[Combining Acoustic Embeddings and Decoding Features for End-of-Utterance Detection in Real-Time Far-Field
Speech Recognition System. R. Maas et.al., Amazon, ICASSP 2018]



Hybrid End-Point Detection
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[Combining Acoustic Embeddings and Decoding Features for End-of-Utterance Detection in Real-Time

Far-Field Speech Recognition System. R. Maas et.al., Amazon, ICASSP 2018]
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Combining Wakeword and End-Point Detection
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[Anchored Speech Detection, R. Maas et.al., Amazon, Interspeech 2016]
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Desired vs interfering speech classification

* Frame error rate [%]

e LFBE: input to encoder/decoder

* LFBE+MS: causal mean subtraction applied to LFBE features

* LFBE+AS: “anchored” mean subtraction (mean computed over wake word)

Encoder Decoder %V LFBE  LFBE
LFBE +MS +AS

None FF 194 17.2 154
None RNN 19.5 17.3 15.5
LSTM FF 15.7 15.2 15.2

LSTM RNN 15.8 154 15.6

[Anchored Speech Detection, R. Maas et.al., Amazon, Interspeech 2016]
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Hybrid Device Directedness Detection

“Follow-up mode”
* Second interaction without wake word
* Example:

“Alexa, set alarm for 7am”

“What’s the weather tomorrow?”

Hybrid device-directedness detector
* Features similar to hybrid end-point detector
e acoustic embedding
e decoder features
Viterbi score, avg. token confidence,
avg. arcs in CN, etc.
* |exical embedding
embedding over 1-best character sequence
* DNN classifier

[DeviceDirected Utterance Detection, S.H.

p(device-directed | x4, x, -

!

Classification

) Xp)

features from
ASR decoder t

| Acoustic T

Embedding

1-best hyp from
"' ASR decoder

140 160 180 200

20 40 60 80 100 120

Mallidi et.al., Amazon, Interspeech 2018]
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features EER(%)

decoder features (d) 9.3

acoustic embedding (a) 10.9

char embedding (c) 20.1
a, d] 6.5
c,d] 6.9
a, ] 8.6
a,c,d] 5.2

[Device Directed Utterance Detection, S.H. Mallidi et.al., Amazon, Interspeech 2018]
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[unpublished]
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Recognizing Speech

* Active Learning

 Multi-lingual and low-resource ASR
e Context Modeling



Active Learning for ASR
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Active Learning for ASR

* What are my features (derived from current model)?

 What is the optimal distribution over features?

* What is the optimal distribution over human vs machine transcription?
* How to find the subset yielding the desired distribution?

Utterance features:
* Device type
 Domain/Intent (NLU)
* Phoneme/Triphone distribution
* SNR
e Confidence
* Acoustic embedding (i-vector) Alexa Stop
* Transcription occurrence
(how many “Alexa Stop”, etc.)
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Phoneme distribution:

» Skewed distribution: "Alexa stop”, “Alexa, what’s the weather”, etc.

* “what’s” vs “watch”, “repeat” vs “reheat”, etc.

* Target distribution?
=> Has to work everywhere (message dictation, contact names, skills, etc.)
=> Uniform distribution (Maximum entropy principle)
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Data sub-selection

Random Uniform
Selection phoneme dist.
[WERR%] [WERR%]
Full (3.8K hours) - -
Half (1.9K hours) -4% 1%
Third (1.15 hours) -8% -2%

WERR := relative reduction in WER

Active Learning:
* Use criterion for selecting data for transcription
* Require only 1/3 of data (need to trust semi-supervised labels)
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[Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic and Language Models, Th. Drugman et.al., Amazon, Interspeech 2016]
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Data selection with sub-modular functions
* Function with diminishing return property

ACBandv ¢ B=f(Au{v}) —f(A) =fB vu{v} — f(B)
* Linear greedy algorithm with certain optimality guarantees

V:= argmax f(V) for given budget B
vV cS|V|=B

Sub-modular function for feature-based data selection
e Relevance function for feature i

n) = ) 1®

v EV
* Sub-modular feature function with feature weights w; and concave function ¢

FO) = wi(ri(V)

* ¢ = log, w;:= “target distribution” => entropy-based selection
Example: 1, (v) occurence of phoneme T in utterance v, w,; desired phoneme distribution

[Submodular subset selection for for large scale speech training data, 1"{B%% " ()" 4+, "%./0%%12 3456]
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Multi-dialect Acoustic Modeling

unified triphone states

Multiple British-English dialect modeling

* Problem: skewed data distribution LSTM
Unified AM ‘ 1
° Pooled AM (LSTM’ XENT + leV”) LFBE features I-vector 1-hot locale

e Adapt to locale (bMMI)

Unified AM with locale and speaker embedding en-UK en-ANZ en-IN

* Additional input to AM
e speaker embedding: frame-wise updated i-vector
* locale embedding: one-hot vector

e Build unified AM ‘ 1
* add locale-specific last layers (work in progress) LFBE features | | ivector | | 1-hot locale

LSTM
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Multi-dialect Acoustic Modeling

Training data for British-English locales

training data [hours]
en-GB 3.2K
en-IN 1.5K
en-ANZ 0.7K
total 5.4K

Data pooling for British-English locales

en-GB en-IN en-ANZ
[WERR%] | [WERR%] | [WERR%]

Pooled AM -11% -13% -16%

+ speaker and locale embedding -23%
WERR :=relative change in WER
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Contextual Language Model Adaptation

Contextual LM for a chatbot

Unsupervised clustering of LM training data
=> 26 “topic” LMs

Linear interpolation of “topic” LMs

Predict interpolation weights from

- previous utterance (1-pass)

- current utterance (2-pass)

Optimize predictor MLLP (2x200) for

- unsupervised topic label

- perplexity

Features

prev: average word embedding over all past turns
prev-d: average with decaying weight

cur: average word embedding over 1-best

meta: day of week, time of day

metadata

Feed-forward DNN

Previous
utterances
embedding

Loss function (1) Xent
Cross-entropy over

component LM labels

Loss function (2) PPL
Perplexity over training
text

interpolation weights

Features

Current
utterance

embedding

[Contextual Language Model Adaptation for Conversational Agents, A. Raju et.al., Amazon, Interspeech 2018]
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Chatbot ASR system on a Chatbot test set (Alexa Prize)

Model Feats PPL WERR(%)  Entity
WERR(%)

decoder : 1-pass

4\ (PPL) prev-d, meta % 66  -276% 10, mf«.- D)
decoder: 2-pass

VN (PPL)  prev, cur, meta 4203 -558% -15.15% D}

VN (PPL)  prev-d, cur, meta 4283 -592% -14.67% D?

YN(PPL) cur, meta 4272 -598% -15.32% D}

pic model cur 4508 -5.52% -13.14% To

[Contextual Language Model Adaptation for Conversational Agents, A. Raju et.al., Amazon, Interspeech 2018]
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https://developer.amazon.com/alexa/science




