
Building far-field speech recognition
for Amazon Alexa:

Challenges and Solutions
Björn Hoffmeister

Amazon Alexa Speech

2014 2015 2016 2017

Amazon Alexa Device Family

2018

Outline

Overview
Containing Speech
• Wakeword Detection
• End-of-Speech Detection
• Combining Wakeword and End-of-Speech Detection
• Device-Directedness Detection
Recognizing Speech
• Active Learning
• Multi-lingual and low-resource ASR
• Context Modeling

Overview

wake word
detector

speech
recognizer

end-point
detector

device-directed
speech classifier

Outline

Overview
Containing Speech
• Wakeword Detection
• End-of-Speech Detection
• Combining Wakeword and End-of-Speech Detection
• Device-Directedness Detection
Recognizing Speech
• Active Learning
• Multi-lingual and low-resource ASR
• Context Modeling

Wakeword Detection

distant speech

close talk

distant with background speech

Old-Style Wakeword Detection

• Move sliding window of DNN/CNN classifier over the acoustic features (25ms analysis window, 10ms shift)

• Train DNN/CNN directly on wakeword instances

• Requires training data with thousands of wakeword instances

[Small-Footprint Keyword Spotting using Deep Neural Networks. G. Chen et.al., Google, ICASSP 2014]

• DNN posteriors per acoustic feature => sliding window over posteriors => “max-pooling” over smoothed posteriors

• Whole word modeling, no time warping

[Convolutional Neural Networks for Small-footprint Keyword Spotting. T. N. Sainath et.al., Google, Interspeech 2015]

• sliding window over acoustic features => CNN

• Whole word modeling, CNN patches can learn sub-words, limited time warping

• Large accuracy improvements

DNN/CNN classifier

DNN/CNN-based Wakeword Detection

Hybrid Wakeword Detection

[Monophone-based Background Modeling for Two-Stage On-Device Wake Word Detection. M. Wu et.al., Amazon,
ICASSP 2018]
• Direct wakeword sub-word unit modeling
• DNN posteriors per acoustic feature => HMM alignment of wakeword and BG model => DNN “sequence” classifier
• BG: speech/non-speech or monophone model

[Direct Modeling of Raw Audio with DNNs for Wake Word Detection. K. Kumatani et.al., Amazon, ASRU 2017]
• DNN posteriors directly from audio signal

DNN classifier 0

1

1 2 3 4 5
NSP IH

IH V

V

IH

IH
6

[EVI]

[NSP]

SPNSP

NSP

0

[SP]

2

wake word HMM

background HMM

[NSP]
[SP]

[EVI]

DNN posteriors

Hybrid Wakeword Detection

[Monophone-based Background Modeling for Two-Stage On-Device Wake Word Detection. M. Wu et.al.,
Amazon, ICASSP 2018]

End-Point Detection

distant speech

close talk

distant with background speech

Audio-based End-Point Detection

Old-style audio-based
• Energy based + sophisticated thresholding scheme
• DNN/LSTM VAD, frame-wise speech/non-speech classification + thresholding scheme
• Problem: end-of-sentence or within-sentence pause?

What if audio signal contains enough information?
• LSTM/RNN powerful enough to distinguish end-of-sentence vs within-sentence pause?

[Improved End-of-Query Detection for Streaming Speech Recognition. M. Shannon et.al., Google, Interspeech 2017]

Audio-based End-Point Detection

[Improved End-of-Query Detection for Streaming Speech Recognition. M. Shannon et. al., Google, Interspeech 2017]

Decoder-based End-Point Detection

Trust the speech recognition system:

• ASR system is the better VAD

• Language model (LM) predicts end-of-sentence, but …

• … limited LM history, typically three or four words

• … sentence end ambiguous “: “What’s the weather -- tomorrow?”

• Combine end-of-sentence prediction with non-speech thresholding

=> “pause duration after sentence end”

How to handle decoder uncertainty?

• Use expectation over active decoder hypotheses

=> expected “pause duration after sentence end”

[Accurate Endpointing with Expected Pause Duration. B. Liu et.al., Amazon, Interspeech 2015]

x1

x1 xt

s3

s6

s9

silence

states

final

states

Decoder-based End-Point Detection

[Accurate Endpointing with Expected Pause Duration. B. Liu et. al., Amazon, Interspeech 2015]

Hybrid End-Point Detection

Why hybrid? Why not trusting the decoder?
• Acoustic model (AM) not optimized for speech/non-speech discrimination
• Language model (LM) not optimized for end-of-sentence prediction
• Technical considerations: separate ASR and end-point detector

Hybrid end-point detector
• Features

• Audio-based end-point detection LSTM
=> acoustic embeddings

• Lexical sentence-end prediction LSTM
(based on best decoder hypothesis)
=> lexical embeddings

• expected “pause duration after sentence end”
• DNN classifier

[Combining Acoustic Embeddings and Decoding Features for End-of-Utterance Detection in Real-Time Far-Field
Speech Recognition System. R. Maas et.al., Amazon, ICASSP 2018]

Hybrid End-Point Detection

[Combining Acoustic Embeddings and Decoding Features for End-of-Utterance Detection in Real-Time
Far-Field Speech Recognition System. R. Maas et.al., Amazon, ICASSP 2018]

Combining Wakeword and End-Point Detection

distant speech

close talk

distant with background speech

Anchored End-Point Detection

“anchored” detectorWW encoder

“anchored” detector

1. turn

2. turn

[Anchored Speech Detection, R. Maas et.al., Amazon, Interspeech 2016]

Anchored End-Point Detection

[Anchored Speech Detection, R. Maas et.al., Amazon, Interspeech 2016]

Desired vs interfering speech classification
• Frame error rate [%]
• LFBE: input to encoder/decoder
• LFBE+MS: causal mean subtraction applied to LFBE features
• LFBE+AS: ”anchored” mean subtraction (mean computed over wake word)

2nd Turn Device Directedness Detection

“device directedness” detector

1. turn

2. turn

turn embedding

Hybrid Device Directedness Detection

features from
ASR decoder

!"

device-directed#(|&1, &2,⋯ , &+)

Figure 1: Proposed device-directed model, based on the
combination of three features types: acoustic embedding,
1-best hypothesis embedding, and decoder features.

model is trained on LFBEs to predict frame-level device-
directed targets. The frame-level targets are obtained
by repeating the utterance label. The parameters of the
LSTM are optimized by minimizing the cross-entropy
loss, using stochastic gradient descent [8, 9]. We use the
pre-softmax output of the last frame of input utterance
as its representation, since it encodes all the information
in the utterance (due to recurrence). This 2-dimensional
vector is referred to as acoustic embedding (a) of the ut-
terance.

2.2. ASR decoder features

Along with LSTM embeddings, we also use features ob-
tained from ASR decoder. These are described below:

In ASR, trellis can be used to efficiently estimate
HMM parameters and infer the most likely state se-
quence. Trellis structure can be used to effectively com-
pute forward probabilities. Entropy of the forward prob-
ability distribution is computed at every frame, and these
are averaged. A trellis with high entropy indicate that

Table 1: Performance of acoustic LSTM model with re-
spect to number of layers and number of cells in each
layer.

acoustic LSTM EER(%) # parameters

(#layers⇥#cell size)

3⇥ 768 13.1 12M

4⇥ 768 10.9 16M

5⇥ 768 11.0 21M

6⇥ 768 11.1 26M

7⇥ 768 11.4 31M

Table 2: Examples of 1-best hypotheses of device-
directed and nondevice-directed utterances.

Device-directed speech

what’s the weather like in las vegas
play popular music
mark the first item done
what is scratch programming
Nondevice-directed speech

or if they want she can just queue for better
well that’s how we had all the training
talk to alexa but we’re talking to danny right now
live together like months ago and they may still be
boring

the probability mass is spread over alternate hypotheses,
and ASR being less confident about its best hypothesis.
This can be due to language model mismatch or acoustic
mismatch, which typically indicates nondevice-directed
speech.

Along with trellis entropy, we extract Viterbi costs
[10]. These features indicate how well the input acous-
tics and vocabulary match with the acoustic and language
models. Higher cost typically indicate greater mismatch
between the model and given data.

A confusion network [11] is a simple linear graph,
which is used as an alternative representation of the most
likely hypotheses of the decoder lattice. The arcs in the
confusion network correspond to words. Along with the
word ids on each arc, confusion network also contains
posterior estimates of each word. ASR confidence of 1-
best ASR hypothesis is obtained by taking a geometric
product of all the posterior probabilities of words in the
1-best hypothesis [12]. Along with ASR confidence, we
compute the average number of arcs from each node in
the confusion network. This relates to the number of
competing hypotheses in the confusion network. Large
number of competing hypotheses could indicate that the
ASR system is being less confident about the 1-best hy-
pothesis. In total we use 18 features from the decoder.
We used our in-house ASR system based on [13, 14] to
extract these features, referred to as decoder features (d).

Table 3: Performance of char LSTM model with respect
to the size of character embedding.

Embedding dimension EER(%)

50 21.0

100 20.6

200 20.1

300 21.3

“Follow-up mode”

• Second interaction without wake word

• Example:

“Alexa, set alarm for 7am”

“What’s the weather tomorrow?”

Hybrid device-directedness detector

• Features similar to hybrid end-point detector

• acoustic embedding

• decoder features

Viterbi score, avg. token confidence,

avg. arcs in CN, etc.

• lexical embedding

embedding over 1-best character sequence

• DNN classifier

[DeviceDirected Utterance Detection, S.H. Mallidi et.al., Amazon, Interspeech 2018]

Hybrid Device Directedness Detection

2.3. Character embedding

Similar to acoustic embedding, we extract a fixed length
representation from ASR 1-best hypotheses. Character
sequence of a 1-best hypothesis is converted into vec-
tor sequence using pre-trained embedding vectors. We
use GloVe embeddings [15] for this purpose. An LSTM
is trained on the vector sequence to predict frame-level
device-directed decisions. Note that frame here refers to
a character in the 1-best hypothesis. Once the network is
trained, the network output of the last character is used as
representation of 1-best hypothesis. This is referred to as
char embedding (c) of the input utterance.

Once the acoustic and char LSTMs [16] are trained,
the 2 embeddings are extracted and concatenated with de-
coder features to form a 22-dimensional utterance vector
(f = [a, c, d]). This vector is used as input to train a
fully connected network (classification layer in figure 1).

3. Experiments

We use real recordings of natural human interactions
with voice-controlled far-field devices for training and
testing the models. The training dataset consists of 250
hours of audio data comprised of 350k utterances. Of
these, 200k and 150k are device-directed and nondevice-
directed examples, respectively. The test data consists
of 50k utterances (30 hours of audio data), with 38k
device-directed and 12k nondevice-directed utterances.
The classification performance is evaluated in terms of
equal-error-rate (EER %). EER correspond to the point
on detection-error-tradeoff (DET) curve where false
positive rate is equal to false negative rate. We also
report DET curve to asses whether the improvement is
consistent across several operating points.

Table 4: Device-directed performance using various fea-
tures.

features EER(%)

decoder features (d) 9.3

acoustic embedding (a) 10.9

char embedding (c) 20.1

[a,d] 6.5

[c,d] 6.9

[a, c] 8.6

[a, c,d] 5.2

False positive rate (%)
0 5 10 15 20 25 30

M
is

s
de

te
ct

io
n

ra
te

 (%
)

0

5

10

15

20

25

30
a
d
c
[a, c,d]

Figure 2: Detection error tradeoff (DET) curves of acous-
tic embedding (a), decoder features (d), char embedding
(c), and combination model ([a, c,d]).

3.1. LSTM architecture

Acoustic LSTM: We used 64 dimensional LFBEs to
train an acoustic LSTM. Number of layers in the network
are varied to find the optimal model architecture. Table 1
shows the EERs of several acoustic LSTMs. It can
be inferred from the table that adding more layers to
the model improve the performance. Lowest EER is
obtained by the model with 4 layers (16M). Adding
more layers does not improve the performance. We
hypothesize that this might be due to not enough training
data.

Char LSTM: A deeper analysis of device-directed
and nondevice-directed utterances indicated that, device-
directed speech is structured, containing short phrases
and similar words. In comparison, nondevice-directed
speech is more spontaneous and less grammatical. This
is reflected even in 1-best hypothesis of ASR. Table 2 il-
lustrates a few1-best hypotheses. We can infer from the
table that 1-best hypotheses of device-directed speech is
markedly different from nondevice-directed speech. In-
spired by this, we use embedding of 1-best hypothesis.
Table 3 shows the EERs of char LSTM models as a func-
tion of input embedding size. It can be inferred from the
table that a 200 dimensional embedding is optimal for
this task.

3.2. Results

Comparison between tables 1 and 3 shows that the acous-
tic LSTM is performing better than char LSTM. Lower
accuracy of char LSTM might due to a smaller amount of
training data. The acoustic LSTM is trained on 91 mil-
lion frames where as char LSTM is trained on 8 million
frames.

[Device Directed Utterance Detection, S.H. Mallidi et.al., Amazon, Interspeech 2018]

Anchored Device Directedness Detection

previous turn embedding

turn embedding

1. turn

2. turn

[unpublished]

“device directedness” detector

Outline

Overview
Containing Speech
• Wakeword Detection
• End-of-Speech Detection
• Combining Wakeword and End-of-Speech Detection
• Device-Directedness Detection
Recognizing Speech
• Active Learning
• Multi-lingual and low-resource ASR
• Context Modeling

Active Learning for ASR

production
data

(speech)

data
selection

text data

machine transcription

human transcription

data
prep &

simulation

data
prep

AM
training

LM
training

ASR model
building &

optimization

runtime

Echo,
Show,
mShop,
etc.

news feeds,
external
text data

Echo,
Show,
mShop,
etc.

Active Learning for ASR
• What are my features (derived from current model)?
• What is the optimal distribution over features?
• What is the optimal distribution over human vs machine transcription?
• How to find the subset yielding the desired distribution?

Utterance features:
• Device type
• Domain/Intent (NLU)
• Phoneme/Triphone distribution
• SNR
• Confidence
• Acoustic embedding (i-vector)
• Transcription occurrence

(how many “Alexa Stop”, etc.)

Active Learning for ASR

Alexa Stop

Uniform Phoneme Distribution

Phoneme distribution:
• Skewed distribution: ”Alexa stop”, “Alexa, what’s the weather”, etc.
• “what’s” vs “watch”, “repeat” vs “reheat”, etc.
• Target distribution?

=> Has to work everywhere (message dictation, contact names, skills, etc.)
=> Uniform distribution (Maximum entropy principle)

Uniform Phoneme Distribution

Random
Selection
[WERR%]

Uniform
phoneme dist.

[WERR%]
Full (3.8K hours) - -
Half (1.9K hours) -4% 1%
Third (1.15 hours) -8% -2%

WERR := relative reduction in WER

Data sub-selection

Active Learning:
• Use criterion for selecting data for transcription
• Require only 1/3 of data (need to trust semi-supervised labels)

Active and Semi-Supervised Learning for LM

stantially affected by the different models. Second, even when
the ranking is altered, the informativeness of the switched ut-
terances is probably comparable, therefore not leading to any
dramatic difference in recognition performance.

The rest of this paper therefore employs a simple confi-
dence model: a polynomial is used to map the token posteriors
to the observed word probabilities, which are then combined
by geometrical mean. The distribution of these scores over the
550h selection pool is shown in Figure 1. Note that the vari-
ous peaks in the high confidences are due to a dependency on
the hypothesis length. As can be seen, the baseline model is
already rather good: respectively 11.6, 19.0 and 24.0% of the
utterances have a confidence score lower than 0.5, 0.7 and 0.8.

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

0	
0.0

4	
0.0

8	
0.1

2	
0.1

6	 0.2
	

0.2
4	

0.2
8	

0.3
2	

0.3
6	 0.4
	

0.4
4	

0.4
8	

0.5
2	

0.5
6	 0.6
	

0.6
4	

0.6
8	

0.7
2	

0.7
6	 0.8
	

0.8
4	

0.8
8	

0.9
2	

0.9
6	 1	

No
rm

ali
zed

	Fr
eq

ue
nc
y	

Confidence	score	

Figure 1: Histogram of the standard confidence scores.

3.2. Impact on the AM

In this section, we focus on the impact of AL and SST purely
on the AM. The LM and the vocabulary are therefore fixed to
that of the baseline. For both supervised and unsupervised data
selection, our approach relies on applying a filter to the confi-
dence scores where data is selected if the confidence score is
between some given lower and upper bounds.

3.2.1. Active learning only

In a first stage, we optimized the filter used for supervised data
selection. We varied the lower filter bound in the [0-0.1] range
in order to remove possibly uninformative out-of-domain utter-
ances. The upper bound was varied in the [0.4-0.9] range, lead-
ing to a total of 20 filters. The resulting AMs were analyzed
on the development set. The main findings were that as long
as the lower bound does not exceed 0.05 and the upper bound
does not exceed 0.8 (which corresponds to the beginning of the
main mode in Figure 1), the results were rather similar (with
differences lower than 1% relative). It seems to be important,
though, not to go beyond 0.8 as this would strongly compro-
mise the informativeness of the selected utterances. In addition,
we have tried to apply utterance length filtering in cascade with
the confidence-based selection. This operation however did not
turn out to provide any gain.

Based on these observations, we have used the [0-0.7] con-
fidence filter for AL data selection. When 100h of supervised
data was added to the baseline, this technique reduced the WER
by about 2% relative over the RS scheme.

3.2.2. Including unsupervised data

In a second stage, we optimized the method for selecting the
unsupervised data. On top of the 50h baseline set and the 50h
of AL data (selected as mentioned in Section 3.2.1) we added
unsupervised data selected according to different confidence fil-
ters and analyzed again the AM performance after XE training
on the development set.

Our attempts to integrate utterance length and frequency fil-
tering as in [11] were not conclusive as no significant gains were
obtained. We also remarked a slight degradation if the upper

11.5	

11.6	

11.7	

11.8	

11.9	

12	

12.1	

12.2	

0	 50	 100	 200	

W
ER

	(%
)	

Amount	of	unsupervised	data	(h)	

RS	

RS[0.3-1.0]	

RS[0.7-1.0]	

N-highest	

Figure 2: Benefits of unsupervised data on a XE-trained AM.

bound for confidence filtering does not reach the limit of 1.0.
We therefore focused on pure confidence filtering with an upper
bound of 1.0 in the remainder of our experiments. The plot in
Figure 2 compares 4 techniques of unsupervised data selection:
unfiltered random sampling (RS), confidence filtering using two
different confidence filters (RS[0.3-1.0] and RS[0.7-1.0]), and
choosing the sentences with the highest confidence scores (N-

highest). We obtained the best results with the [0.7-1.0] con-
fidence filter. The poor performance of the N-highest scores
approach can be explained by the fact that it just adds high con-
fidence utterances which contain little new information. On the
other hand, with a low lower bound of the confidence filter (as
in [0.3-1.0] or RS) the label quality becomes worse and the re-
sults also degrade. A remarkable fact is that the more unsuper-
vised data, the better the performance of the AM. The addition
of 200h of unsupervised data yielded an improvement of 4.5%
relative. The same experiment was replicated with 100h of AL
data, and the conclusions remained similar, except that the gain
reached 3.5% (and not 4.5%) this time.

3.3. Impact on the LM

The most important component of the interpolated LM is the
one trained on transcriptions of the in-domain utterances. In
this section we study the impact of different methods to select
in-domain data and add it to this component on top of the 50h of
the baseline model. All other LM components are kept constant.
We consider three data pools from which training data could
be taken: supervised data from the 100h AL data pool which
was selected using the [0-0.7] confidence filter as described in
Section 3.2.1, supervised data from the complete pool of 550h,
and unsupervised data from the same 550h pool, taken from the
first hypothesis of the ASR results of the baseline model.

3.3.1. Perplexity results

In a first experiment we calculated perplexities when an increas-
ing amount of data was added to the LM. Since perplexity val-
ues are hard to compare when using different vocabularies, we
kept the vocabulary fixed to that of the baseline. The dotted
lines in Figure 3 show the perplexities if data is randomly sam-

30	

31	

32	

33	

34	

35	

36	

37	

0	 55	 110	 165	 220	 275	 330	 385	 440	 495	 550	

Pe
rp
le
xi
ty
	

Do-ed	lines: 	Addi3onal	data	(h)		
Solid	lines:		 	Amount	of	supervised	data	(h)	

Unsup	

Sup/RS	

Sup/AL	

Sup/RS	+	Unsup	

Sup/AL	+	Unsup	

Figure 3: LM perplexity for different types of data.

3

pled from the supervised data (Sup/RS), if the data is sampled
from the recognition results (Unsup), and if the data is sampled
from the the AL data pool (Sup/AL). It can be seen that adding
more application data improves the model irrespective of the
source. Already just adding unsupervised data gives a big per-
plexity reduction from 36.3 to 33.0. However, there is a signifi-
cant gap between the supervised (Sup/RS) and the unsupervised
(Unsup) case. Adding just the AL data does not perform as well
as random sampling from the complete pool. On one hand, in
this case the label quality is higher compared to the unsuper-
vised data but on the other hand, due to the selection process,
the data is no longer representative to the application. Con-
trary to the AM, which is discriminatively trained, the LM is a
generative model which in general is much more vulnerable for
missing representativeness.

In the next experiments, shown as solid lines in Figure 3,
we combine supervised and unsupervised data with the goal to
overcome the bias in the data and to make the best use of all the
data. Supervised data was again selected either by RS (Sup/RS

+ Unsup) or by AL (Sup/AL + Unsup) but in addition, all the
remaining data of the 550h data pool were used in training as
unsupervised data. This way we always use the complete data
and thus maintain the representativeness. The beginning of the
curves correspond to 550h unsupervised data. In the case of
Sup/RS + Unsup it drops constantly to final value of 550h su-
pervised data. Contrary to the previous experiment, when ap-
plying AL to select the training data (Sup/AL + Unsup), we no
longer suffer from a bias of the data and the model performs
even slightly better than RS.

3.3.2. Recognition results

It is well known that gains in perplexity do not always corre-
spond to WER improvements. We therefore ran recognition ex-
periments using the LMs from Section 3.3.1. Since it is bene-
ficial to the models we always added the unsupervised data on
top of the supervised data. The AM was kept fixed to the base-
line. As we were no longer restricted by the perplexity measure,
we also updated the vocabulary according to the selected super-
vised training data in these experiments. The results in Figure
4 show that the improvements in perplexity are also reflected in
a better WER even though part of the improvements might also
be due to the increased vocabulary coverage. It is interesting
to observe that, when adding 100 hours of supervised data, the
gains for AL are much higher than for RS. In total, the impact
of AL combined with SST on LM is outstanding: after 100h
of transcribed data, the gain over the RS baseline reaches 5.3%
relative. It is also worth emphasizing that 100h AL and roughly
400h RS are equivalent in terms of LM performance.

12.2	

12.4	

12.6	

12.8	

13	

13.2	

13.4	

13.6	

0	 50	 100	 200	 300	 550	

W
ER

	(%
)	

Amount	of	supervised	data	(h)	

Sup/RS	+	Unsup	

Sup/AL	+	Unsup	

Figure 4: ASR results with updated LM and vocabulary.

3.4. Final results

Finally, we simulate the improvements that would be yielded in
a new application by applying confidence-based AL and SST

to both the AM and LM. We considered the different LMs as
suggested in Section 3.3. For AM building, we limited the un-
supervised set to 200h across our experiments. For XE training,
SST was applied, following the findings from Section 3.2.2. For
sequence-discriminative bMMI training, it is known that possi-
ble errors in the transcripts can have a dramatic negative influ-
ence on the quality of the resulting AM [13]. Therefore, two
strategies were investigated: i) considering the aggregated set
of supervised and unsupervised data for bMMI training; ii) dis-
card any unsupervised data and only train on the supervised set.
Our results indicate that the inclusion of unsupervised data led
to a degradation of about 2.5%, and this despite the relatively
high lower bound used in the confidence filter (0.7). The first
strategy was therefore used in the following.

9.5	

10	

10.5	

11	

11.5	

12	

12.5	

0	 25	 50	 75	 100	 150	 200	 300	

!"
#$

%
&

'$

()*+,-$*.$/+01234/15$56-6$%7'$

8+09#8$

8+09(:$

8+09#8$;$<,/+0$

8+09(:$;$<,/+0$

Figure 5: Final simulation: both the AM and LM are updated.

Figure 5 shows the final simulation results after bMMI
training. It is worth noting that the results obtained after XE
training were very much in line and led to very similar improve-
ments. Two main conclusions can be drawn from this graph.
First, the unsupervised data is particularly important at the very
beginning, where it allows a 6.8% relative improvement. Nev-
ertheless, the gains of SST vanish as more supervised data is
collected. In the AL case, the advantage from SST almost com-
pletely disappears after 100h of additional supervised data. Sec-
ondly, AL carries out significant improvements over RS. It can
be seen that the WER obtained with 100h of AL is comparable
(even slightly better) to that using 300h of RS data, hence re-
sulting in a reduction of the transcription budget of about 70%.
Alternatively, one can observe that, for a fixed transcription cost
of 100h, AL achieves an appreciable WER reduction of about
12.5% relative over the range of added supervised data.

4. Conclusions

This paper aimed at simulating the benefits of AL and SST in
a new ASR application by applying confidence-based data se-
lection. More sophisticated confidence models have been de-
veloped, but they did not provide any gain for training data se-
lection for AL. Regarding AM training, AL alone was found to
yield a 2% relative improvement. Combining it with SST turned
out to be essential, especially when the amount of supervised
data is limited. Adding 200h of unsupervised data to 50h of
AL gave a 4.5% gain on the AM trained by cross-entropy. On
the contrary, any unsupersived data was harmful to sequence-
discriminative bMMI training. Beyond these improvements on
the AM, combining AL and SST allowed a significant improve-
ment (about 5%) of the LM. Our final results indicate that ap-
plying AL to both AM and LM provides an encouraging 70%
reduction of the transcription budget over RS, and these gains
seem to scale up rather well as more and more utterances are
transcribed.

4

Experimental setup
• Baseline: 50h random selection

=> trainer for semi-supervised learning
=> supervised portion

• AL pool: 100h confidence based selection
• RS pool: 550h random selection

Conclusion
1. Using all data helps

- combine human and machine transcription
2. Active learning helps

- “smart” selection what to send to human
transcription

[Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic and Language Models, Th. Drugman et.al., Amazon, Interspeech 2016]

Active Learning with Sub-modular Functions
Data selection with sub-modular functions
• Function with diminishing return property

! ⊆ # and ' ∉ # ⟹ * ! ∪ ' − * ! ≥ * # ∪ ' − * #
• Linear greedy algorithm with certain optimality guarantees

./:= 234max
7 ⊆8, 7 :;

* / for given budget #

Sub-modular function for feature-based data selection
• Relevance function for feature F

3G / ≔ I
J ∈7

3G '

• Sub-modular feature function with feature weights LG and concave function M
* / ≔I

G
LGM(3G /)

• M ≔ PQ4, LG:= “target distribution” => entropy-based selection
Example: 3R ' occurence of phoneme π in utterance ', LR desired phoneme distribution

[Submodular subset selection for for large scale speech training data, K. Wei et.al., UW, Interspeech 2014]

Multi-dialect Acoustic Modeling

Multiple British-English dialect modeling
• Problem: skewed data distribution

Unified AM
• Pooled AM (LSTM, XENT + bMMI)
• Adapt to locale (bMMI)

Unified AM with locale and speaker embedding
• Additional input to AM
• speaker embedding: frame-wise updated i-vector
• locale embedding: one-hot vector

• Build unified AM
• add locale-specific last layers (work in progress)

LSTM

LFBE features i-vector 1-hot locale

unified triphone states

LSTM

LFBE features i-vector 1-hot locale

en-UK en-ANZ en-IN

Multi-dialect Acoustic Modeling

en-GB
[WERR%]

en-IN
[WERR%]

en-ANZ
[WERR%]

Pooled AM -11% -13% -16%
+ speaker and locale embedding -23%

WERR := relative change in WER

Data pooling for British-English locales

training data [hours]
en-GB 3.2K
en-IN 1.5K
en-ANZ 0.7K
total 5.4K

Training data for British-English locales

Contextual Language Model Adaptation

[Contextual Language Model Adaptation for Conversational Agents, A. Raju et.al., Amazon, Interspeech 2018]

Contextual LM for a chatbot
• Unsupervised clustering of LM training data

=> 26 “topic” LMs
• Linear interpolation of “topic” LMs
• Predict interpolation weights from

- previous utterance (1-pass)
- current utterance (2-pass)

• Optimize predictor MLP (2x200) for
- unsupervised topic label
- perplexity

Features
• prev: average word embedding over all past turns

prev-d: average with decaying weight
• cur: average word embedding over 1-best
• meta: day of week, time of day

Contextual Language Model Adaptation

[Contextual Language Model Adaptation for Conversational Agents, A. Raju et.al., Amazon, Interspeech 2018]

Chatbot ASR system on a Chatbot test set (Alexa Prize)

Thanks
https://developer.amazon.com/alexa/science

