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Introduction

• The history of Automatic Speech Recognition (ASR) is one of solving 
progressively harder tasks over time, meeting or exceeding human 
performance.

• Collectively, we have recently solved the task of transcribing American 
English conversational telephone speech (CTS).

• This talk covers
• Human parity in American English CTS.
• An analysis of human and machine errors on this task.
• What lies beyond human parity?
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Introduction:
Task and History



The Human Parity Experiment

• Conversational telephone speech has been a benchmark in the 
research community for 20 years

• Focus: strangers talking to each other via telephone, given a topic
• Known as the “Switchboard” task in speech community

• Question: Can we achieve human-level performance?
• Top-level tasks:

• Measure human performance
• Build the best possible recognition system
• Compare and analyze
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CallHome (CH)
(friends & family, unconstrained)

Switchboard (SWB)
(strangers, on-topic)

30 Years of Speech Recognition Benchmarks

RM

ATIS

WSJ

For many years, DARPA drove the field by defining public benchmark tasks
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Conversational Telephone Speech (CTS):

Read and planned speech:
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History of Human Error Estimates for SWB
• Lippman (1997):  4%

• based on “personal communication” with NIST, no experimental data cited
• LDC LREC paper (2010):  4.1-4.5%

• Measured on a different dataset (but similar to our NIST evaluation set, SWB portion)
• Microsoft (2016): 5.9%

• Transcribers were blind to experiment
• 2-pass transcription, isolated utterances (no “transcriber adaptation”)

• IBM (2017): 5.1%
• Using multiple independent transcriptions, picked best transcriber
• Vendor was involved in experiment and aware of NIST transcription conventions

Note: Human error will vary depending on
• Level of effort (e.g., multiple transcribers)
• Amount of context supplied (listening to short snippets vs. entire conversation)
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Recent ASR Results on Switchboard

Group 2000 SWB WER Notes Reference

Microsoft 16.1% DNN applied to LVCSR for the first time Seide et al, 2011

Microsoft 9.9% LSTM applied for the first time A.-R. Mohammed et al, IEEE ASRU 
2015

IBM 6.6% Neural Networks and System Combination Saon et al., Interspeech 2016

Microsoft 5.8% First claim of "human parity" Xiong et al., arXiv 2016,
IEEE Trans.  SALP 2017

IBM 5.5% Revised view of "human parity" Saon et al., Interspeech 2017

Capio 5.3% Han et al., Interspeech 2017

Microsoft 5.1% Current Microsoft research system Xiong et al., MSR-TR-2017-39, 
ICASSP 2018
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Microsoft System Overview
and Results



System Overview
• Hybrid HMM/deep neural net architecture
• Multiple acoustic model types

• Diverse architectures (convolutional and recurrent)
• VGG, LACE, CNN, BLSTM, Resnet

• Diverse senone sets
• Different set size, different base phones

• Multiple language models
• All based on LSTM recurrent networks
• Different input encodings
• Forward and backward running

• Advanced system combination
• Model combination at multiple levels
• Search for complementary acoustic model
• Confusion-network based, weighted combination



Data used

• Acoustic training:  2000 hours of conversational telephone data
• Language model training:

• Conversational telephone transcripts
• Web data collected to be conversational in style
• Broadcast news transcripts

• Test on NIST 2000 SWB+CH evaluation set
• Note: data chosen to be compatible with past practice

• NOT using proprietary sources



Language Modeling: Multiple LSTM variants
• Decoder uses a word 4-gram model
• N-best hypotheses are rescored with multiple LSTM recurrent 

network language models
• LSTMs differ by

• Direction:  forward/backward running
• Encoding: word one-hot, word letter trigram, character one-hot
• Scope: utterance-level / session-level



Session-level Language Modeling
• Predict next word from full conversation history, not just one 

utterance:
Speaker A
Speaker B
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1

2

3

4

5 6 ?

LSTM language model Perplexity

Utterance-level  LSTM (standard) 44.6

+ session word history 37.0

+ speaker change history 35.5

+ speaker overlap history 35.0



AM Framework: Hybrid HMM/DNN

[Yu et al., 2010; Dahl et al., 2011]

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach still standard
But DNN model now obsolete (!)
• Poor spatial/temporal invariance 
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1st pass decoding
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Acoustic Modeling: ResNet

[He et al., 2015]

Add a non-linear offset to linear transformation of features
Similar to fMPE in Povey et al., 2005
See also Ghahremani & Droppo, 2016
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1st pass decoding



Acoustic Modeling: LACE CNN

CNNs with batch normalization,  
Resnet jumps, and attention masks
[Yu et al., 2016]
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1st pass decoding



Acoustic Modeling: Bidirectional LSTMs

Stable form of recurrent neural net
Robust to temporal shifts

[Hochreiter & Schmidhuber, 1997, 
Graves & Schmidhuber, 2005; Sak et al., 2014]

[Graves & Jaitly ‘14]
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Acoustic Modeling:  CNN-BLSTM

• Combination of convolutional and recurrent net model
[Sainath et al., 2015]

• Three convolutional layers
• Six BLSTM recurrent layers
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BLSTM
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(1) Frame level combination

Combo

(2) W
ord level com

bination

Acoustic model 
combination
Step 0: create 4 different 
versions of each acoustic 
model by clustering 
phonetic model units 
(senones) differently
Step 1: combine different 
models for same senone 
set at the frame level
(posterior probability 
averaging)
Step 2: after LM rescoring, 
combine different senone
systems at the word level
(confusion network 
combination)



Results

Senone set Acoustic models SWB WER CH WER

1 BLSTM 6.4 12.1

2 BLSTM 6.3 12.1

3 BLSTM 6.3 12.0

4 BLSTM 6.3 12.8

1 BLSTM + Resnet + LACE + CNN-BLSTM 5.4 10.2

2 BLSTM + Resnet + LACE + CNN-BLSTM 5.4 10.2

3 BLSTM + Resnet + LACE + CNN-BLSTM 5.6 10.2

4 BLSTM + Resnet + LACE + CNN-BLSTM 5.5 10.3

1+2+3+4 BLSTM + Resnet + LACE + CNN-BLSTM 5.2 9.8

+ Confusion network rescoring 5.1 9.8

Frame-level
combination

Word-level
combination

Word error rates (WER)



Human vs. Machine



Human Performance on Switchboard

• The goal of reaching “human parity” in automatic CTS transcription 
raises the question of what should be considered human accuracy on 
this task.
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Microsoft Human Error Estimate (2015)
• Skype Translator has a weekly 

transcription contract
• For quality control, training, etc.

• Initial transcription followed by a 
second checking pass

• Two transcribers on each speech 
excerpt

• One week, we added NIST 2000 
CTS evaluation data to the pipeline

• Speech was pre-segmented as in NIST 
evaluation
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Human Error Estimate: Results
• Applied NIST scoring protocol (same as ASR)
• Switchboard: 5.9% error rate
• CallHome: 11.3% error rate
• SWB in the 4.1% - 9.6% range expected based on NIST study
• CH is difficult for both people and machines

• Machine error about 2x higher
• High ASR error not just because of mismatched conditions

New questions:
• Are human and machine errors correlated?
• Do they make the same type of errors?
• Can humans tell the difference?
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Correlation between human and machine errors?

25

𝜌 = 0.65 𝜌 = 0.80
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*Two CallHome conversations with multiple speakers per conversation side removed, see paper for full results

*



Does the machine benefit from seeing test 
speakers in its training data?
• It has been suggested that the 2000 Switchboard test set is so “easy” 

because most of the speakers also occur in the training set (a corpora 
shortcoming)

• The filled dots are the unseen speakers
• This doesn’t seem to be the case:

• Machine WER on unseen speakers is within
the normal range
• For the most part (3 of 4), machine WER
predicts the human WER
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Humans and machines: different error types?
Top word substitution errors (≈ 21k words in each test set)

Overall similar patterns:   short function words get confused (also: inserted/deleted)
One outlier:  machine falsely recognizes backchannel “uh-huh” for filled pause “uh”
• These words are acoustically confusable, have opposite pragmatic functions in conversation
• Humans can disambiguate by prosody and context
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Top Insertion and Deletion Errors

Deletions Insertions

Both humans and machines insert “I” and “and” a lot.
Short function words dominate the list for both.
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Can humans tell the difference?

• Attendees at a major speech conference played “Spot the Bot”
• Showed them human and machine output side-by-side in random 

order, along with reference transcript
• Turing-like experiment: tell which transcript is human/machine
• Result:  it was hard to beat a random guess

• 53% accuracy (188/353 correct) 
• Not statistically different from chance (p ≈ 0.12, one-tailed)



Conclusions

• Human transcription performance is around 5-6%, but also varies 
greatly with the function of the amount of effort!

• Multiple independent transcription passes with reconciliation would lower 
this further, as done by NIST for their reference transcriptions

• State-of-the-art ASR technology based on neural net acoustic and 
language models has reached human-level accuracy on this task

• Human and machine transcription performance is highly correlated
• “Hard” versus “easy”  speakers
• Word types involved in most frequent errors 
• Humans are better at recognizing pragmatically relevant words  

(“uh” vs. “uh-huh”)
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Outlook

• Speech recognition is not solved!
• Need to work on

• Robustness to acoustic environment (e.g., far-field mics, overlap)
• Speaker mismatch (e.g., accented speech)
• Style mismatch (e.g., planned vs. spontaneous, single vs. multiple speakers)

• Computational challenges
• Inference too expensive for mobile devices
• Static graph limits what can be expressed  Dynamic networks



The Future:
More Challenging Environments



• A Challenging Task
• Unsupervised Single-channel Overlapped Speech Recognition
• Permutation Invariant Training (baseline)

• Methods
• Modular Initialization
• Transfer Learning Based Joint Training
• Temporal Correlation Modeling
• Multi-output Sequence Discriminative Training

• Experiments



• Received speech is linear combination of multiple independent 
speech signals.

• Recognition task is to produce posterior over several label 
sequences.

Overlapped ASR



•Possible solutions:
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•Speech Separation followed by Speech-to-text
• Computational Auditory Scene Analysis (CASA)
• Deep Clustering (DPCL)
• Permutation Invariant Training for Speech Separation (PIT-SS or PIT-MSE)

• Joint Modeling
• Permutation Invariant Training for ASR (PIT-ASR)

Overlapped ASR



Permutation Invariant Training for ASR



•Disadvantages
• Model solves three hard problems in one step

• Separation, tracing, and recognition.
• Frame CE applied to solve sequential problem.
• Doesn’t incorporate linguistic information.

•Result
• WER more than 50%

Permutation Invariant Training for ASR



• Methods
• Modular Initialization 4-10%
• Transfer Learning Based Joint Training 20%
• Temporal Correlation Modeling 8%
• Multi-outputs Sequence Discriminative Training 8%



•Frame-wise interpreting (swapped segments)
• Local feature extraction  CNN

•Speaker Tracing (no swap)
• Temporal modeling  RNN

•Speech-to-text 

Modular Initialization



•Progressive joint training
• Curriculum learning theory
• The harder task, the larger NN (stacking) 

•Less Model Complexity
• Speed of convergence
• Better local minima

•Data Efficiency
•Combine with other tech.

• Sequence disc. training on speech-to-text
• Integrate LM

Modular Initialization



•Data
• Artificially overlapped Switchboard

• 300 hours source material creates 150 hours of overlapped speech
• The hub5e-swb test set maps from 1831 to 915 utterances

•Models
• All speech recognition models have 9000 dimensional senone posterior output
• Baseline 1: 10 layer, 768 cells BLSTM PIT-ASR model
• Baseline 2: 6 layer, 768 cells BLSTM PIT-SS model + 4 layer 768 cells BLSTM ASR model

Experiments



•Better model generalization
Experiments - Modularization



•Better model generalization
Experiments - Modularization

Better structure for ASR

Progressive joint training



• Methods
• Modular Initialization 4-10%
• Transfer Learning Based Joint Training 20%
• Temporal Correlation Modeling 8%
• Multi-outputs Sequence Discriminative Training 8%



Transfer Learning based Joint Training

Clean infer. PIT model infer.



Experiments – Transfer Learning
Learn from clean teacherLearn from clean teacher + modularizationLearn from clean teacher + modularization ASR From scratch v.s. 

Domain adaptation

learn from MMI teacherLearn from ensemble



• Methods
• Modular Initialization 4-10%
• Transfer Learning Based Joint Training 20%
• Temporal Correlation Modeling 8%
• Multi-outputs Sequence Discriminative Training 8%



• Methods
• Modular Initialization 4-10%
• Transfer Learning Based Joint Training 20%
• Temporal Correlation Modeling 8%
• Multi-output Sequence Discriminative Training 8%



Experiments – Seq. Disc. Training



Conclusion



Human Parity and Beyond

• Today’s systems can transcribe English conversational telephone 
speech at least as well as humans.

• There remain interesting areas where humans are still superior:
• Distant speech
• Overlapped speech
• Accented speech
• Multilingual speech
• Language expansion
• Speech understanding

• Solving these problems should keep the field busy for years to come.
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