Human Parity and Beyond

Jasha Droppo

July 18, 2018

Human Parity and Beyond

Introduction

- The history of Automatic Speech Recognition (ASR) is one of solving progressively harder tasks over time, meeting or exceeding human performance.
- Collectively, we have recently solved the task of transcribing American English conversational telephone speech (CTS).
- This talk covers
 - Human parity in American English CTS.
 - An analysis of human and machine errors on this task.
 - What lies beyond human parity?

Acknowledgments

- Xuedong Huang
- Fil Alleva
- Zhehuai Chen
- Frank Seide
- Mike Seltzer
- Andreas Stolcke
- Lingfeng Wu
- Wayne Xiong
- Dong Yu
- Geoff Zweig

Introduction: Task and History

The Human Parity Experiment

- Conversational telephone speech has been a benchmark in the research community for 20 years
 - Focus: strangers talking to each other via telephone, given a topic
 - Known as the "Switchboard" task in speech community
- Question: Can we achieve human-level performance?
- Top-level tasks:
 - Measure human performance
 - Build the best possible recognition system
 - Compare and analyze

30 Years of Speech Recognition Benchmarks

For many years, DARPA drove the field by defining public benchmark tasks

July 18, 2018

RM	ALC: NO	A State		
ATIS	And the			
WSJ	A State			
onversational 1	Telepho	one Spe	ech (CT	S):
tchboard (SWE	<mark>3)</mark>			
angers, on-top	ic)			

History of Human Error Estimates for SWB

- Lippman (1997): 4%
 - based on "personal communication" with NIST, no experimental data cited
- LDC LREC paper (2010): 4.1-4.5%
 - Measured on a different dataset (but similar to our NIST evaluation set, SWB portion)
- Microsoft (2016): 5.9%
 - Transcribers were blind to experiment
 - 2-pass transcription, isolated utterances (no "transcriber adaptation")
- IBM (2017): 5.1%
 - Using multiple independent transcriptions, picked best transcriber
 - Vendor was involved in experiment and aware of NIST transcription conventions

Note: Human error will vary depending on

- Level of effort (e.g., multiple transcribers)
- Amount of context supplied (listening to short snippets vs. entire conversation)

Recent ASR Results on Switchboard

Group	2000 SWB WER	Notes	Reference
Microsoft	16.1%	DNN applied to LVCSR for the first time	Seide et al, 2011
Microsoft	9.9%	LSTM applied for the first time	AR. Mohammed et al, IEEE ASRU 2015
IBM	6.6%	Neural Networks and System Combination	Saon et al., Interspeech 2016
Microsoft	5.8%	First claim of "human parity"	Xiong et al., arXiv 2016, IEEE Trans. SALP 2017
IBM	5.5%	Revised view of "human parity"	Saon et al., Interspeech 2017
Capio	5.3%		Han et al., Interspeech 2017
Microsoft	5.1%	Current Microsoft research system	Xiong et al., MSR-TR-2017-39, ICASSP 2018

Microsoft System Overview and Results

System Overview

- Hybrid HMM/deep neural net architecture
- Multiple acoustic model types
 - Diverse architectures (convolutional and recurrent)
 - VGG, LACE, CNN, BLSTM, Resnet
 - Diverse senone sets
 - Different set size, different base phones
- Multiple language models
 - All based on LSTM recurrent networks
 - Different input encodings
 - Forward and backward running
- Advanced system combination
 - Model combination at multiple levels
 - Search for complementary acoustic model
 - Confusion-network based, weighted combination

Data used

- Acoustic training: 2000 hours of conversational telephone data
- Language model training:
 - Conversational telephone transcripts
 - Web data collected to be conversational in style
 - Broadcast news transcripts
- Test on NIST 2000 SWB+CH evaluation set
- Note: data chosen to be compatible with past practice
 - NOT using proprietary sources

Language Modeling: Multiple LSTM variants

- Decoder uses a word 4-gram model
- N-best hypotheses are rescored with multiple LSTM recurrent network language models
- LSTMs differ by
 - Direction: forward/backward running
 - Encoding: word one-hot, word letter trigram, character one-hot
 - Scope: utterance-level / session-level

Session-level Language Modeling

• Predict next word from full conversation history, not just one utterance:

Spe Spe	eaker A eaker B	5	?
	LSTM language model	Perplexity	
	Utterance-level LSTM (standard)	44.6	
	+ session word history	37.0	
	+ speaker change history	35.5	
	+ speaker overlap history	35.0	

AM Framework: Hybrid HMM/DNN

	CallHome	Switchboard
DNN	21.9%	13.4%

1st pass decoding

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach still standard But DNN model now obsolete (!) Observation Poor spatial/temporal invariance

July 18, 2018

Human Parity and Beyond

Acoustic Modeling: ResNet

Add a non-linear offset to linear transformation of features Similar to fMPE in Povey et al., 2005 See also Ghahremani & Droppo, 2016

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%

1st pass decoding

[He et al., 2015]

Acoustic Modeling: LACE CNN

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%
LACE	16.9%	10.4%

1st pass decoding

CNNs with **batch normalization**, **Resnet jumps**, and **attention masks** [Yu et al., 2016]

Acoustic Modeling: Bidirectional LSTMs

	CallHome	Switchboard
DNN	21.9%	13.4%
ResNet	17.3%	11.1%
LACE	16.9%	10.4%
BLSTM	17.3%	10.3%

Stable form of recurrent neural net Robust to temporal shifts

[Hochreiter & Schmidhuber, 1997, Graves & Schmidhuber, 2005; Sak et al., 2014]

[Graves & Jaitly '14]

Acoustic Modeling: CNN-BLSTM

- Combination of convolutional and recurrent net model [Sainath et al., 2015]
- Three convolutional layers
- Six BLSTM recurrent layers

Acoustic model combination

Step 0: create 4 different versions of each acoustic model by clustering phonetic model units (senones) differently

Step 1: combine **different models** for **same senone** set at the **frame level** (posterior probability averaging)

Step 2: after LM rescoring, combine **different senone** systems at the **word level** (confusion network combination)

19

Results Word error rates (WER)

Senone set	Acoustic models	SWB WER	CH WER	
1	BLSTM	6.4	12.1	
2	BLSTM	6.3	12.1	Frame-level
3	BLSTM	6.3	12.0	combination
4	BLSTM	6.3	12.8	
1	BLSTM + Resnet + LACE + CNN-BLSTM	5.4	10.2	
2	BLSTM + Resnet + LACE + CNN-BLSTM	5.4	10.2	
3	BLSTM + Resnet + LACE + CNN-BLSTM	5.6	10.2	Word-level
4	BLSTM + Resnet + LACE + CNN-BLSTM	5.5	10.3	combination
1+2+3+4	BLSTM + Resnet + LACE + CNN-BLSTM	5.2	9.8	
	+ Confusion network rescoring	5.1	9.8	

Human vs. Machine

Human Performance on Switchboard

 The goal of reaching "human parity" in automatic CTS transcription raises the question of what should be considered human accuracy on this task.

Microsoft Human Error Estimate (2015)

- Skype Translator has a weekly transcription contract
 - For quality control, training, etc.
- Initial transcription followed by a second checking pass
 - Two transcribers on each speech excerpt
- One week, we added NIST 2000 CTS evaluation data to the pipeline
 - Speech was pre-segmented as in NIST evaluation

Human Error Estimate: Results

- Applied NIST scoring protocol (same as ASR)
- Switchboard: **5.9%** error rate
- CallHome: 11.3% error rate
- SWB in the 4.1% 9.6% range expected based on NIST study
- CH is difficult for both people and machines
 - Machine error about 2x higher
 - High ASR error not just because of mismatched conditions

New questions:

- Are human and machine errors correlated?
- Do they make the same type of errors?
- Can humans tell the difference?

Correlation between human and machine errors?

*Two CallHome conversations with multiple speakers per conversation side removed, see paper for full results

July 18, 2018

Human Parity and Beyond

25

Does the machine benefit from seeing test speakers in its training data?

- It has been suggested that the 2000 Switchboard test set is so "easy" because most of the speakers also occur in the training set (a corpora shortcoming)
 SWB Machine WER vs. Human WER (corr: 0.65157)
- The filled dots are the *unseen* speakers
- This doesn't seem to be the case:
 - Machine WER on unseen speakers is within the normal range
 - For the most part (3 of 4), machine WER predicts the human WER

Human Parity and Beyond

Humans and machines: different error types?

СН		SWB		
ASR Human		ASR	Human	
45: (%hesitation) / %bcack	12: a / the	29: (%hesitation) / %bcack	12: (%hesitation) / hmm	
12: was / is	10: (%hesitation) / a	9: (%hesitation) / oh	10: (%hesitation) / oh	
9: (%hesitation) / a	10: was / is	9: was / is	9: was / is	
8: (%hesitation) / oh	7: (%hesitation) / hmm	8: and / in	8: (%hesitation) / a	
8: a / the	7: bentsy / bensi	6: (%hesitation) / i	5: in / and	
7: and / in	7: is / was	6: in / and	4: (%hesitation) / %bcack	
7: it / that	6: could / can	5: (%hesitation) / a	4: and / in	
6: in / and	6: well / oh	5: (%hesitation) / yeah	4: is / was	

Overall similar patterns: short function words get confused (also: inserted/deleted) One outlier: machine falsely recognizes backchannel "uh-huh" for filled pause "uh"

- These words are acoustically confusable, have opposite pragmatic functions in conversation
- Humans can disambiguate by prosody and context

July 18, 2018

Top Insertion and Deletion Errors

Deletions

СН		SWB		
ASR Human		ASR	Human	
44: i	73: i	31: it	34: i	
33: it	59: and	26: i	30: and	
29: a	48: it	19: a	29: it	
29: and	47: is	17: that	22: a	
25: is	45: the	15: you	22: that	
19: he	41: %bcack	13: and	22: you	
18: are	37: a	12: have	17: the	
17: oh	33: you	12: oh	17: to	

Insertions

CH		SWB	
ASR Human		ASR	Human
15: a	10: i	19: i	12: i
15: is	9: and	9: and	11: and
11: i	8: a	7: of	9: you
11: the	8: that	6: do	8: is
11: you	8: the	6: is	6: they
9: it	7: have	5: but	5: do
7: oh	5: you	5: yeah	5: have
6: and	4: are	4: air	5: it

Both humans and machines insert "I" and "and" a lot. Short function words dominate the list for both.

Human Parity and Beyond

Can humans tell the difference?

- Attendees at a major speech conference played "Spot the Bot"
- Showed them human and machine output side-by-side in random order, along with reference transcript
- Turing-like experiment: tell which transcript is human/machine
- Result: it was hard to beat a random guess
 - 53% accuracy (188/353 correct)
 - Not statistically different from chance ($p \approx 0.12$, one-tailed)

Conclusions

- Human transcription performance is around 5-6%, but also varies greatly with the function of the amount of effort!
 - Multiple independent transcription passes with reconciliation would lower this further, as done by NIST for their reference transcriptions
- State-of-the-art ASR technology based on neural net acoustic and language models has reached human-level accuracy <u>on this task</u>
- Human and machine transcription performance is highly correlated
 - "Hard" versus "easy" speakers
 - Word types involved in most frequent errors
 - Humans are better at recognizing pragmatically relevant words ("uh" vs. "uh-huh")

Outlook

- Speech recognition is not solved!
- Need to work on
 - Robustness to acoustic environment (e.g., far-field mics, overlap)
 - Speaker mismatch (e.g., accented speech)
 - Style mismatch (e.g., planned vs. spontaneous, single vs. multiple speakers)
- Computational challenges
 - Inference too expensive for mobile devices
 - Static graph limits what can be expressed \rightarrow Dynamic networks

The Future: More Challenging Environments

• A Challenging Task

- Unsupervised Single-channel Overlapped Speech Recognition
- Permutation Invariant Training (baseline)

Methods

- Modular Initialization
- Transfer Learning Based Joint Training
- Temporal Correlation Modeling
- Multi-output Sequence Discriminative Training
- Experiments

Overlapped ASR

 Received speech is linear combination of multiple independent speech signals.

$$O_u^{(m)} = \sum_{n=1}^N O_{un}^{(r)}$$

 Recognition task is to produce posterior over several label sequences.

 $P(L_{u1}, \ldots, L_{uN})$

Overlapped ASR

• Possible solutions:

$$P(L_{u1}, \dots, L_{uN}) \approx \prod_{n=1}^{N} P(L_{un} | O_u^m) \approx \prod_n^{N} P(L_{un} | O_{un}^{\hat{r}})$$

- Speech Separation followed by Speech-to-text
 - Computational Auditory Scene Analysis (CASA)
 - Deep Clustering (DPCL)
 - Permutation Invariant Training for Speech Separation (PIT-SS or PIT-MSE)

Joint Modeling

• Permutation Invariant Training for ASR (PIT-ASR)

Permutation Invariant Training for ASR

Permutation Invariant Training for ASR $P(\mathbf{L}_{u1},...,\mathbf{L}_{uN}|\mathbf{O}_{u}^{(m)}) \approx \prod_{n=1}^{N} P(\mathbf{L}_{un}^{(r)}|\mathbf{O}_{u}^{(m)})$ (2) $\mathcal{J}_{\text{CE-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)})$

(4)

Disadvantages

- Model solves three hard problems in one step
 - Separation, tracing, and recognition.
- Frame CE applied to solve sequential problem.
- Doesn't incorporate linguistic information.
- Result
 - WER more than 50%

- Methods
 - Modular Initialization 4-10%
 - Transfer Learning Based Joint Training 20%
 - Temporal Correlation Modeling 8%
 - Multi-outputs Sequence Discriminative Training 8%

Modular Initialization

• Frame-wise interpreting (swapped segments)

- Local feature extraction \rightarrow CNN
- Speaker Tracing (no swap)
 - Temporal modeling \rightarrow RNN
- Speech-to-text

$$\mathcal{J}_{\text{F-PIT}} = \sum_{u} \sum_{t} \frac{1}{N} \min_{s' \in \mathbf{S}} \sum_{n \in [1,N]} MSE(o_{utn}^{(s')}, o_{utn}^{(r)}) \quad (5)$$

$$\mathcal{J}_{\text{U-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1,N]} MSE(o_{utn}^{(s')}, o_{utn}^{(r)})$$
(6)

Modular Initialization

Progressive joint training

- Curriculum learning theory
- The harder task, the larger NN (stacking)

Less Model Complexity

- Speed of convergence
- Better local minima
- Data Efficiency
- Combine with other tech.
 - Sequence disc. training on speech-to-text
 - Integrate LM

Experiments

• Data

- Artificially overlapped Switchboard
 - 300 hours source material creates 150 hours of overlapped speech
 - The hub5e-swb test set maps from 1831 to 915 utterances

Models

- All speech recognition models have 9000 dimensional senone posterior output
- Baseline 1: 10 layer, 768 cells BLSTM PIT-ASR model
- Baseline 2: 6 layer, 768 cells BLSTM PIT-SS model + 4 layer 768 cells BLSTM ASR model

Experiments - Modularization Better model generalization

Experiments - ModularizationBetter model generalization

Layers	Modular	Fine-tune ST	Fine-tune ASR	WER	Rel. (%)
10 · 0	×	Х	×	57.5	0
	Х	×	×	52.8	-8.2
6.4	$\overline{}$	×	×	93.4	+62.4
$0 \cdot 4$	\checkmark	\checkmark	X	51.3	-10.7
	\checkmark	\checkmark	V	50.2	-12.7
			Better structure for	ASR	
			Progressive joint t	raining	

Methods

- Modular Initialization 4-10%
- Transfer Learning Based Joint Training 20%
- Temporal Correlation Modeling 8%
- Multi-outputs Sequence Discriminative Training 8%

Transfer Learning based Joint Training

$$\mathcal{J}_{\text{CE-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1, N]} CE(l_{utn}^{(s')}, l_{utn}^{(r)}) \quad (4)$$

$$\mathcal{J}_{\text{KLD-PIT}} = \sum_{u} \min_{s' \in \mathbf{S}} \sum_{t} \frac{1}{N} \sum_{n \in [1, N]} \quad (8)$$

$$KLD P(l_{utn}^{(c)} | \mathbf{O}_{un}^{(r)}), P(l_{utn}^{(s')} | \mathbf{O}_{u}^{(m)}))$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

Experiments – Transfer Learning

L	Learn	from ensemble	e eacher • •	ASR Fro	om scratch v.s.
			Domain adaptation		
	ayers	Modular	teacher	WER	Rel. (%)
		Х	×	57.5	0
]	10.0	×	$9.1 \oplus 6.4 \oplus 3.7$	55.0	-4.4
		×	clean	52.5	-8.7
		×	×	52.8	-8.2
	6.4	×	clean	47.1	-18.0
			clean	38.9	-32.4
			MMI clean	35.8	-37.7

 \geq

Methods

- Modular Initialization 4-10%
- Transfer Learning Based Joint Training 20%
- Temporal Correlation Modeling 8%
- Multi-outputs Sequence Discriminative Training 8%

• Methods

- Modular Initialization 4-10%
- Transfer Learning Based Joint Training 20%
- Temporal Correlation Modeling 8%
- Multi-output Sequence Discriminative Training 8%

Experiments – Seq. Disc. Training

Performance Summary in SWBD 50 Hours Dataset

Neural network	Model	WER	Rel. (%)
10.0 BLSTM	PIT-CE	57.5	0
	progressive joint training	50.2	-13
6 1 DI STM	+ clean teacher	38.9	-32.4
0.4 DLS I WI	+ MMI clean teacher	35.8	-37.7
	+ LF-DC-bMMI	35.2	-38.8
	progressive joint training	47.4	-17.5
$1 I ACE \pm 5.4 BISTM$	+ clean teacher	36.0	-37.4
1 LACE + J.4 DLSTW	+ MMI clean teacher	34.6	-39.8
	+ LF-DC-bMMI	34.0	-40.9

Conclusion

Human Parity and Beyond

- Today's systems can transcribe English conversational telephone speech at least as well as humans.
- There remain interesting areas where humans are still superior:
 - Distant speech
 - Overlapped speech
 - Accented speech
 - Multilingual speech
 - Language expansion
 - Speech understanding
- Solving these problems should keep the field busy for years to come.

