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ASR – the Modern Approach

„42“



LISTEN Workshop, July 17, 2018 NN supported Signal Enhancement for ASR 3

The Old-Fashioned Approach
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Integrated (no explicit enhancement stage):

+ Common objective function (discrim. training)

+ Avoids premature decisions

± Robust?
 Irrelevant variations left in signal

+ Acoustic model is exposed to large variability in training

 Large network, requires lots of training data, 
large computational and memory demands

 Cannot easily exploit phase (spatial) information
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Integrated vs Modular (1/2)
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Modular (explicit enhancement stage):

+ Statistically optimum solutions known (for some tasks)

+ Can efficiently treat phase (spatial) information

+ Parsimonious w.r.t. parameters, computing power

- Separately optimized, and hence suboptimal
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Integrated vs Modular (2/2)
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Our Conclusion

For some tasks
(beamforming, dereverberation, source separation)

an explicit enhancement stage is (still?) advantageous
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Model-based:

How to Do Signal Enhancement? (1/2)

+ Can incorporate prior knowledge
(physical constraints, findings from psychoacoustics, …)

+ Easier to adapt in dynamic acoustic scenarios

± Unsupvervised learning, if any

 But the model is only as good as the model is – and its
parameters
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Neural Networks:

How to Do Signal Enhancement? (2/2)

+ Can model arbitrary mapping

+ Not limited by (often simplifying) model assumptions

+ Have shown to be superior on several tasks

± Supervised learning

 Difficult to incorporate prior knowledge, constraints



LISTEN Workshop, July 17, 2018 NN supported Signal Enhancement for ASR 9

A clever combination of neural networks with model-based
approaches can combine the advantages of both worlds:

Neural network Supported Signal Enhancement

Our Conclusion
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• Neural network for „desired signal presence“ probability
estimation,
to support
 Acoustic beamforming

 Dereverberating beamforming

 (Noise tracking)

 Blind source separation

• Integration with backend ASR

Table of Contents
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Desired signal presence
probability (DSPP) estimation

(= mask estimation)

 Speech presence prob. 

 Noise presence prob.

 Dominant speaker index
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Structure

Desired Signal Presence
Prob. Estimation

2nd-Order Statistics
Estimation

Enhancement
Algorithm

 Power spectral density

 Spatial covariance matrix

 Beamforming

 Dereverberation

 Noise reduction

 Source extraction
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Speech Presence Probability (SPP) Estimation
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• Decide for each tf-bin if it contains speech or noise only,
using
 spectral information

 or spatial information

 or both

Given: Wanted:
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• Spectro-temporal smoothing

• Formulated as unsupervised problem

• Formulated as supervised learning problem

Options for SPP Estimation
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SPP via Spectro-Temporal Smoothing
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• Discussion
 Mostly single-channel

 Suitable for online processing

from
[Gerkmann & Martin, 2008]

[Raj 2002, Gerkmann&Martin 2008, Momeni&Habets 2014, …]
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• Generative model:

• EM Algorithm:
 E-Step

• Estimate SPP:

 M-Step

• Estimate source/signal parameters

SPP as Unsupervised Learning Problem: EM

[Souden 2010, Tran & Haeb-Umbach 2010/2012, Ito 2014, …]

• Discussion
 Mostly multi-channel, exploiting spatial information

 i.i.d.

 Frequencies treated independently

 Offline block processing
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• NN as classifier

SPP as Supervised Learning Problem: NN

[Wang 2013, Heymann 2015 & 2016, …]

• Discussion:
 Single channel or cross-

channel features

 Can capture temporal and
spectral correlations

 Offline / block online / online
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• Neural network for „desired signal presence“ probability
estimation,
to support
 Acoustic beamforming

 Dereverberating beamforming

 (Noise tracking)

 Blind source separation

• Integration with backend ASR

Table of Contents
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Acoustic Beamforming

Desired Signal Presence
Prob. Estimation

2nd-order Statistics
Estimation

Enhancement
Algorithm

Speech & Noise presence prob. estimation

Spatial covariance matrices of speech, noise

Beamforming
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Statistically Optimum Beamforming

• 2nd-order statistics: 

• Beamforming:

e.g. MVDR: where

Beamformer
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NN Supported Beamformer
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Example Masks (CHiME-3) 

22

Utterance ID: f04_051c0112_str

Speech mask Noise mask
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CHiME-3: 
 WSJ utterances

 „Fixed“ speaker positions

 Low reverberation

 Noisy environment: bus, café, street, pedestrian

 Trng set size: 18 hrs

 Offline processing

WER Results (1/2)
[Heymann et al.  2015]

WER [%] Eval Simu Eval Real

Baseline 12.7 40.2

BeamformIt 23.5 22.6

Spatial mixture model
[Tran & Haeb-Umbach, 2010]

20.6 22.1

NN supported Beamformer 9.7 15.4



LISTEN Workshop, July 17, 2018 NN supported Signal Enhancement for ASR 24

Google Voice Search data: 
 Short utterances

 No prior on speaker position

 Reverberation: T60 = 400 … 900 ms (600 ms avg)

 Cross Talk (CT): SNR = 0 … 20 dB (12 dB avg)

 Trng set size: 150 hrs

 Online processing

WER Results (2/2)

# channels
1               2               4             8

Baseline 30.6

NN Beamformer 28.4 27.3 27.4

Baseline CT 34.8

NN Beamformer CT 29.6 29.1 28.6

[Heymann et al.  2018]
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• Neural Network supported beamforming is powerful: 
 On CHiME-4 challenge all leading groups used NN-supported

beamforming

• NN independent of array configuration

• Some performance loss from offline to online (ca. 10%)

• Requires parallel (stereo) data

Discussion
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• Neural network for „desired signal presence“ probability
estimation,
to support
 Acoustic beamforming

 Dereverberating beamforming

 (Noise tracking)

 Blind source separation

• Integration with backend ASR

Table of Contents
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Room Impulse Response

• Room impulse response

 Desired signal: Direct signal + early reflections (50ms)

 Distortion: late reverberation (> 50ms)

Direct Signal

Early Reflections

Late Reverberation
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• Change NN training target:

 : Mask to predict which tf-bin is dominated by

 : Mask to predict which tf-bin is dominated by

Change Training Targets

• Everything else remains unchanged
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Example Spectrogram

Observed: Enhanced:
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• Comparison with Weighted Prediction Error (WPE) 
dereverberation [Nakatani 2008]

• On REVERB:
 Reverberant WSJ, T60 = 300 – 700 ms, SNR = 20 dB,  real

 On par with WPE

• On (WSJ + VoiceHome RIRs + VoiceHome noises)
 Noisy reverberant WSJ, T60 = 400 – 600 ms, SNR = 0 - 10 dB,  simu

WER Results

WSJ + VoiceHome # channels

1 2 4 8

Unprocessed 39.9

WPE 37.0 37.1 35.6 34.6

Beamformer 40.0 30.2 19.9 15.3

[Drude et al.  2018]
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• Neural network for „desired signal presence“ probability
estimation,
to support
 Acoustic beamforming

 Dereverberating beamforming

 (Noise tracking)

 Blind source separation

• Integration with backend ASR

Table of Contents
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• Desired Signal Presence Probability (DSPP)

• Sparsity and W-disjoint orthogonality
 Speech occupies only few tf-bins

 Those are quite different from speaker to speaker

From SPP to DSPP

• Generative model:

• Hidden variable        (source activity indicator) indicates
dominant source
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Blind Source Separation

Desired Signal Presence
Prob. Estimation

2nd-Order Statistics
Estimation

Source              
Extraction

Source activity indicator estimation

Spatial mixture model

Beamforming (multiple beams), 
Masking
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• Formulated as unsupervised learning approach

• Formulated as supervised learning problem

DSPP Estimation
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Unsupervised Learning Approach: EM

• EM Algorithm
 E-Step

• Estimate source activity indicator:

 M-Step

• Estimate params of spatial mixture model

• Example spatial mixture model
 Time-variant complex Gaussian mixture model

[Ito, 2014]
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• Source activity indicator estimation
 Deep clustering [Hershey, 2016]

 Deep attractor networks [Zhou, 2017]

• Estimate embedding space where speakers form clusters

• Cluster using k-means or learn spectral mixture model on 

Supervised Learning Approach: NN

Clustering,
Mixture Model

DC:
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• Mixture of von Mises-Fisher Distributions:

Mixture Model for Embeddings
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Integrated Model

Spectral mixture model Spatial mixture model

Integrated mixture model

• Coupling via latent class affiliation variable

• Better parameter estimation, when estimated jointly

[Drude & Haeb-Umbach,  2017]
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• Source extraction via beamforming or by masking

Overall BSS Model

Deep Clustering

Beamforming ASR

Beamforming ASR
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• Train DC on single channel WSJ utterances [Isik, 2016]
 Randomly mixed, 2- and 3-speaker mixtures

• Simulate multi-channel signals (6 channels)
 Image method to generate RIRs

 Random source and array positions

Evaluation
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Signal-to-Distortion Ratio (SDR) Gain
Low reverb (T60 = 50 … 100 ms)

SD
R

 g
ai

n
/ 

d
B

D
C

 +
 M

as
ki

n
g

D
C

 +
 B

F

In
te

gr
at

ed

Sp
at

ia
lo

n
ly

Medium reverb (T60 = 200 … 300 ms)

D
C

 +
 M

as
ki

n
g

D
C

 +
 B

F

In
te

gr
at

ed

Sp
at

ia
lo

n
ly



LISTEN Workshop, July 17, 2018 NN supported Signal Enhancement for ASR 43

Integration with ASR
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System Setup
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• We now have (at least) two neural networks
 NN in enhancement stage

 NN as acoustic model of ASR

• With different objective functions

• Advantages of joint training
 Common objective function

 No need for parallel data

• Note: Networks are not connected head-to-tail
 Intermediate processing

Integration with ASR
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• Gradient through signal processing tasks
 Feature extraction

 Beamforming

• Complex-valued gradients

Example: NN Supported Beamforming

[Heymann et al.  2017, Boeddeker et al, 2017]
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WER Results (1/2)

CHiME-4: 

Beamformer – AM trng Eval Simu Eval Real

BeamformIt – separat 10.2 9.4

separat        – separat 4.6 5.8

Joint:
scratch – scratch

5.6 8.8

Joint:
scratch – finetune

4.1 5.8

Joint:
finetune – finetune

3.9 5.4

Parallel data no longer required!
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• Joint training worse than baseline
 Overfitting to the specific characteristics of the beamformer?

 Too much variability removed?

WER Results (2/2)

# channels
1                2                 4                   8

Baseline 30.6

Beamformer 28.4 27.3 27.4

Joint (scratch – scratch) 42.1 38.6 37.8

Joint + mask1 37.3 31.8 30.4

Google Voice Search: 

[Heymann et al.  2018]

1: Joint + mask: Beamformer training with IBM mask as additional trng target
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• NN supported signal enhancement for multi-channel input is
advantageous
 Model serves as regularizer

• Unsupervised vs supervised approaches
 Supervised approaches tend to be more powerful, but require parallel 

data

 Unsupervised approaches are more versatile, however limited in 
performance

• Joint training has to be taken with care

Conclusions
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