

Nachrichtentechnik

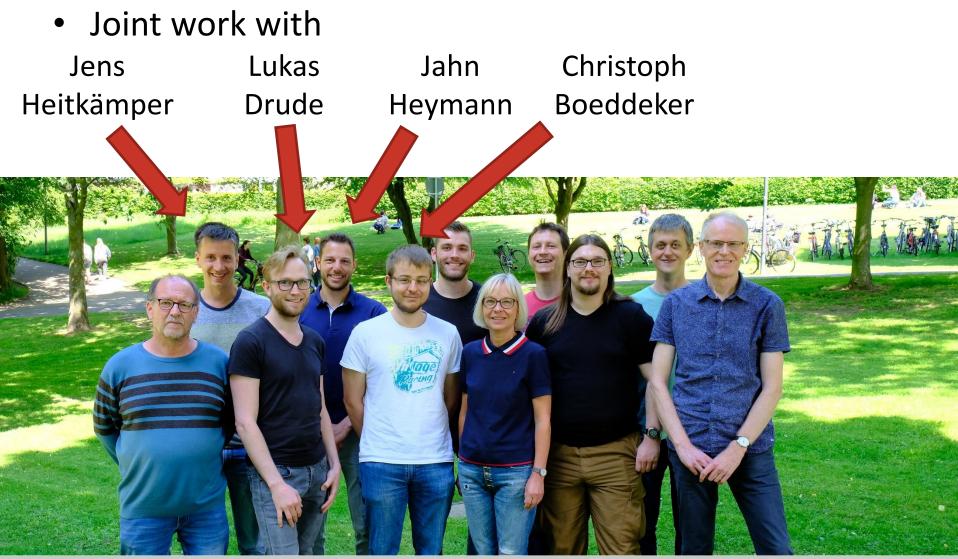
Neural Network Supported Acoustic Beamforming and Source Separation for ASR

Reinhold Häb-Umbach

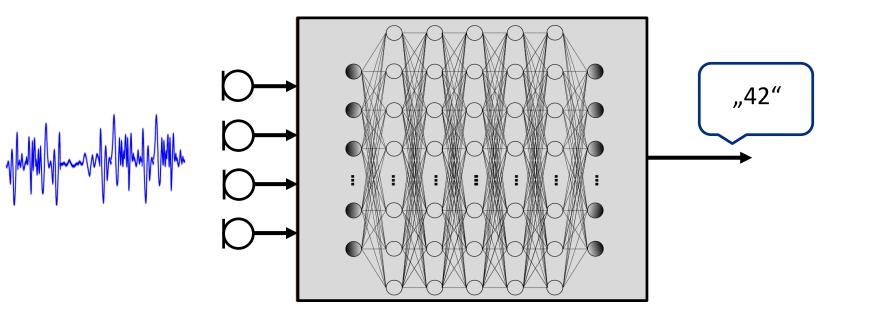
Paderborn University

 Fachgebiet Nachrichtentechnik – Universität Paderborn

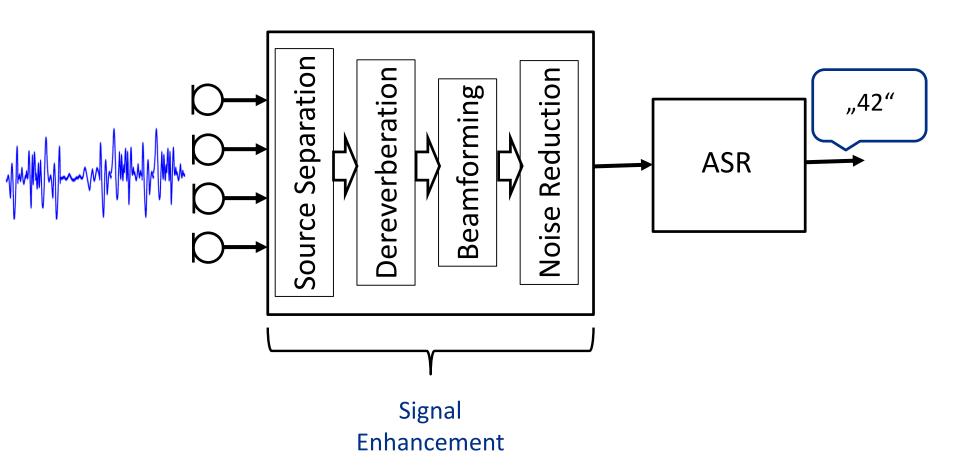
Contributors



ASR – the Modern Approach



The Old-Fashioned Approach



Integrated vs Modular (1/2)

Integrated (no explicit enhancement stage):

- + Common objective function (discrim. training)
- + Avoids premature decisions
- ± Robust?
 - Irrelevant variations left in signal
 - + Acoustic model is exposed to large variability in training
- Large network, requires lots of training data, large computational and memory demands
- Cannot easily exploit phase (spatial) information

Integrated vs Modular (2/2)

Modular (explicit enhancement stage):

- + Statistically optimum solutions known (for some tasks)
- + Can efficiently treat phase (spatial) information
- + Parsimonious w.r.t. parameters, computing power
- Separately optimized, and hence suboptimal

Our Conclusion

For some tasks (beamforming, dereverberation, source separation) an explicit enhancement stage is (still?) advantageous

How to Do Signal Enhancement? (1/2)

Model-based:

- + Can incorporate prior knowledge
 (physical constraints, findings from psychoacoustics, ...)
- + Easier to adapt in dynamic acoustic scenarios
- **±** Unsupvervised learning, if any
- But the model is only as good as the model is and its parameters

How to Do Signal Enhancement? (2/2)

Neural Networks:

- + Can model arbitrary mapping
- + Not limited by (often simplifying) model assumptions
- + Have shown to be superior on several tasks
- ± Supervised learning
- Difficult to incorporate prior knowledge, constraints

Our Conclusion

A clever combination of neural networks with model-based approaches can combine the advantages of both worlds:

Neural network Supported Signal Enhancement

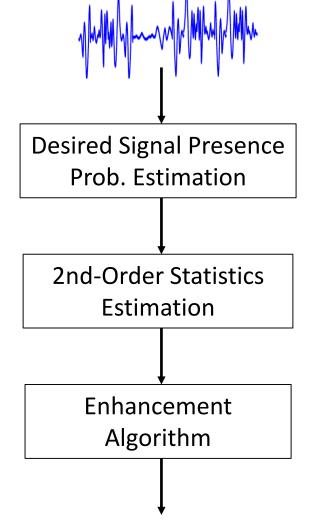
Table of Contents

• Neural network for "desired signal presence" probability estimation,

to support

- Acoustic beamforming
- Dereverberating beamforming
- (Noise tracking)
- Blind source separation
- Integration with backend ASR

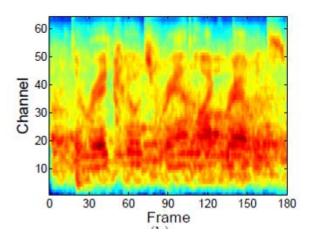
Structure

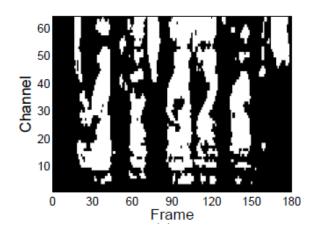


Desired signal presence probability (DSPP) estimation

- (= mask estimation)
 - Power spectral density
 - Spatia hopkasiance produrix
 - > Noise presence prob.
 - Dominant speaker index Beamforming
 - Dereverberation
 - Noise reduction
 - Source extraction

Speech Presence Probability (SPP) Estimation Given: Wanted:





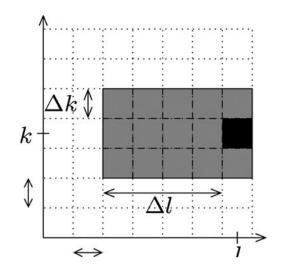
- Decide for each tf-bin if it contains speech or noise only, using
 - spectral information
 - or spatial information
 - or both

Options for SPP Estimation

- Spectro-temporal smoothing
- Formulated as unsupervised problem
- Formulated as supervised learning problem

SPP via Spectro-Temporal Smoothing

[Raj 2002, Gerkmann&Martin 2008, Momeni&Habets 2014, ...]



from [Gerkmann & Martin, 2008]

- Discussion
 - Mostly single-channel
 - Suitable for online processing

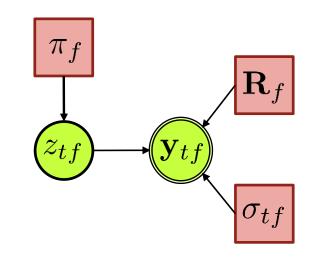
SPP as Unsupervised Learning Problem: EM

[Souden 2010, Tran & Haeb-Umbach 2010/2012, Ito 2014, ...]

• Generative model:

$$\mathbf{y}_{tf} = \begin{cases} \mathbf{n}_{tf} & z_{tf} = 0\\ \mathbf{a}_{tf} s_{tf} + \mathbf{n}_{tf} & z_{tf} = 1 \end{cases}$$

- EM Algorithm:
 - ≻ E-Step
 - Estimate SPP: $\gamma_{tf} = \Pr(z_{tf} = 1 | \mathbf{y}_{tf})$
 - M-Step
 - Estimate source/signal parameters
- Discussion
 - Mostly multi-channel, exploiting spatial information
 - ≻ i.i.d.
 - Frequencies treated independently
 - Offline block processing



SPP as Supervised Learning Problem: NN

[Wang 2013, Heymann 2015 & 2016, ...]

• NN as classifier

- Discussion:
 - Single channel or crosschannel features
 - Can capture temporal and spectral correlations
 - Offline / block online / online

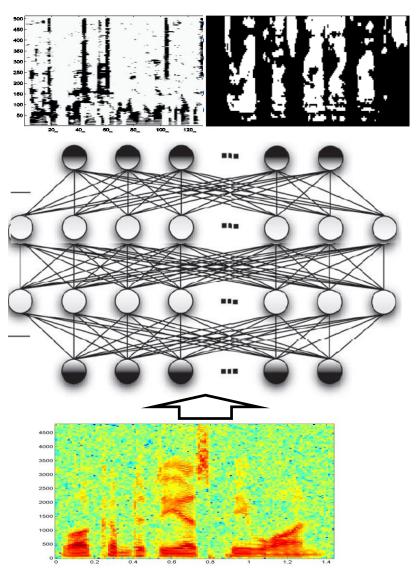


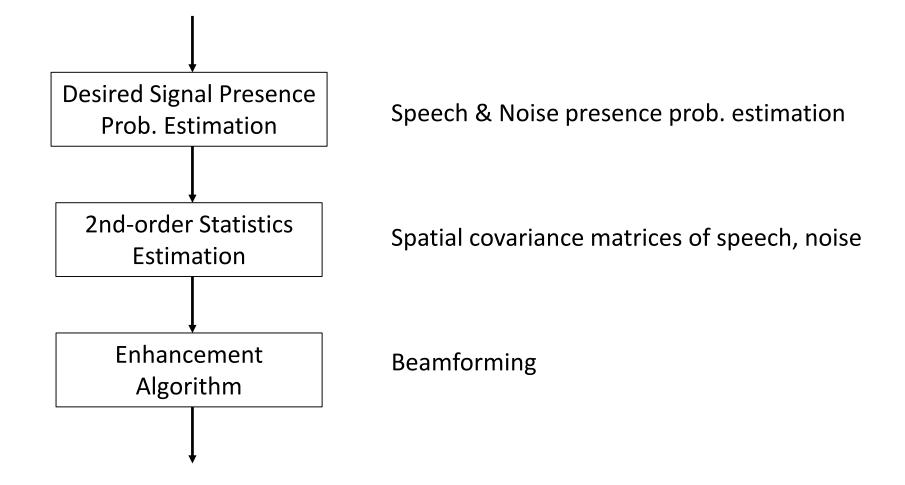
Table of Contents

Neural network for "desired signal presence" probability estimation,

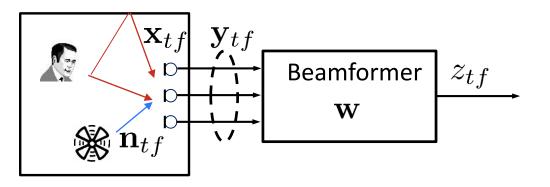
to support

- Acoustic beamforming
- Dereverberating beamforming
- ➢ (Noise tracking)
- Blind source separation
- Integration with backend ASR

Acoustic Beamforming



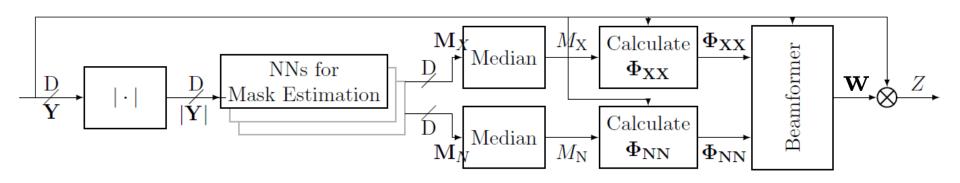
Statistically Optimum Beamforming



- 2nd-order statistics: $\Phi_{\mathbf{xx},f}, \ \Phi_{\mathbf{nn},f}$
- Beamforming: $z_{tf} = \mathbf{w}_f^H \mathbf{y}_{tf}$

e.g. MVDR:
$$\mathbf{w}_{f}^{\text{MVDR}} = rac{\mathbf{\Phi}_{\mathbf{nn},f}^{-1}\mathbf{a}_{f}}{\mathbf{a}_{f}^{H}\mathbf{\Phi}_{\mathbf{nn},f}^{-1}\mathbf{a}_{f}}$$
 where $\mathbf{a}_{f} \propto \mathcal{P}(\mathbf{\Phi}_{\mathbf{xx},f})$

NN Supported Beamformer



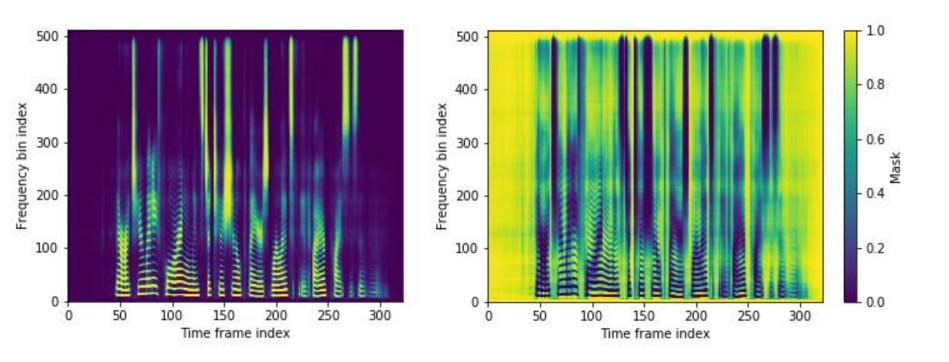
$$\Phi_{\mathbf{xx},f} = \sum_{t=1}^{T} M_{\mathbf{x},tf} \mathbf{y}_{tf} \mathbf{y}_{tf}^{H} / \sum_{t=1}^{T} M_{\mathbf{x},tf}$$
$$\Phi_{\mathbf{nn},f} = \sum_{t=1}^{T} M_{\mathbf{n},tf} \mathbf{y}_{tf} \mathbf{y}_{tf}^{H} / \sum_{t=1}^{T} M_{\mathbf{n},tf}$$

Example Masks (CHiME-3)

Utterance ID: f04_051c0112_str

Speech mask

Noise mask



WER Results (1/2)

[Heymann et al. 2015]

CHiME-3:

- WSJ utterances
- "Fixed" speaker positions
- Low reverberation
- Noisy environment: bus, café, street, pedestrian
- Trng set size: 18 hrs
- Offline processing

WER [%]	Eval Simu	Eval Real
Baseline	12.7	40.2
BeamformIt	23.5	22.6
Spatial mixture model [Tran & Haeb-Umbach, 2010]	20.6	22.1
NN supported Beamformer	9.7	15.4

WER Results (2/2)

[Heymann et al. 2018]

Google Voice Search data:

- Short utterances
- No prior on speaker position
- Reverberation: T₆₀ = 400 ... 900 ms (600 ms avg)
- Cross Talk (CT): SNR = 0 ... 20 dB (12 dB avg)
- Trng set size: 150 hrs
- Online processing

	# channels			
	1	2	4	8
Baseline	30.6			
NN Beamformer		28.4	27.3	27.4
Baseline CT	34.8			
NN Beamformer CT		29.6	29.1	28.6

Discussion

- Neural Network supported beamforming is powerful:
 - On CHiME-4 challenge all leading groups used NN-supported beamforming
- NN independent of array configuration
- Some performance loss from offline to online (ca. 10%)
- Requires parallel (stereo) data

Table of Contents

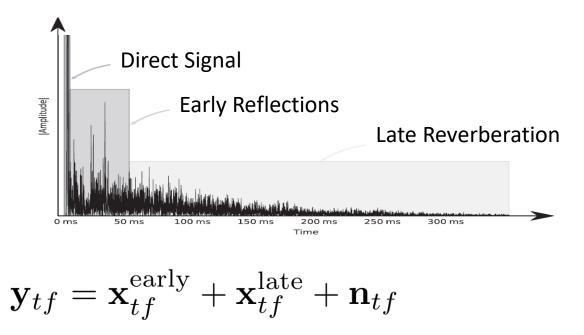
• Neural network for "desired signal presence" probability estimation,

to support

- Acoustic beamforming
- Dereverberating beamforming
- (Noise tracking)
- Blind source separation
- Integration with backend ASR

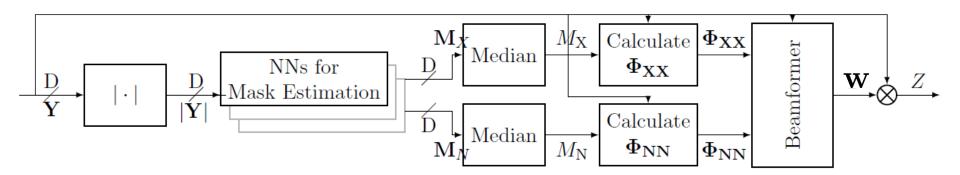
Room Impulse Response

- Room impulse response
 - Desired signal: Direct signal + early reflections (50ms)
 - Distortion: late reverberation (> 50ms)



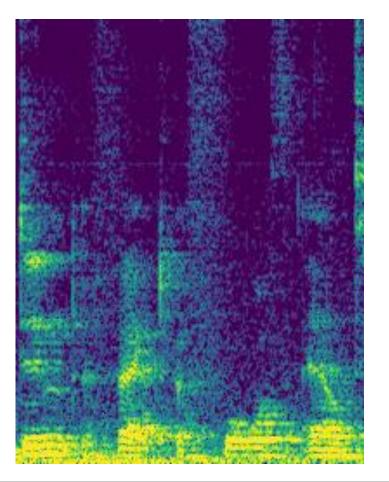
Change Training Targets

- Change NN training target:
 - $\succ M_{\mathbf{x},tf}$: Mask to predict which tf-bin is dominated by $\mathbf{x}_{tf}^{\mathrm{early}}$
 - $\succ M_{{f n},tf}$: Mask to predict which tf-bin is dominated by $\, {f x}_{tf}^{
 m late} + {f n}_{tf}$
- Everything else remains unchanged

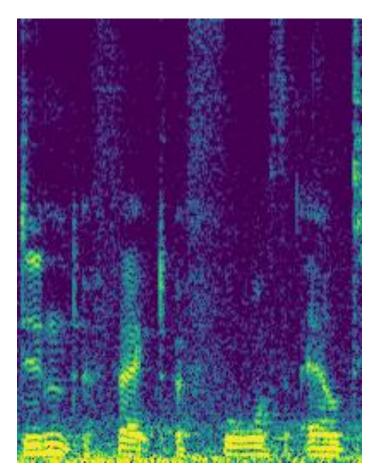


Example Spectrogram

Observed:



Enhanced:



WER Results

[Drude et al. 2018]

- Comparison with Weighted Prediction Error (WPE) dereverberation [Nakatani 2008]
- On REVERB:

Reverberant WSJ, $T_{60} = 300 - 700$ ms, SNR = 20 dB, real

- > On par with WPE
- On (WSJ + VoiceHome RIRs + VoiceHome noises)
 - Noisy reverberant WSJ, $T_{60} = 400 600$ ms, SNR = 2 0 dB, simu

WSJ + VoiceHome	#c'hursday			
	1	onTh	4	8
Unprocessed	atjon	0.		
WPE	<u>, , , 0</u>	37.1	35.6	34.6
Unprocessed WPE See Present	40.0	30.2	19.9	15.3

LISTEN Workshop, July 17, 2018

Table of Contents

- Neural network for "desired signal presence" probability estimation,
 - to support
 - Acoustic beamforming
 - Dereverberating beamforming
 - (Noise tracking)
 - Blind source separation
- Integration with backend ASR

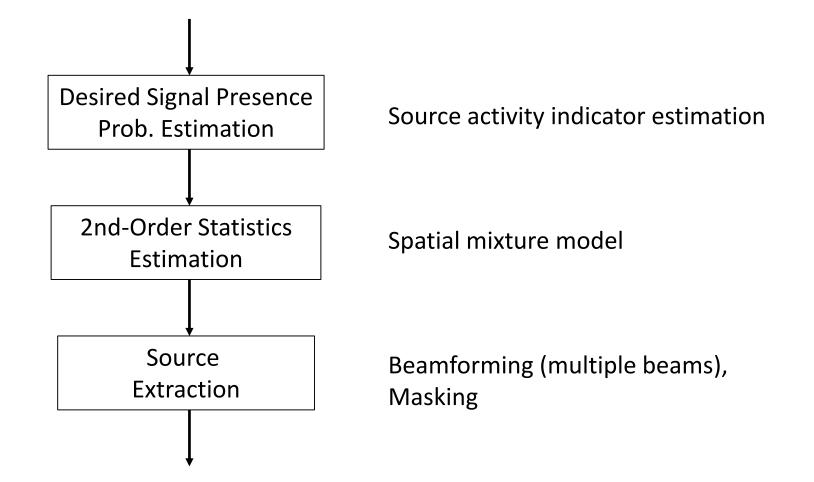
From SPP to DSPP

- Desired Signal Presence Probability (DSPP)
- Sparsity and W-disjoint orthogonality
 - Speech occupies only few tf-bins
 - Those are quite different from speaker to speaker
- Generative model:

$$\mathbf{y}_{tf} = \begin{cases} \mathbf{n}_{tf} & z_{tf} = 0\\ \mathbf{a}_{tfk} s_{tfk} + \mathbf{n}_{tf} & z_{tf} = k; \ 1 \le k \le K \end{cases}$$

• Hidden variable \mathbf{z}_{tf} (source activity indicator) indicates dominant source

Blind Source Separation



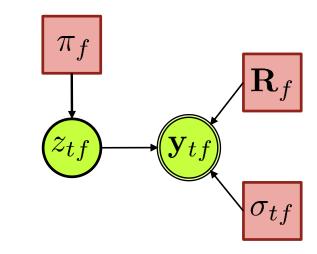
DSPP Estimation

- Formulated as unsupervised learning approach
- Formulated as supervised learning problem

Unsupervised Learning Approach: EM

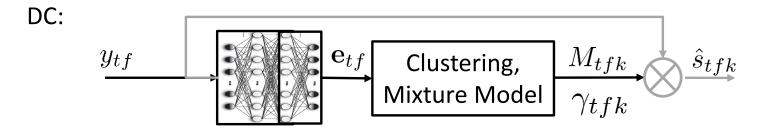
- EM Algorithm
 - ≻ E-Step
 - Estimate source activity indicator: $\gamma_{tfk} = \Pr(z_{tf} = k | \mathbf{y}_{tf})$
 - > M-Step
 - Estimate params of spatial mixture model
- Example spatial mixture model
 - Time-variant complex Gaussian mixture model [Ito, 2014]

$$p(\mathbf{y}_{tf}) = \sum_{k} \Pr(z_{tf} = k) p(\mathbf{y}_{tf} | z_{tf} = 1)$$
$$= \sum_{k} \pi_{fk} \mathcal{N}_{\mathcal{C}}(\mathbf{y}_{tf}; \mathbf{0}, \sigma_{tfk} \cdot \mathbf{R}_{fk})$$



Supervised Learning Approach: NN

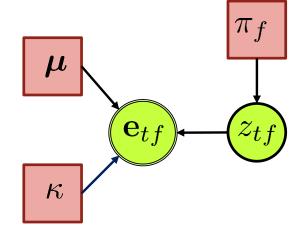
- Source activity indicator estimation
 - Deep clustering [Hershey, 2016]
 - Deep attractor networks [Zhou, 2017]
- Estimate embedding space where speakers form clusters
- Cluster using k-means or learn spectral mixture model on e_{tf}



Mixture Model for Embeddings

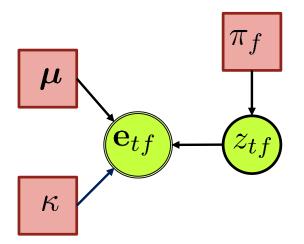
• Mixture of von Mises-Fisher Distributions:

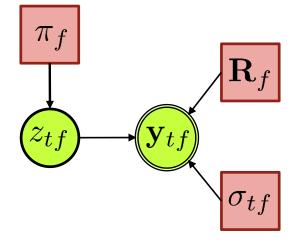
$$p(\mathbf{y}_{tf}) = \sum_{k} \Pr(z_{tfk} = 1) p(\mathbf{e}_{tf} | z_{tfk})$$
$$= \sum_{k} \pi_{fk} \cdot \operatorname{vMF}(\mathbf{e}_{tfk}; \boldsymbol{\mu}_k, \kappa_k)$$



Integrated Model

[Drude & Haeb-Umbach, 2017]





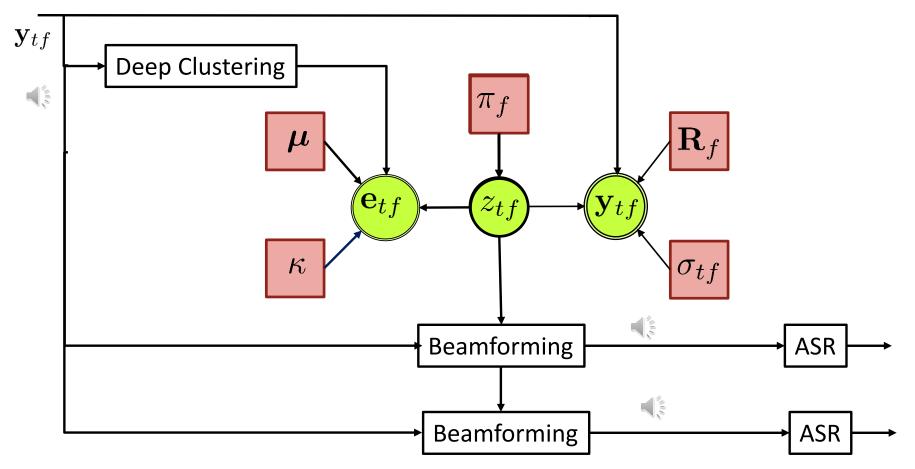
Spectral mixture model

Spatial mixture model

Integrated mixture model

- Coupling via latent class affiliation variable
- Better parameter estimation, when estimated jointly

Overall BSS Model

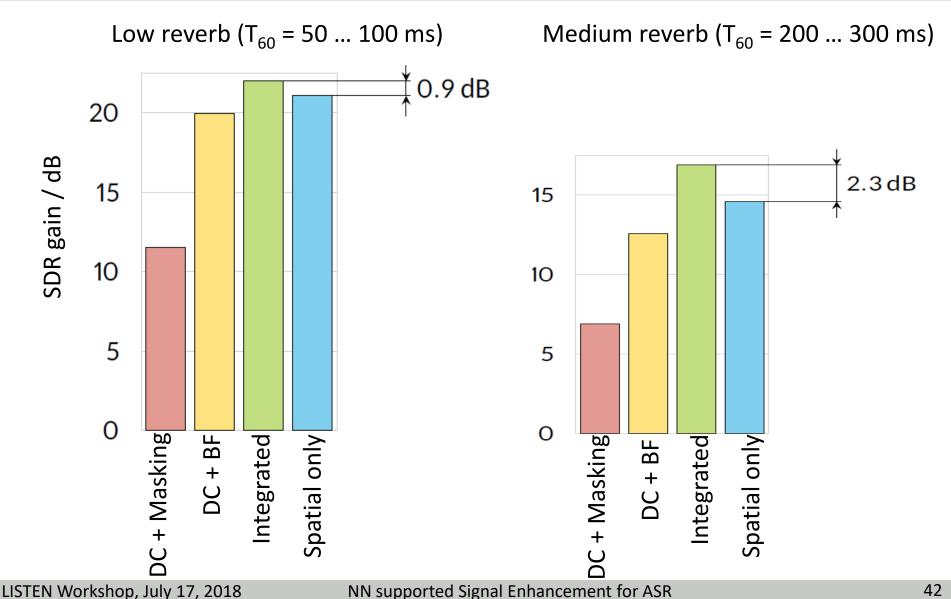


• Source extraction via beamforming or by masking

Evaluation

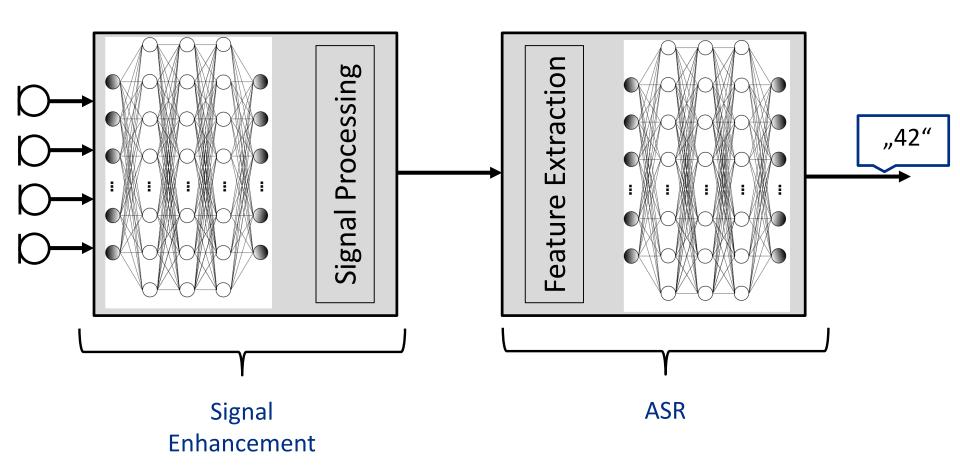
- Train DC on single channel WSJ utterances [Isik, 2016]
 - Randomly mixed, 2- and 3-speaker mixtures
- Simulate multi-channel signals (6 channels)
 - Image method to generate RIRs
 - Random source and array positions

Signal-to-Distortion Ratio (SDR) Gain



Integration with ASR

System Setup

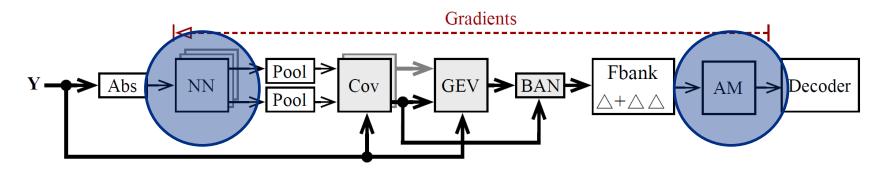


Integration with ASR

- We now have (at least) two neural networks
 - > NN in enhancement stage
 - NN as acoustic model of ASR
- With different objective functions
- Advantages of joint training
 - Common objective function
 - > No need for parallel data
- Note: Networks are not connected head-to-tail
 - Intermediate processing

Example: NN Supported Beamforming

[Heymann et al. 2017, Boeddeker et al, 2017]



- Gradient through signal processing tasks
 - Feature extraction
 - Beamforming
- Complex-valued gradients

WER Results (1/2)

CHiME-4:

	Beamformer – AM trng	Eval Simu	Eval Real
	BeamformIt – separat	10.2	9.4
	separat – separat	4.6	5.8
	Joint:	5.6	8.8
	scratch – scratch		
	Joint:	4.1	5.8
	scratch – finetune		
	Joint:	3.9	5.4
	finetune – finetune		

Parallel data no longer required!

LISTEN Workshop, July 17, 2018

WER Results (2/2)

[Heymann et al. 2018]

Google Voice Search:

	# channels				
	1	2	4	8	
Baseline	30.6				
Beamformer		28.4	27.3	27.4	
Joint (scratch – scratch)		42.1	38.6	37.8	
Joint + mask ¹		37.3	31.8	30.4	

¹: Joint + mask: Beamformer training with IBM mask as additional trng target

- Joint training worse than baseline
 - Overfitting to the specific characteristics of the beamformer?
 - Too much variability removed?

Conclusions

- NN *supported* signal enhancement for multi-channel input is advantageous
 - Model serves as regularizer
- Unsupervised vs supervised approaches
 - Supervised approaches tend to be more powerful, but require parallel data
 - Unsupervised approaches are more versatile, however limited in performance
- Joint training has to be taken with care

References

- [Heymann et al., 2018]: J. Heymann, M. Bacchiani, T. Sainath: Performance of mask-based statistical beamforming in a smart home scenario, in Proc. ICASSP 2018
- [Boeddeker et al., 2017]: C. Boeddeker, P. Hanebrink, L. Drude, J. Heymann, R. Haeb-Umbach: Optimizing neural-network supported acoustic beamforming by algorithmic differentiation, in Proc. ICASSP 2017
- [Heymann et al., 2017]: J. Heymann, L. Drude, C. Boeddeker, P. Hanebrink: Beamnet: end-toend training of a beamformer-supported multi-channel ASR system, in Proc. ICASSP 2017
- [Drude & Haeb-Umbach, 2017]: L. Drude, R. Haeb-Umbach: Tight integration of spatial and spectral features for BSS with deep clustering embeddings, in Proc. Interspeech 2017
- [Chinaev et al., 2016]: A. Chinaev, J. Heymann, L. Drude, R. Haeb-Umbach: Noise-presenceprobability-based noise PSSD estimation by using DNNs, in Proc. ITG Conference on Speech Communication, 2016
- [Heymann et al, 2016]: J. Heymann, L. Drude, R. Haeb-Umbach: Neural network based spectral mask estimation for acoustic beamforming, in Proc. ICASSP 2016
- [Heymann et al., 2015]: J. Heymann, L. Drude, A. Chinaev, R. Haeb-Umbach: BLSTM supported GEV beamformer front-end for the 3rd CHiME challenge, in Proc. ASRU 2015
- [Tran & Haeb-Umbach, 2010]: D.H. Tran Vu, R. Haeb-Umbach: An EM approach to multichannel speech separation and noise suppression, in Proc. IWAENC, 2010
- [Tran & Haeb-Umbach, 2012]: D.H. Tran Vu, R. Haeb-Umbach: Exploiting temporal correlations in joint multichannel speech separation and noise suppression using hidden Markov Models, in Proc. IWAENC, 2012