
Exploiting Structures of Temporal Causality
for Robust Speaker Localization in
Reverberant Environments
LISTEN Workshop / Summer School

Christopher Schymura, Peng Guo, Yanir Maymon, Boaz Rafaely, Dorothea Kolossa

July 19th, 2018



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Outline

1 Introduction

2 Time-series modeling

3 Building a causal model

4 Evaluation

5 Outlook



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Outline

1 Introduction

2 Time-series modeling

3 Building a causal model

4 Evaluation

5 Outlook



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Introduction

Application domain

■ Speaker localization in reverberant rooms.

■ Applications: Speech enhancement,
teleconferencing, smart home, virtual
reality, robot audition, ...

■ Active field of research.1 2 3

1N. Ma, G. J. Brown, T. May (2015): “Exploiting deep neural networks and head movements
for binaural localisation of multiple speakers in reverberant conditions”

2X. Li, L. Girin, F. Badeig, R. Horaud (2016): “Reverberant sound localization with a robot
head based on direct-path relative transfer function”

3C. Evers, Y. Dorfan, S. Gannot, P. A. Naylor (2017): “Source tracking using moving
microphone arrays for robot audition”
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Introduction

Localization framework

■ Direct-path dominance (DPD) test-based
direction-of-arrival (DoA) estimation.4

■ Clustering of estimated DoAs using a
Gaussian mixture model (GMM).5

■ Speaker DoA determined by selecting the
dominant Gaussian component of the GMM.

4O. Nadiri, B. Rafaely (2014): “Localization of Multiple Speakers under High Reverberation
using a Spherical Microphone Array and the Direct-Path Dominance Test”

5B. Rafaely, D. Kolossa (2017): “Speaker localization in reverberant rooms based on direct
path dominance test statistics”
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GMM-based DoA clustering

Reverberation time: T60 = 0.5s
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GMM-based DoA clustering

Reverberation time: T60 = 1.0s
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GMM-based DoA clustering

Reverberation time: T60 = 2.0s
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Temporal structure of RIRs
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Temporal structure of RIRs

Direct sound
Early reflections
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Toy example for time-series modeling
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DoA-dependent time-series
Fr
eq

ue
nc

y
Azimuth

0
2
4
6

Time

Fr
eq

ue
nc

y

Elevation

0
1
2
3

y
(1)
τ,ν

y
(2)
τ,ν

τ

y
(3)
τ,ν

1. Generate DoA time-series for
each frequency bin:

Θν=
n�
ϕτ,ν ψτ,ν

�T︸ ︷︷ ︸
θ T
τ,ν

oT
τ=1

2. Evaluate component-wise
Gaussian posteriors:

y
(i )
τ,ν = p (θ τ,ν |µi ,Σi )

3. Generate time-series from
posteriors:

y ν= {y (i )
τ,ν }Tτ=1

Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 7 / 14



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

DoA-dependent time-series
Fr
eq

ue
nc

y
Azimuth

0
2
4
6

Time

Fr
eq

ue
nc

y

Elevation

0
1
2
3

y
(1)
τ,ν

y
(2)
τ,ν

τ

y
(3)
τ,ν

1. Generate DoA time-series for
each frequency bin:

Θν=
n�
ϕτ,ν ψτ,ν

�T︸ ︷︷ ︸
θ T
τ,ν

oT
τ=1

2. Evaluate component-wise
Gaussian posteriors:

y
(i )
τ,ν = p (θ τ,ν |µi ,Σi )

3. Generate time-series from
posteriors:

y ν= {y (i )
τ,ν }Tτ=1

Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 7 / 14



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

DoA-dependent time-series
Fr
eq

ue
nc

y
Azimuth

0
2
4
6

Time

Fr
eq

ue
nc

y

Elevation

0
1
2
3

y
(1)
τ,ν

y
(2)
τ,ν

τ

y
(3)
τ,ν

1. Generate DoA time-series for
each frequency bin:

Θν=
n�
ϕτ,ν ψτ,ν

�T︸ ︷︷ ︸
θ T
τ,ν

oT
τ=1

2. Evaluate component-wise
Gaussian posteriors:

y
(i )
τ,ν = p (θ τ,ν |µi ,Σi )

3. Generate time-series from
posteriors:

y ν= {y (i )
τ,ν }Tτ=1

Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 7 / 14



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

DoA-dependent time-series
Fr
eq

ue
nc

y
Azimuth

0
2
4
6

Time

Fr
eq

ue
nc

y

Elevation

0
1
2
3

y
(1)
τ,ν

y
(2)
τ,ν

τ

y
(3)
τ,ν

1. Generate DoA time-series for
each frequency bin:

Θν=
n�
ϕτ,ν ψτ,ν

�T︸ ︷︷ ︸
θ T
τ,ν

oT
τ=1

2. Evaluate component-wise
Gaussian posteriors:

y
(i )
τ,ν = p (θ τ,ν |µi ,Σi )

3. Generate time-series from
posteriors:

y ν= {y (i )
τ,ν }Tτ=1

Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 7 / 14



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Outline

1 Introduction

2 Time-series modeling

3 Building a causal model

4 Evaluation

5 Outlook



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Granger causality test

■ Statistical hypothesis test to determine whether a time-series is useful
to forecast another.

■ Initially proposed and widely used in the context of economics6.

■ Lightweight and computationally efficient framework.

■ Important: Granger causality does not necessarily imply true causality!

6C. W. J. Granger (1969): “Investigating Causal Relations by Econometric Models and
Cross-spectral Methods”
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Granger causality test: algorithm

1. Given two time-series signals x τ and y τ, fit two vector autoregressive
(VAR) models

x τ=
m∑
µ=1

Ax x ,µx τ−µ+
m∑
µ=1

Ax y ,µy τ−µ+εx ,τ, εx ,τ ∼N (0,Σx )

x τ=
m∑
µ=1

A′x x ,µx τ−µ+ε′x ,τ, ε′x ,τ ∼N (0,Σ′x )

2. Construct F -test statistic using the log-likelihood ratio of the residuals

FY→X ≡ log
n |Σ′x |
|Σx |
o

3. Perform test to evaluate the null hypothesis H0 : Ax y ,µ= 0 ∀µ.
Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 9 / 14
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Pairwise GCT on toy example data

Constructing the Granger matrix and causal graph:
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7R. Tarjan (1971): “Depth-first search and linear graph algorithms”
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Experimental setup

■ Simulation study using a single speech source in a reverberant room of
size 8 m×5 m×3 m with varying T60 ∈ {0.5s, . . . , 2.5 s}.

■ RIRs for a spherical microphone array with 32 microphones were
generated using the image source method.8

■ Hyperparameter tuning on a dedicated validation set with different
speakers, source/array positions and fixed T60.

■ Monte Carlo simulations were conducted with 100 runs for each
experimental configuration.

■ Localization root mean square error (RMSE) was used as evaluation
metric.

8J. B. Allen, D. A. Berkley (1979): “Image method for efficiently simulating small-room
acoustics”
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Results
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Coincidence rate 0.97 0.93 0.91 0.81 0.79 0.79 0.72 0.65 0.65

Coincidence rate represents the degree to which the same DoA components of the
GMM were selected by the proposed method and the baseline.

Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 12 / 14



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Results

0.5 1 1.5 2 2.5
0
2
4
6
8

T60 in s

e ϕ
in

d
eg

Dom. GMM comp. GCT

0.5 1 1.5 2 2.5
0
5

10
15
20

T60 in s

e θ
in

d
eg

Dom. GMM comp. GCT

T60 in s 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Coincidence rate 0.97 0.93 0.91 0.81 0.79 0.79 0.72 0.65 0.65

Coincidence rate represents the degree to which the same DoA components of the
GMM were selected by the proposed method and the baseline.

Introduction Time-series modeling Building a causal model Evaluation Outlook Dorothea Kolossa 12 / 14



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Outline

1 Introduction

2 Time-series modeling

3 Building a causal model

4 Evaluation

5 Outlook



COGNITIVE SIGNAL PROCESSING GROUP RUHR-UNIVERSITÄT BOCHUM

Outlook

Incorporating temporal context yields significant performance
improvements. Still, the current study is a proof-of-concept and many
important challenges remain to be solved:

■ Extensive hyperparameter tuning is required.
⇒ Apply machine learning methods to predict hyperparameters?

■ Method is restricted to static acoustic scenarios. Moving arrays and/or
sources can not be handled with the current framework.
⇒ Extend model to a dynamical system representation?

■ Gaussian assumption of GCT is violated by DoA time-series signals used
in this study.
⇒ Adapt GCT to non-Gaussian cases? 9

9S. Kim, D. Putrino, S. Ghosh, E. N. Brown (2011): “A Granger Causality Measure for Point
Process Models of Ensemble Neural Spiking Activity”
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Incorporating temporal context yields significant performance
improvements. Still, the current study is a proof-of-concept and many
important challenges remain to be solved:

■ Extensive hyperparameter tuning is required.
⇒ Apply machine learning methods to predict hyperparameters?

■ Method is restricted to static acoustic scenarios. Moving arrays and/or
sources can not be handled with the current framework.
⇒ Extend model to a dynamical system representation?
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Thank you!
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