

Exploiting Structures of Temporal Causality for Robust Speaker Localization in Reverberant Environments LISTEN Workshop / Summer School

Christopher Schymura, Peng Guo, Yanir Maymon, Boaz Rafaely, Dorothea Kolossa

July 19th, 2018

RUHR UNIVERSITÄT BOCHUM

Outline

1 Introduction

- 2 Time-series modeling
- 3 Building a causal model

4 Evaluation

5 Outlook

Outline

1 Introduction

- 2 Time-series modeling
- 3 Building a causal model

4 Evaluation

5 Outlook

Introduction

Application domain

- Speaker localization in reverberant rooms.
- Applications: Speech enhancement, teleconferencing, smart home, virtual reality, robot audition, ...
- Active field of research.^{1 2 3}

³C. Evers, Y. Dorfan, S. Gannot, P. A. Naylor (2017): "Source tracking using moving microphone arrays for robot audition"

¹N. Ma, G. J. Brown, T. May (2015): "Exploiting deep neural networks and head movements for binaural localisation of multiple speakers in reverberant conditions"

²X. Li, L. Girin, F. Badeig, R. Horaud (2016): "Reverberant sound localization with a robot head based on direct-path relative transfer function"

Introduction

Application domain

- Speaker localization in reverberant rooms.
- Applications: Speech enhancement, teleconferencing, smart home, virtual reality, robot audition, ...
- Active field of research.^{1 2 3}

³C. Evers, Y. Dorfan, S. Gannot, P. A. Naylor (2017): "Source tracking using moving microphone arrays for robot audition"

¹N. Ma, G. J. Brown, T. May (2015): "Exploiting deep neural networks and head movements for binaural localisation of multiple speakers in reverberant conditions"

²X. Li, L. Girin, F. Badeig, R. Horaud (2016): "Reverberant sound localization with a robot head based on direct-path relative transfer function"

Introduction

Application domain

- Speaker localization in reverberant rooms.
- Applications: Speech enhancement, teleconferencing, smart home, virtual reality, robot audition, ...
- Active field of research.^{1 2 3}

³C. Evers, Y. Dorfan, S. Gannot, P. A. Naylor (2017): "Source tracking using moving microphone arrays for robot audition"

2/14

¹N. Ma, G. J. Brown, T. May (2015): "Exploiting deep neural networks and head movements for binaural localisation of multiple speakers in reverberant conditions"

²X. Li, L. Girin, F. Badeig, R. Horaud (2016): "Reverberant sound localization with a robot head based on direct-path relative transfer function"

Introduction

Application domain

- Speaker localization in reverberant rooms.
- Applications: Speech enhancement, teleconferencing, smart home, virtual reality, robot audition, ...
- Active field of research.^{1 2 3}

¹N. Ma, G. J. Brown, T. May (2015): "Exploiting deep neural networks and head movements for binaural localisation of multiple speakers in reverberant conditions"

²X. Li, L. Girin, F. Badeig, R. Horaud (2016): "Reverberant sound localization with a robot head based on direct-path relative transfer function"

³C. Evers, Y. Dorfan, S. Gannot, P. A. Naylor (2017): *"Source tracking using moving microphone arrays for robot audition"*

Introduction

Localization framework

- Direct-path dominance (DPD) test-based direction-of-arrival (DoA) estimation.⁴
- Clustering of estimated DoAs using a Gaussian mixture model (GMM).⁵
- Speaker DoA determined by selecting the dominant Gaussian component of the GMM.

⁴O. Nadiri, B. Rafaely (2014): "Localization of Multiple Speakers under High Reverberation using a Spherical Microphone Array and the Direct-Path Dominance Test" ⁵B. Rafaely, D. Kolossa (2017): "Speaker localization in reverberant rooms based on direct path dominance test statistics"

Introduction

Localization framework

- Direct-path dominance (DPD) test-based direction-of-arrival (DoA) estimation.⁴
- Clustering of estimated DoAs using a Gaussian mixture model (GMM).⁵
- Speaker DoA determined by selecting the dominant Gaussian component of the GMM.

⁴O. Nadiri, B. Rafaely (2014): "Localization of Multiple Speakers under High Reverberation using a Spherical Microphone Array and the Direct-Path Dominance Test"

⁵B. Rafaely, D. Kolossa (2017): "Speaker localization in reverberant rooms based on direct path dominance test statistics"

Introduction Time-series modeling Building a causal model Evaluation Outlook

3/14

Introduction

Localization framework

- Direct-path dominance (DPD) test-based direction-of-arrival (DoA) estimation.⁴
- Clustering of estimated DoAs using a Gaussian mixture model (GMM).⁵
- Speaker DoA determined by selecting the dominant Gaussian component of the GMM.

⁴O. Nadiri, B. Rafaely (2014): "Localization of Multiple Speakers under High Reverberation using a Spherical Microphone Array and the Direct-Path Dominance Test" ⁵B. Rafaely, D. Kolossa (2017): "Speaker localization in reverberant rooms based on direct path dominance test statistics"

Introduction

Localization framework

- Direct-path dominance (DPD) test-based direction-of-arrival (DoA) estimation.⁴
- Clustering of estimated DoAs using a Gaussian mixture model (GMM).⁵
- Speaker DoA determined by selecting the dominant Gaussian component of the GMM.

⁴O. Nadiri, B. Rafaely (2014): "Localization of Multiple Speakers under High Reverberation using a Spherical Microphone Array and the Direct-Path Dominance Test" ⁵B. Rafaely, D. Kolossa (2017): "Speaker localization in reverberant rooms based on direct path dominance test statistics"

GMM-based DoA clustering

Reverberation time: $T_{60} = 0.5 \, s$

150 Elevation in degrees $\pi_i/\mathrm{Tr}(\Sigma_i)$ 100 + 4 50 0 100 200 300 0 Azimuth in degrees

GMM-based DoA clustering

Reverberation time: $T_{60} = 0.5 \,\mathrm{s}$

150 Elevation in degrees $\pi_i/\mathrm{Tr}(\Sigma_i)$ 6 4 100 2 + 4 0 1 50 0 0 100 200 300 Azimuth in degrees

GMM-based DoA clustering

Reverberation time: $T_{60} = 1.0 \, s$

GMM-based DoA clustering

Reverberation time: $T_{60} = 2.0 \, \text{s}$

150 Elevation in degrees 3 $\pi_i/\mathrm{Tr}(\Sigma_i)$ 2 100 0 4 5 1 2 3 50 Comp. index i 0 0 100 200 300 Azimuth in degrees

Outline

1 Introduction

2 Time-series modeling

3 Building a causal model

4 Evaluation

5 Outlook

Temporal structure of RIRs

Temporal structure of RIRs

Temporal structure of RIRs

Temporal structure of RIRs

Toy example for time-series modeling

1. Generate DoA time-series for each frequency bin:

$$\boldsymbol{\Theta}_{\nu} = \left\{ \underbrace{\left[\boldsymbol{\phi}_{\tau,\nu} \quad \boldsymbol{\psi}_{\tau,\nu} \right]^{\mathrm{T}}}_{\boldsymbol{\theta}_{\tau,\nu}^{\mathrm{T}}} \right\}_{\tau=1}^{T}$$

2. Evaluate component-wise Gaussian posteriors:

$$y_{\tau,\nu}^{(i)} = p(\boldsymbol{\theta}_{\tau,\nu} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

3. Generate time-series from posteriors:

$$\boldsymbol{y}_{\nu} = \{y_{\tau,\nu}^{(i)}\}_{\tau=1}^{T}$$

RUB

Dorothea Kolossa

1. Generate DoA time-series for each frequency bin:

$$\boldsymbol{\theta}_{\nu} = \left\{ \underbrace{\left[\boldsymbol{\phi}_{\tau,\nu} \quad \boldsymbol{\psi}_{\tau,\nu} \right]^{\mathrm{T}}}_{\boldsymbol{\theta}_{\tau,\nu}^{\mathrm{T}}} \right\}_{\tau=1}^{\mathrm{T}}$$

2. Evaluate component-wise Gaussian posteriors:

$$y_{\tau,\nu}^{(i)} = p(\boldsymbol{\theta}_{\tau,\nu} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

3. Generate time-series from posteriors:

$$\boldsymbol{y}_{\nu} = \{y_{\tau,\nu}^{(i)}\}_{\tau=1}^{T}$$

Dorothea Kolossa

1. Generate DoA time-series for each frequency bin:

$$\boldsymbol{\Theta}_{\nu} = \left\{ \underbrace{\left[\boldsymbol{\phi}_{\tau,\nu} \quad \boldsymbol{\psi}_{\tau,\nu} \right]^{\mathrm{T}}}_{\boldsymbol{\theta}_{\tau,\nu}^{\mathrm{T}}} \right\}_{\tau=1}^{\mathrm{T}}$$

2. Evaluate component-wise Gaussian posteriors:

$$y_{\tau,\nu}^{(i)} = p(\boldsymbol{\theta}_{\tau,\nu} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

3. Generate time-series from posteriors:

$$\boldsymbol{y}_{\nu} = \{y_{\tau,\nu}^{(i)}\}_{\tau=1}^{T}$$

Dorothea Kolossa

1. Generate DoA time-series for each frequency bin:

$$\boldsymbol{\Theta}_{\nu} = \left\{ \underbrace{\left[\boldsymbol{\phi}_{\tau,\nu} \quad \boldsymbol{\psi}_{\tau,\nu} \right]^{\mathrm{T}}}_{\boldsymbol{\theta}_{\tau,\nu}^{\mathrm{T}}} \right\}_{\tau=1}^{\mathrm{T}}$$

2. Evaluate component-wise Gaussian posteriors:

$$y_{\tau,\nu}^{(i)} = p(\boldsymbol{\theta}_{\tau,\nu} | \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

3. Generate time-series from posteriors:

$$\boldsymbol{y}_{\nu} = \{y_{\tau,\nu}^{(i)}\}_{\tau=1}^{T}$$

Outline

1 Introduction

- 2 Time-series modeling
- 3 Building a causal model

4 Evaluation

5 Outlook

Granger causality test

- Statistical hypothesis test to determine whether a time-series is useful to forecast another.
- Initially proposed and widely used in the context of economics⁶.
- Lightweight and computationally efficient framework.
- Important: Granger causality does not necessarily imply true causality!

Introduction Time-series modeling Building a causal model Evaluation Outlook

⁶C. W. J. Granger (1969): "Investigating Causal Relations by Econometric Models and Cross-spectral Methods"

Granger causality test

- Statistical hypothesis test to determine whether a time-series is useful to forecast another.
- Initially proposed and widely used in the context of economics⁶.
- Lightweight and computationally efficient framework.
- Important: Granger causality does not necessarily imply true causality!

⁶C. W. J. Granger (1969): "Investigating Causal Relations by Econometric Models and Cross-spectral Methods"

Granger causality test

- Statistical hypothesis test to determine whether a time-series is useful to forecast another.
- Initially proposed and widely used in the context of economics⁶.
- Lightweight and computationally efficient framework.
- Important: Granger causality does not necessarily imply true causality!

⁶C. W. J. Granger (1969): "Investigating Causal Relations by Econometric Models and Cross-spectral Methods"

Granger causality test

- Statistical hypothesis test to determine whether a time-series is useful to forecast another.
- Initially proposed and widely used in the context of economics⁶.
- Lightweight and computationally efficient framework.
- Important: Granger causality does not necessarily imply true causality!

⁶C. W. J. Granger (1969): "Investigating Causal Relations by Econometric Models and Cross-spectral Methods"

Granger causality test: algorithm

1. Given two time-series signals \pmb{x}_{τ} and \pmb{y}_{τ} , fit two vector autoregressive (VAR) models

$$\begin{aligned} \mathbf{x}_{\tau} &= \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{x},\mu} \mathbf{x}_{\tau-\mu} + \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{y},\mu} \mathbf{y}_{\tau-\mu} + \boldsymbol{\epsilon}_{\mathbf{x},\tau}, \quad \boldsymbol{\epsilon}_{\mathbf{x},\tau} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{x}}) \\ \mathbf{x}_{\tau} &= \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{x},\mu}' \mathbf{x}_{\tau-\mu} + \boldsymbol{\epsilon}_{\mathbf{x},\tau}', \quad \boldsymbol{\epsilon}_{\mathbf{x},\tau}' \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{x}}') \end{aligned}$$

2. Construct F-test statistic using the log-likelihood ratio of the residuals

$$\mathscr{F}_{Y \to X} \equiv \log \left\{ \frac{|\varSigma'_x|}{|\varSigma_x|} \right\}$$

3. Perform test to evaluate the null hypothesis H_0 : $A_{xy,\mu} = 0 \forall \mu$.

Introduction Time-series modeling Building a causal model Evaluation Outlook

Granger causality test: algorithm

1. Given two time-series signals \pmb{x}_{τ} and \pmb{y}_{τ} , fit two vector autoregressive (VAR) models

$$\begin{aligned} \mathbf{x}_{\tau} &= \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{x},\mu} \mathbf{x}_{\tau-\mu} + \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{y},\mu} \mathbf{y}_{\tau-\mu} + \boldsymbol{\epsilon}_{\mathbf{x},\tau}, \quad \boldsymbol{\epsilon}_{\mathbf{x},\tau} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{x}}) \\ \mathbf{x}_{\tau} &= \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{x},\mu}' \mathbf{x}_{\tau-\mu} + \boldsymbol{\epsilon}_{\mathbf{x},\tau}', \quad \boldsymbol{\epsilon}_{\mathbf{x},\tau}' \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{x}}') \end{aligned}$$

2. Construct F-test statistic using the log-likelihood ratio of the residuals

$$\mathscr{F}_{Y \to X} \equiv \log \left\{ \frac{|\Sigma'_x|}{|\Sigma_x|} \right\}$$

3. Perform test to evaluate the null hypothesis $H_0: A_{xy,\mu} = \mathbf{0} \forall \mu$.

Granger causality test: algorithm

1. Given two time-series signals \pmb{x}_{τ} and \pmb{y}_{τ} , fit two vector autoregressive (VAR) models

$$\begin{aligned} \mathbf{x}_{\tau} &= \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{x},\mu} \mathbf{x}_{\tau-\mu} + \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{y},\mu} \mathbf{y}_{\tau-\mu} + \boldsymbol{\epsilon}_{\mathbf{x},\tau}, \quad \boldsymbol{\epsilon}_{\mathbf{x},\tau} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{x}}) \\ \mathbf{x}_{\tau} &= \sum_{\mu=1}^{m} \mathbf{A}_{\mathbf{x}\mathbf{x},\mu}' \mathbf{x}_{\tau-\mu} + \boldsymbol{\epsilon}_{\mathbf{x},\tau}', \quad \boldsymbol{\epsilon}_{\mathbf{x},\tau}' \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{x}}') \end{aligned}$$

2. Construct F-test statistic using the log-likelihood ratio of the residuals

$$\mathscr{F}_{Y \to X} \equiv \log \left\{ \frac{|\Sigma'_x|}{|\Sigma_x|} \right\}$$

3. Perform test to evaluate the null hypothesis $H_0: A_{xy,\mu} = \mathbf{0} \ \forall \mu$.

Pairwise GCT on toy example data

Constructing the Granger matrix and causal graph:

Root node selection using Tarjan's algorithm.⁷

⁷R. Tarjan (1971): "Depth-first search and linear graph algorithms"

Introduction Time-series modeling Building a causal model Evaluation Outlook

Outline

1 Introduction

- 2 Time-series modeling
- **3** Building a causal model

4 Evaluation

5 Outlook

Experimental setup

- Simulation study using a single speech source in a reverberant room of size 8 m × 5 m × 3 m with varying T₆₀ ∈ {0.5 s, ..., 2.5 s}.
- RIRs for a spherical microphone array with 32 microphones were generated using the image source method.⁸
- Hyperparameter tuning on a dedicated validation set with different speakers, source/array positions and fixed T₆₀.
- Monte Carlo simulations were conducted with 100 runs for each experimental configuration.
- Localization root mean square error (RMSE) was used as evaluation metric.

⁸J. B. Allen, D. A. Berkley (1979): "Image method for efficiently simulating small-room acoustics"

Experimental setup

- Simulation study using a single speech source in a reverberant room of size 8 m × 5 m × 3 m with varying T₆₀ ∈ {0.5 s, ..., 2.5 s}.
- RIRs for a spherical microphone array with 32 microphones were generated using the image source method.⁸
- Hyperparameter tuning on a dedicated validation set with different speakers, source/array positions and fixed T₆₀.
- Monte Carlo simulations were conducted with 100 runs for each experimental configuration.
- Localization root mean square error (RMSE) was used as evaluation metric.

⁸J. B. Allen, D. A. Berkley (1979): "Image method for efficiently simulating small-room acoustics"

Experimental setup

- Simulation study using a single speech source in a reverberant room of size 8 m × 5 m × 3 m with varying T₆₀ ∈ {0.5 s, ..., 2.5 s}.
- RIRs for a spherical microphone array with 32 microphones were generated using the image source method.⁸
- Hyperparameter tuning on a dedicated validation set with different speakers, source/array positions and fixed T₆₀.
- Monte Carlo simulations were conducted with 100 runs for each experimental configuration.
- Localization root mean square error (RMSE) was used as evaluation metric.

⁸J. B. Allen, D. A. Berkley (1979): "Image method for efficiently simulating small-room acoustics"

Experimental setup

- Simulation study using a single speech source in a reverberant room of size 8 m × 5 m × 3 m with varying T₆₀ ∈ {0.5 s, ..., 2.5 s}.
- RIRs for a spherical microphone array with 32 microphones were generated using the image source method.⁸
- Hyperparameter tuning on a dedicated validation set with different speakers, source/array positions and fixed T₆₀.
- Monte Carlo simulations were conducted with 100 runs for each experimental configuration.
- Localization root mean square error (RMSE) was used as evaluation metric.

⁸J. B. Allen, D. A. Berkley (1979): "Image method for efficiently simulating small-room acoustics"

Experimental setup

- Simulation study using a single speech source in a reverberant room of size 8 m × 5 m × 3 m with varying T₆₀ ∈ {0.5 s, ..., 2.5 s}.
- RIRs for a spherical microphone array with 32 microphones were generated using the image source method.⁸
- Hyperparameter tuning on a dedicated validation set with different speakers, source/array positions and fixed T₆₀.
- Monte Carlo simulations were conducted with 100 runs for each experimental configuration.
- Localization root mean square error (RMSE) was used as evaluation metric.

⁸J. B. Allen, D. A. Berkley (1979): "Image method for efficiently simulating small-room acoustics"

RUB

Results

<i>T</i> ₆₀ in s		0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50
Coincidence rate	0.97		0.91	0.81	0.79	0.79	0.72		

Coincidence rate represents the degree to which the same DoA components of the GMM were selected by the proposed method and the baseline.

Introduction Time-series modeling Building a causal model Evaluation Outlook

Dorothea Kolossa

12/14

RUB

Results

<i>T</i> ₆₀ in s	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50
Coincidence rate	0.97	0.93	0.91	0.81	0.79	0.79	0.72	0.65	0.65

Coincidence rate represents the degree to which the same DoA components of the GMM were selected by the proposed method and the baseline.

Outline

1 Introduction

- 2 Time-series modeling
- 3 Building a causal model

4 Evaluation

5 Outlook

Outlook

Incorporating temporal context yields significant performance improvements. Still, the current study is a proof-of-concept and many important challenges remain to be solved:

- Extensive hyperparameter tuning is required.
 Apply machine learning methods to predict hyperparameter
- Method is restricted to static acoustic scenarios. Moving arrays and/or sources can not be handled with the current framework.
 ⇒ Extend model to a dynamical system representation?
- Gaussian assumption of GCT is violated by DoA time-series signals used in this study.

 \Rightarrow Adapt GCT to non-Gaussian cases? ⁹

⁹S. Kim, D. Putrino, S. Ghosh, E. N. Brown (2011): "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity"

Outlook

Incorporating temporal context yields significant performance improvements. Still, the current study is a proof-of-concept and many important challenges remain to be solved:

• Extensive hyperparameter tuning is required.

 \Rightarrow Apply machine learning methods to predict hyperparameters?

- Method is restricted to static acoustic scenarios. Moving arrays and/or sources can not be handled with the current framework.
 ⇒ Extend model to a dynamical system representation?
- Gaussian assumption of GCT is violated by DoA time-series signals used in this study.

 \Rightarrow Adapt GCT to non-Gaussian cases? 9

⁹S. Kim, D. Putrino, S. Ghosh, E. N. Brown (2011): "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity"

Outlook

Incorporating temporal context yields significant performance improvements. Still, the current study is a proof-of-concept and many important challenges remain to be solved:

- Extensive hyperparameter tuning is required.
 - \Rightarrow Apply machine learning methods to predict hyperparameters?
- Method is restricted to static acoustic scenarios. Moving arrays and/or sources can not be handled with the current framework.
 ⇒ Extend model to a dynamical system representation?
- Gaussian assumption of GCT is violated by DoA time-series signals used in this study.

 \Rightarrow Adapt GCT to non-Gaussian cases? ⁹

⁹S. Kim, D. Putrino, S. Ghosh, E. N. Brown (2011): "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity"

Outlook

Incorporating temporal context yields significant performance improvements. Still, the current study is a proof-of-concept and many important challenges remain to be solved:

- Extensive hyperparameter tuning is required.
 - \Rightarrow Apply machine learning methods to predict hyperparameters?
- Method is restricted to static acoustic scenarios. Moving arrays and/or sources can not be handled with the current framework.
 ⇒ Extend model to a dynamical system representation?
- Gaussian assumption of GCT is violated by DoA time-series signals used in this study.

 \Rightarrow Adapt GCT to non-Gaussian cases? ⁹

⁹S. Kim, D. Putrino, S. Ghosh, E. N. Brown (2011): "A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity"

Thank you!