Grounded Sequence to Sequence Transduction (Multi-Modal Speech Recognition)

Florian Metze July 17, 2018

Carnegie Mellon University School of Computer Science

Imagine How-To Videos

- · Lots of potential for multi-modal processing & fusion
- For Speech-to-Text and beyond

Audio-Visual ASR vs Multi-modal ASR

- Traditional audio-visual ASR based on speakers' lip/ mouth movement
 - Sub-phonetic synchronicity required, fusion a problem
- Lip/ mouth information not always available in how-to videos
 - Humans are usually present, but often they "do things"
- Instead: fuse information at the semantic level (words, ...)

e.g. AVASR "Grid" Corpus

"How-To" Video

Multi-Modal MT – Example

- SRC: Three children in football uniforms of two different teams are playing football on a football field, while another player and an adult stand in the background.
- TXT: Drei Kinder in Fußballtrikots zweier verschiedener Mannschaften spielen Fußball auf einem Fußballplatz während ein weiterer Spieler und eine Erwachsener im Hintergrund stehen.
- IMG: Drei Kinder in Footballtrikots zweier verschiedener Mannschaften spielen Football auf einem Footballplatz während ein weiterer Spieler und ein Erwachsener im Hintergrund stehen.

Courtesy of Lucia Specia

Two (+) Types of Features

Object Features

- monitor, mouse, keyboard, ...
- 1000 classes [Deng et al., 2009] 205 classes [Zhou at al., 2014]
- Could also do Actions, ...

Place Features (Scenes)

- train (office, baseball field, airport apron, ...)

How-to Video Corpus [Miao et al., '14]

- "How-to" dataset of instructional videos
 - Harvested from the web (2000h+ available)
 - "Utterance" (from caption) is 8s...10s
 - On average 18 words
- ~55,000 videos
 - 300h+ have been translated into Portuguese
 - 4h dev & eval set; ~20k+ vocabulary size
- Extract one quasi-static visual "context" vector per utterance
 - Pick frame randomly (for now)
 - · Object/ place detection, or action recognition

Definition of the probability of the proba

- Independent of the structure & features, context
 - SAT technique can be naturally applied to CNNs, RNNs
 - Also tried: speaker microphone distance, speaker features (age, gender, race; 61-dimensional) [Miao et al., 2016]

Comparison of Approaches

Model	Features	WER(%)	
DNN (Baseline)		23.4	
Adaptive Training	161-dim visual features	22.3	
Adaptive Training	100-dim speaker i-vectors	22.0	
Adaptive Training	261-dim fused features	21.5	

[Gupta et al., 2017]

• AV adaptation does not beat i-Vector adaptation, but is in ballpark, somewhat complementary

Result Analysis – "indoor" vs "outdoor"

- Using object and place features only
 - AM+LM adapt.: 23.4% → 21.5% WER on 4h dev set (90h training)
- LM adaptation improves results across the board
 - 126/ 156 videos improve
- AM improves "noisy" videos
 - 55/ 156 videos improve (most are "outdoor", according to their category)

Video as side-information in S2S ASR?

Adaptive Seq-2-Seq with Attention

S2S Training Results (90h How-To)

- Appending 100d adaptation vector to 120d IMEL feature
- · Best TER observed for later epochs, where perplexity increases
- Nice improvement in TER (17.5% → 16.8%)
- · Also works for CTC models, but somewhat inconsistent

Audio-Visual ASR Results

- It is possible to adapt (condition) a E2E ASR Model to static context, like a domain
 - CTC and S2S models both work
- The error rates improve, integration with an adapted language model gives further gains
- More experimentation is needed, but models seem to learn semantic properties of the (correlated) video
 - Multi-task (CTC+S2S) training?
 - Determine best units: chars, BPE, words, ...
 - Shared representations have been learned?

Multimedia Summarization

• Which how-to videos to watch, and why?

S2S Summarization

Results									
Model	Bleu-1	Bleu-2	Bleu-3	Bleu-4	Meteor, penalty=0	Rouge-L	Avg. words replaced		
Baseline (original)	52.282	41.929	35.652	31.214	0.52	0.506	-		
Without catch- phrases	33.811	22.731	16.699	12.862	0.36	0.370	6.70		
Rule- based	22.152	10.059	5.527	3.345	0.21	0.164	-		
Without catch- phrases	19.483	8.656	4.800	2.904	0.19	0.155	1.25		

Ongoing Experiments

- Multi-Document Summarization
 - Take triplets of videos (anchor/ same/ different)
- Use a sequence-to-sequence model to generate **two** "descriptions" for **three** videos together
 - "similar" (portions of) videos or
 - "different" videos
- Experiment with different architectures ongoing
 - Triplet loss to encourage sharing and learning
 - Multi-modal features

<text><list-item><list-item><list-item>

Bibliography ASR

- Fundamental Technologies in Modern Speech Recognition; Sadaoki Furui, Li Deng, Mark Gales, Hermann Ney, Keiichi Tokuda. IEEE Signal Processing Magazine; Vol 29 (6), 2012. <u>https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6296521</u>
- Abhinav Gupta, Yajie Miao, Leonardo Neves, and Florian Metze. VISUAL FEATURES FOR CONTEXT-AWARE SPEECH RECOGNITION. In Proc. ICASSP, New Orleans, LA; U.S.A., March 2017. IEEE. <u>https://arxiv.org/abs/1712.00489</u>
- Shruti Palaskar, Ramon Sanabria, and Florian Metze. End-to-end multi-modal speech recognition. In Proc. ICASSP, Calgary, BC; Canada, April 2018. IEEE. https://arxiv.org/abs/1804.09713
- Yajie Miao, Hao Zhang, and Florian Metze. SPEAKER ADAPTIVE TRAINING OF DEEP NEURAL NETWORK ACOUSTIC MODELS USING I-VECTORS. *IEEE/ACM Transactions* on Audio, Speech and Language Processing, 23(11):1938-1949, November 2015. http://www.cs.cmu.edu/~fmetze/interACT//Publications_files/publications/bare_irnl.pdf

Bibliography (Video) Summarization

 Florian Metze, Duo Ding, Ehsan Younessian, and Alexander Hauptmann. BEYOND AUDIO AND VIDEO RETRIEVAL: TOPIC ORIENTED MULTIMEDIA SUMMARIZATION. *International Journal of Multimedia Information Retrieval*, 2013. Springer. http://www.cs.cmu.edu/~fmetze/interACT//Publications_files

publications/10.1007_s13735-012-0028-y.pdf

- Over, Paul, Alan F. Smeaton, and Philip Kelly. "The TRECVID 2007 BBC rushes summarization evaluation pilot." In *Proceedings of the international* workshop on *TRECVID video summarization*, pp. 1-15. ACM, 2007. https://dl.acm.org/citation.cfm?id=1290032
- Video Summarization with Long Short-term Memory; Ke Zhang, Wei-Lun Chao, Fei Sha, Kristen Grauman. In Proc. ECCV 2016. https://arxiv.org/abs/1605.08110
- A Deep Reinforced Model for Abstractive Summarization. Romain Paulus, Caiming Xiong, Richard Socher. <u>https://arxiv.org/abs/1705.04304</u>
- Nenkova, Ani. "Summarization evaluation for text and speech: issues and approaches." In *Ninth International Conference on Spoken Language Processing*. 2006. <u>https://www.isca-</u> speech.org/archive/archive_papers/interspeech_2006/i06_2079.pdf