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Imagine How-To Videos
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")) Start ening each bolt. Then locate the jack and lift the car. Now you can remove
the bolts and then the wheel.
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‘») “irst undo the nuts. Once that done, you can jack the car. Then withdraw the nuts completely
) that you can remove the flat tire.

« Lots of potential for multi-modal processing & fusion
« For Speech-to-Text and beyond




Audio-Visual ASR vs
Multi-modal ASR

« Traditional audio-visual ASR based on speakers’ lip/ mouth movement

« Sub-phonetic synchronicity required, fusion a problem

« Lip/ mouth information not always available in how-to videos
« Humans are usually present, but often they “do things”

« Instead: fuse information at the semantic level (words, ...)

e.g. AVASR “Grid” Corpus “How-To” Video

» SRC: Three children in football uniforms of two different teams are
playing football on a , while another player and an adult
stand in the background.

TXT: Drei Kinder in FuBballtrikots zweier verschiedener Mannschaften
spielen FuBball auf einem wiahrend ein weiterer Spieler und
eine Erwachsener im Hintergrund stehen.

IMG: Drei Kinder in Footballtrikots zweier verschiedener Mannschaften
spielen Football auf einem wahrend ein weiterer Spieler und
ein Erwachsener im Hintergrund stehen.

Courtesy of Lucia Specia




Two (+) Types of Features

Object Features Place Features (Scenes)

monitor, mouse, keyboard, ... train (office, baseball field,
airport apron, ...)

1000 classes [Deng et al., 2009] « 205 classes [Zhou at al., 2014]

Could also do Actions, ...

How-to Video Corpus
[Miao et al., ‘14]

“How-to” dataset of instructional videos

« Harvested from the web (2000h+ available)
« “Utterance” (from caption) is 8s...10s

« On average 18 words

~55,000 videos

» 300h+ have been translated into Portuguese
» 4h dev & eval set; ~20k+ vocabulary size

Extract one quasi-static visual “context” vector
per utterance

« Pick frame randomly (for now)

« Object/ place detection, or action recognition




@ JSALT 2018:
one NN to rule them all!

So ac you can cee I added
come cecame ceed, come black
cecame ceed here in my plate
Subtitle
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« Fully transcribed in English

The Goal

Have a corpus of 2000h of how-to videos

Translation

Transcription

Summary

Como vocée podem ver, eu
coloquei no meu prate o

gergelim prefo

So ac you can cee I added
come cecame ceed, come black

sesame seed here in my plate

A cooking recipe for Seared
Secame Crusted Tuna with
Wf/d Rice

« Partially translated into Portuguese (and Turkish)

« With short descriptions of videos

Learn shared audio-visual (or text-visual)
representations to help us understand video

« Recognize, translate, and summarize videos

Use sequence-to-sequence models (S2S) as unified

architecture




Preliminary Experiments:
ASR Adaptation
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« Allis standard error back-propagation
« Independent of the structure & features, context
« SAT technique can be naturally applied to CNNs, RNNs

» Also tried: speaker microphone distance, speaker features
(age, gender, race; 61-dimensional) [Miao et al., 2016]

Comparison of
Approaches

DNN (Baseline)

Adaptive Training | 161-dim visual features
Adaptive Training | 100-dim speaker i-vectors

Adaptive Training | 261-dim fused features

[Gupta et al., 2017]

« AV adaptation does not beat i-Vector adaptation, but is in
ballpark, somewhat complementary




Language Modeling

« Context aware language models easy with RNNs
e [Zweigetal., 2012; ...]
« Append context vector to word embeddings

« NMT of image captions [Specia et al., 2016]

translate

—} Ein brauner Hund ...

Ievaluate
Gold Target:

Ein brauner Hund rennt dem schwarzen Hund
hinterher.

Source:
A brown dog is running after the black dog.

== Baseline Train

== Baseline Validation
Video Train

==\/ideo Validation

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Training Iteration

* 30-best lists from 23.4% WER DNN baseline
* Re-score and re-rank with LSTM-LM

» 22.6% WER (15.6% Oracle WER)

» Small but consistent improvements




Result Analysis — “indoor”
vs “outdoor”

« Using object and place features only

« AM+LM adapt.: 23.4% — 21.5% WER
on 4h dev set (90h training)

« LM adaptation improves results
across the board

« 126/ 156 videos improve
« AM improves “noisy” videos

« 55/ 156 videos improve (most are
“outdoor”, according to their category)

Video as side-information
in S2S ASR?

OUTPUT
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Adaptive Seqg-2-Seq with
Attention

6+ ways of incorporating
“visual context™

» Encoder feature shifts and
appending features (AM)

* Input layer, pyramid output
* At decoder (LM)

« With attention mechanism

Encoded Input Features

» Co-Attention (2 sequences)

» At softmax layer (1G LM)

S2S Training Results (90h
How-T0)

Appending 100d adaptation vector to 120d IMEL feature

Best TER observed for later epochs, where perplexity increases
Nice improvement in TER (17.5% > 16.8%)

Also works for CTC models, but somewhat inconsistent




Audio-Visual ASR Results

« Itis possible to adapt (condition) a E2E ASR Model to
static context, like a domain

o« CTC and S2S models both work

« The error rates improve, integration with an adapted
language model gives further gains

» More experimentation is needed, but models seem to
learn semantic properties of the (correlated) video

« Multi-task (CTC+S2S) training?
o Determine best units: chars, BPE, words, ...

« Shared representations have been learned?

Can you fly this thing?




Multimedia Summarization

« Which how-to videos to watch, and why?

PLAYLISTS COMMUNITY CHANNELS

 Caramel Glazed Apple Cake Recipe : Glaze Apple Cake

P, Caramel Glazed Apple Cake Recipe : Mix Dry Ingredients for Apple
‘ Cake
B cc

g

S2S Summarization

»l o) 0:05/058




Results

Avg.
Rouge-L words
replaced

Meteor,
penalty=0

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4

Baseline

o 52.282 31.214 0.52 0.506
(original)

Without

catch- 12.862 0.36 0.370
phrases

Rule-
based

Without

catch- 0.19 0.155 1.25
phrases

22.152 0.21 0.164

Ongoing Experiments

Multi-Document Summarization
« Take triplets of videos (anchor/ same/ different)

Use a sequence-to-sequence model to generate two
“descriptions” for three videos together

« “similar” (portions of) videos or

« “different” videos

Experiment with different architectures ongoing
« Triplet loss to encourage sharing and learning

o Multi-modal features




Where To?

« Conversational Search: Uls without Screens
« Robotics — see what Humans see
« Explainable Al

Today

* Why did you do that?

o Decision or * Why not something else?
Training | | I’i’:;cr:::: || Leamed | Recommendation - Whendo you succeed?
Function - Whendo you fai?
e Process unctio

* Whencan| trust you?
+ How dol correct an error?

XAl

* + 1 understand why
New « 1 understand why not
Training Ll Machine L] i .- suoceed
Data Learning Interface * 1 know when you fail
Process « 1 know when to trust you

+ 1 know why you ened
User

Questions?



https://www.clsp.jhu.edu/workshops/18-workshop/
mailto:fmetze@cs.cmu.edu
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