

- Work on two EU projects with far-field multichannel ASR components:
 - DIRHA (2012 -14): Distant-speech Interaction for Robust Home Applications ^[1]
 - BabyRobot (2016 -18): Child-Robot Communication and Collaboration – Edutainment, Behavioural Modelling and Cognitive Development in Typically Developing and Autistic Spectrum Children ^[2]
- Our work focus lies on ASR in Greek for the specific project scenarios.

July 17th , 2018

Part I: DIRHA Project

- Motivation.
- System components at a glance.
- DSR system.
- Corpora and results.
- A module at detail: Multi-room SAD.

-- DIRHA: Distant-speech Interaction for Robust Home Applications (dirha.fbk.eu)

-- Rodomagoulakis *et al.,* "Room-localized command recognition in multi-room, multimicrophone environments, *CSL'17*.

-- Giannoulis *et al.,* "Multi-room speech activity detection using a distributed microphone network in domestic environments", *Eusipco'15*.

<u>Motivation</u>

- Towards voice-enabled smart-homes ...
 - ✓ Natural, seamless **control** of **domestic devices** (doors, windows, ...).
 - Improved safety and comfort (disabled users, ambient assistive living).

DIRHA, open

the kitchen

windows!

••••

- ✓ Focus of many recent projects (SweetHome, DIRHA, ...).
- ✓ <u>"Holy grail":</u> always-listening, far-field, robust operation.
- Difficult goal in practice, due to challenging domestic acoustic scene:
 - \checkmark Signal attenuation (**low SNR**).
 - ✓ Signal reflections (reverberation).
 - Multiple speech & noise sources (in/outdoors).
 - Possible speech & noise overlap.
 - ✓ Inter-room interference.
- Promising mitigation:
 - ✓ Multi-channel approaches (microphone-array sensors).

DIRHA.

turn off

the room lights!

System Block Diagram

- Parallel DSR pipelines, per room, for <u>multi-room</u> homes ^[3].
 - ✓ Driven by "room-dependent" SAD.
- Room-level pipeline components:
 - Channel selection; key-phrase detection; command segmentation; command recognition.

System Modules (after SAD)

- In-room channel selection:
 - ✓ Based on envelop variance (EV) measure.
 - ✓ Up to top-4 microphones selected for decision fusion in next modules.
- Key-phrase detection:
 - ✓ Based on classical keyword-filler KWS approach.
 - ✓ Traditional MFCC+derivs. front-end, GMM-HMM acoustic modeling.
 - ✓ Filler model: 24 states, 32 mix/state.
 - ✓ Key-phrases: 12 in total.
 - ✓ Training: discussed in ASR module.
 - ✓ **Testing:** decision fusion over 4 mics (majority voting).
- Command segmentation:
 - Based on in-room SAD segments and heuristics of duration / distance following key-phrase detection.

DSR Module (I) – Training

- Close-talk model training ("CLEAN"):
 - ✓ Traditional MFCC+derivs. front-end, GMM-HMM acoustic modeling.
 - ✓ About 8k CD triphones, with 16 mix/state.
 - ✓ Corpus: "Logotypographia" (Greek set, 125 spk, 72 hrs, 50k wds).
 - ✓ Close-talking part of it used (75 spk, 22.6 hrs).
- Far-field models ("REVERB"):
 - ✓ Trained on artificially contaminated Logotypographia data with RIRs $(T_{60} = 0.7 \text{ s})$, available from the DIRHA project, plus white Gaussian noise, simulating far-field conditions.
- Further robustness:
 - ✓ Supervised MLLR adaptation on in-domain dev. data.
 - ✓ Models per microphone (not per speaker).

<u> DSR Module (II) – Testing</u>

Closed-grammar decoding:

✓ 180 home-automation commands.

Multi-microphone decision fusion:

- ✓ **Best-EV** microphone signal decoded.
- ✓ **N-best** results obtained (N = 3).
- Rescored by top-3 microphones (forced alignment).
- ✓ Obtained scores averaged and max obtained.
- Signal fusion also considered (6 channels used):
 - ✓ Using MVDR beamforming.
 - ✓ Wiener post-filter with weights estimated by MMSE.

Three corpora:

✓ **Simulated** and **real** data recordings.

✓ 2 environments (DIRHA apt. & Athena-RC office).

	databases	
DIRHA-sim	DIRHA-real	ATHENA-real
4	4	2
40	40	20
20	5	20
10	not transcribed	4
73	not transcribed	15
37	18	72
99	59	172
12	12	12
13	15	9
0.72	0.72	0.50
no	no	yes
	DIRHA-sim 4 40 20 10 73 37 99 12 13 0.72 no	databases DIRHA-sim DIRHA-real 4 4 40 40 20 5 10 not transcribed 73 not transcribed 37 18 99 59 12 12 13 15 0.72 0.72 no no

DIRHA apartment @ FBK ~ 50m²

listen

WORKSHOP

-- Cristoforetti et al., "The DIRHA simulated corpus", LREC'14.

-- Matassoni et al., "The DIRHA-GRID corpus: Baseline and tools ...", Interspeech'14.

July 17th , 2018

-- Tsiami et al., "ATHENA: A Greek multi-sensory database ...", Interspeech'14.

<u>Results</u>

Performance of overall system in <u>Sentence Accuracy</u> (%):

- ✓ **Baseline:** clean models + MLLR, 1 mic (EV-best), separate module opt.
- Proposed: reverb models + MLLR, decision fusion, joint module opt.

	Baseline	Proposed
DIRHA-sim	29.3	38.7
DIRHA-real	45.0	60.0
ATHENA-real	59.7	76.6

Channel selection / fusion experiment (DSR with ground truth segm.)

Module Detail: Room-Level SAD

- Exploit multiple microphones to detect speech segments of the acoustic scene inside multi-room smart homes.
- Perform this:
 - ✓ not only at the "home-level" → "room-independent" SAD,
 - ✓ but also at the "room-level" → "room-dependent" SAD.
- Why is "room-dependent" SAD interesting?
 - ✓ **Disambiguates** user input (*e.g.*, "which room lights to turn off").
 - Provides localized user feedback (loudspeaker "on" in specific room).
 - ✓ Helps ASR (channel selection, speaker localization, speech separation).
 - ✓ Literature: Focus of recent works, *e.g.* ^{[4], [5].}
- Main ideas ^[6]:

July 17th , 2018

- Proposed "room-dependent" SAD two-stage approach.
- ✓ Novel acoustic **features** for room localization.

[4] Moralles-Cordovilla *et al.*, "Room localization for DSR", *Interspeech'14*.
 [5] Ferroni *et al.*, "A DNN approach for VAD in multi-room domestic scenarios", *IJCNN'15*.
 [6] Giannoulis *et al.*, "Multi-room speech activity detection using a distributed microphone network in domestic environments", *Eusipco'15*

SAD System Overview

Proposed "room-dependent" SAD system consists of two stages.

<u>1st stage: "Room-independent" SAD</u>

- GMMs trained for each microphone.
- Fused by multi-stream framework.
- Viterbi decoding provides candidate speech segments to 2nd stage.

2nd stage: Inside/outside classification

- 1st-stage candidate segments get classified as inside or outside each room by room-specific SVMs.
- Based on room selection features.
- Output yields "room-dependent" SAD.

July 17th , 2018

Uses all mics. to yield "room-independent" speech/non-speech segmentation.

- Train a separate two-class GMM (speech/non-speech) for each microphone *m* of room *r*, using an MFCC front-end: λ_m^r , $m = 1, ..., M_r$, r = 1, ..., R.
- Fuse all GMM log-likelihoods in multi-stream style ^[7]:

$$\mathcal{L}(q_t \,|\, \mathbf{x}_t) = \sum_{r=1}^R \sum_{m=1}^{M_r} \log p(q_t \,|\, x_m^r(t) \,; \lambda_m^r)$$

- Use these in Viterbi decoding to provide the most likely speech / non-speech sequence, $Q' = [q_1, \ldots, q_T]$
- State-change penalty in Viterbi decoding provides smooth segmentation.
- Resulting speech segments, (t_s, t_e), are passed to the 2nd stage, to be assigned to room(s).
 speech segment start & end times
- Implementation details: 39-dim MFCCs (+derivs.), 25 ms frames @ 100 Hz (10 ms window shift), 32-mixture GMMs with diagonal covariances.

^[7] Giannoulis *et al.*, "Multi-microphone fusion for detection of speech and acoustic events in smart spaces," *EUSIPCO'14*.

Main idea:

- ✓ For each "room-independent" speech segment (from 1st stage);
 - ✓ For each room;
 - ✓ <u>Compute</u> "room-selection features" of the segment;
 - ✓ To <u>discriminate</u> if it originates from **inside** vs. **outside** room.
- Need discriminative features. Note that "outside" vs. "inside" speech has:
 - ✓ Lower energy \rightarrow use SNR-based measurements.
 - ✓ Higher reverberation → use signal correlation, envelope variance.
- We employ three features their histograms show room-discriminability:

7

July 17th , 2018

July 17th , 2018

SAD: Alternative Systems

The 2-stage proposed system will be evaluated against alternative ones:

Baseline "room-independent" SAD system

- Build 2-class (speech / non-speech) GMM for each room (1 mic. selected).
- Perform corresponding Viterbi decodings (one per room).
- Obtain union of resulting speech segments across rooms.

Contrastive 1: "Room-dependent" SAD with 3-state GMMs

- Build 3-class ("inside" sp./"outside" sp./non-sp.) GMM for each room (1 mic.)
- Perform corresponding Viterbi decodings (one per room).
- Purge "outside speech" states to yield "room-dependent" SAD segments.

Contrastive 2: Two-step "room-dependent" SAD with MLPs [8]

- Uses MLPs instead of GMMs.
- 1st step: FSM decoder for each room mic., majority voting combination.
- 2nd step: EV-based filtering of "outside speech" per room.

^[8] Abad *et al.*, "The L²F system for the EVALITA-2014 speech activity detection challenge in domestic environments," *CLiC-it/EVALITA'14*.

- Experimental framework:
 - ✓ Models (GMMs, SVMs) trained on "dev" set, tested on "test1"+"test2".
 - ✓ <u>Metrics:</u> Frame-based (10 ms) precision, recall, F-score (%).
 - ✓ **<u>Results:</u>DIRHA-sim** corpus.
- 1. Evaluate "roomindependent" SAD first:

SAD Results (III)

3. Evaluate systems in "room-dependent" mode:

- ✓ As expected, "room-independent" SAD systems fail (low precision).
- Among "room-dependent" SAD systems, proposed is best.

System	F-score	Prec.	Recall
Contrastive 2 (MLP), 1st step only	40.92	26.29	92.31
Proposed (MS-GMM), 1st step only	49.27	35.32	81.47
Contrastive 1 (3s-GMM)	60.23	52.69	70.30
Contrastive 2 (MLP), both steps	57.61	48.22	71.56
Proposed (MS-GMM), both steps	74.46	68.50	81.58

Part II: BabyRobot Project

- Motivation.
- Contributions main ideas.
- Sensory setup.
- Perception system developed.
- DSR approach for Greek C&C.
- HRI evaluation scenario.
- Data.
- Results.

-- BabyRobot: Child-Robot Communication and Collaboration (babyrobot.eu)

-- Tsiami *et al.,* "Multi3: Multi-sensory perception system for multi-modal child-robot interaction with multiple robots", *ICRA'18*.

⁻⁻ Tsiami *et al.,* "Far-field audio-visual scene perception of multi-party human-robot interaction for children and adults", *ICASSP'18*.

<u>Motivation</u>

- Increasing popularity of human-robot interaction (HRI) systems.
 - \checkmark Driven by **advances** in robotic platforms and interaction technologies.
 - ✓ Wide range of **applications**, e.g. edutainment, assisted living, etc.
 - ✓ Multiple active research projects, e.g., BabyRobot, DE-ENIGMA, etc.
- Holy grail: natural HRI, resemblance to human-human communication.
 - Exchange of audio-visual information, crucially via speech & gestures.
 - ✓ HRI perception: speech & gesture recognition, localization (attention).
- Robot perception needs to be robust to:
 - ✓ Noise and reverberation.
 - ✓ Visual occlusions and pose variation.
 - Complexity of the audio-visual scene.
 - ✓ Untethered, far-field, multi-party interaction scenarios.
- Challenging to achieve by robot-based sensing alone.

Contributions (I)

- 1. Pursue robustness using robot-external sensing:
 - ✓ Multiple audio-visual sensors in the far-field.
 - Creates a "smart-space" for unobtrusive observation of the HRI scene.
 - Allows fusion of multiple audio-visual streams (inter- / intra-modal).
 - Perception becomes robot-independent.
- Developed setup employs four Kinects (V2).

- 2. Develop three perception modules under this sensory setup, for:
- Multi-sensory audio-visual <u>speaker localization</u>.
- Multi-microphone <u>distant speech recognition</u>.
- Multi-view <u>gesture recognition</u>.

.. adopting / integrating standard techniques from the literature.

Contributions (II)

WORKSHOP

- **3.** Modules are developed for two user groups (<u>children</u> & <u>adults</u>):
 - Much interest on cHRI, but most components developed for adults.
 - ✓ User groups differ in interaction **behavior** & **articulatory** characteristics
- Adaptation and training schemes for the two user groups investigated.

Speech by a child

greeting "come closer" pointing Gestures performed by a child

greeting "come closer" pointing Gestures performed by an adult

- 4. Module integration and evaluation within use-case scenario.
- Integration of perception modules within the IrisTK architecture.
- Development of a <u>"guess-the-object" HRI game</u> with a "<u>Furhat</u>" robot.
- Stand-alone evaluation of modules on children and adult data.
- Evaluation of the HRI game incorporating the integrated modules.

Sensory Setup (I)

Four Kinects (V2 / Xbox One) are employed.

- Three Kinects, controlled by PCs running Linux (one master), provide:
 - ✓ **RGB video** (1920 x 1080 @ 30 fps).
 - ✓ 4 channels of audio (16 kHz).
- One Kinect (controlled by a PC running Windows) provides:
 - ✓ Visual skeleton information (2D/3D coordinates of 25 joints @ 30 fps).
- Unused data streams:
 - ✓ RGB and audio channels of the fourth Kinect.
 - Depth streams of all.

Sensory Setup (II)

BABY ROBOT NEXTGEN SOCIAL ROBOTICS

- Sensors placed indoors, in a lab specially designed as a room for cHRI.
- Setup also involves:
 - ✓ "Furhat" robot.
 - ✓ Touch-screen.

- Humans interact with robot in confined HRI space (scenario discussed later).
- Kinects surround HRI area:
 - ✓ K4 facing subjects.
 - \checkmark K1, K2 at the sides.
 - \checkmark K3 at the ceiling.
- Approximate floorplan:

DSR Model Training

BABY ROBOT NEXTGEN SOCIAL ROBOTICS

lister

WORKSHOP

- "Logotypographia": Large, available Greek set (125 spk, 72 hrs, 50k wds).
- Close-talking part of it used (22.6 hrs)
- Contaminated with RIRs (T₆₀ = 0.7 s), available from the DIRHA project, plus white Gaussian noise, simulating far-field conditions.
- **GMM-HMM** DSR system is trained:
 - ✓ Standard MFCC+derivs. frontend.
 - ✓ 3-state cross-word triphones(~8k)
 - ✓ 16 Gaussians per state.
- Model adaptation follows, on data collected in the HRI setup:
 - ✓ For each Kinect sensor (#1, #2, #3).
 - ✓ Via MLLR (maximum likelihood linear transform).
 - ✓ Yields 3 adapted DSR models.

DSR Decoding and Fusion

- Viterbi decoding is **grammar-based**:
 - ✓ Helps in system robustness.
 - ✓ No understanding module needed.
 - ✓ Facilitated by simple HRI scenario adopted (see later).
 - ✓ Greek grammar consists of ~300 sentences.
- System is "always listening":
 - ✓ DSR on running windows of 2.5 s in duration, shifted by 0.6 s.
 - ✓ After prompted by the dialog manager; "timed-out" after 5 s.
- Fusion of recognition results:
 - ✓ Each Kinect array (3 in total) outputs a speech recognition hypothesis.
 - ✓ Fusion via majority voting.
 - ✓ In case of a tie (3 different results), user is prompted to repeat.

<u>Use Case Scenario / HRI Game</u>

Edutainment scenario:

- ✓ "Guess-the-object", within a "form-a-farm" HRI game.
- ✓ Multiple humans (typically two) and a robot interact.
- ✓ <u>Roles</u>: "picker" (picks the animal) and "guesser" (tries to guess it).
- ✓ 19 animals, 5 characteristics (*e.g.*, color, size, number of legs, *etc.*).
- HRI unfolds in multiple "states" as follows:
 - ✓ State 1: "Show-me-the-gesture" determines roles.
 - o If robot recognizes human gesture, it's the "picker", else "guesser".
 - ✓ **State 2** Iterations (up to 5) of:
 - Guesser(s) trying to identify picked animal.
 - Picker providing **cues** (characteristic animal properties).
 - State 3: Human(s) place animal within farm drawn on touchscreen.

Data and Evaluation

Data collection:

- ✓ **Standalone data** for development and evaluation of perception modules
 - 20 adults; 28 children (ages 6-10) [~ 1/3 female, 2/3 male].
 - In total: 3.7k utts. (~3 hrs); ~400 gestures; ~1.6k AV loc. "scenes".
- ✓ Integrated HRI game data for the evaluation of the entire system.
 - **12** pairs of adults.
 - **14** pairs of children.
 - \circ 4 6 games for each pair.

Evaluation:

- ✓ Objective evaluation of standalone perception modules (DSR).
- ✓ Evaluation of entire system (HRI game).

DSR Evaluation (I)

- Evaluation focus lies on:
 - ✓ Children vs. adult performance.
 - ✓ Training and adaptation **strategies** for the two user groups.
- Strategies explored:
 - ✓ **No adapt** (speech only): Far-field Greek models by data contamination.
 - ✓ Adults: adaptation / training on adult data.
 - ✓ Children: adaptation / training on children data.
 - ✓ Mixed: adaptation / training on union of adult and children data.
- 4-fold cross-validation.

DSR Evaluation (II)

	[DSR-Adaptation scheme			
		No-adapt	Adults	Children	Mixed
Test		Sentence Correct (%)			
Adults	K1	91.76	98.95	94.52	98.69
	K2	90.60	98.70	90.99	97.85
	K3	91.39	98.95	94.11	98.75
	Avg	91.25	98.87	93.20	98.43
	Fuse	92.41	99.82	94.42	99.77
Children	K1	70.53	72.31	95.95	82.95
	K2	72.48	73.85	95.95	82.52
	K3	66.83	67.63	94.60	80.70
	Avg	69.95	71.20	95.50	82.06
	Fuse	64.17	66.02	98.97	95.51

- Final recognition results are very satisfactory.
- User-group adapted/trained models perform well within group, poorly across.
- Mixed-group models are (near-)optimal for adults.
- Within-group modeling helps mostly for children.
- Fusion across Kinects helps.

Evaluation of HRI Game

Online evaluation statistics:

- "<u>Guess-the-object</u>" successfully completed at <u>high rates</u>.
- Adults <u>better guessers</u> than <u>children</u>.
- Furhat is more "<u>fair</u>" as "picker" than humans (adults & children).

DIRH

Subjective evaluation:

- Developed command-based DSR in Greek in multi-microphone smart environments for:
 - ✓ Multi-room smart-home control (DIRHA project).
 - Child-robot interaction for edutainment (BabyRobot project).
- Algorithmic details presented for various system modules.
- Evaluation on real and simulated data.
- Focus on children and adult user groups.
- Satisfactory DSR results obtained, demonstrating the importance of fusing multiple microphones in the far-field.

Acknowledgments

- Niki Efthymiou
- Panagiotis Filntisis
- Panagiotis Giannoulis
- Athanasios Katsamanis
- Petros Koutras
- Isidoros Rodomagoulakis
- Antigoni Tsiami
- DIRHA EU project consortium.
- BabyRobot EU project consortium.

July 17th , 2018

Support by EU Horizon 2020 Project **BabyRobot**, under grant agreement no. 687831.

