

From a Sketch to a Real LISTEN Demonstrator

Jozef Ivanecký

European Media Laboratory GmbH

www.eml.org

Jozef Ivanecký

© EML European Media Laboratory GmbH

- Studies:
 - PhD in Speech Recognition, TU Košice, Slovakia
 - MsC in Electrical Engineering at Department of Cybernetics and Artificial Intelligence, TU Košice, Slovakia
- IBM
 - Embedded Via Voice development, Watson Research Group, Czech Republic
 - Acoustic modeling for embedded German and ML ASR systems, IBM R&D, Germany
- EML
 - Language modeling tools
 - Embedded ASR

- Plans
- Technology
- Integration
- Platforms
- Demo

- Plans for the demonstrator:
 - Always listening mode
 - Multiple audio sources (strong background noise)
 - High accuracy
 - Bilingual (if possible)
 - Real time recognition
 - No active cooling

- Key technological enhancements:
 - Stream based segmentation

Technology

- Stream based speaker diarization
- Improved voice activity detection (VAD)
- Partial traceback support
- Dynamic lexicon adaptation
- Grapheme-to-Phoneme (G2P) service
- Always-Listening Mode
- Multiple Search Spaces

- Efficient filtering non-speech segment before processing the audio signal by the decoder. Load for Intel NUK:
 - Speech segment, KwS: 20-30%
 - Non speech segment: 3-5%
- Improved WER
- ALM trigger

- A prerequisite for any hands-free voice enabled interface
- New extension of EML decoder
 - Utilizes:
 - VAD
 - Partial traceback
- Just Key word spotting

- The demonstrator uses 3 search spaces (SS):
 - SS #1: Key word spotting with dynamic lexicon update
 - SS #2: Large vocabulary language model
 - SS #3: Small vocabulary grammar (FST)
- After initialization:
 - SS #1 ON
 - SS #2 & SS #3 OFF

- Why not just 1 SS?
 - Resources saving: Large vocabulary LM vs. simple KwS system
 - KwS load for Intel NUK: 20-30%
 - LV LM load for Intel NUK: 100%
 - Privacy issue
- Why not just 2 SSs?
 - Small grammar better accuracy for noisy environment:
 - In a quiet environment SS #2 and SS #3 produce usually identical result
 - In a noisy environment are SS #3 results better
 - SS #3 is faster

Search Space Usage

Scottt y y all lights in Jozef's room on

- The first version of the demonstrator was using two recognition engines:
 - Engine #1: SS #1 KwS + small PCM buffer
 - ALM mode
 - Engine #2: SS #2 + SS #3
 - P2T mode controlled by Engine #1
 - VAD included
 - Different AM for Engine #1 and Engine #2

© EML European Media Laboratory GmbH

Jozef Ivanecký

- Several options
 - EML Transcription platform
 - Intel based NUK 3 current demo choice
 - Cortex A-9 based Odroid U-3 for a limited version

• Simple directional microphone

- Microphone array
 - Sources tracking
 - Sources separation

Audio Clients

- Microphone array with multiple audio sources
- Bilingual system: German-English
 - Key word: [Hi/Hallo] Scotty
 - LM vocabulary size: 680314+438061
 - Grammar vocabulary size: 109+96
- Platform: Intel NUK 3
 - 32G RAM
 - 4 cores i7-7567U CPU @ 3.50GHz

Think beyond the limits!

Thank you for your attention!