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NN based speech separation

Issues

1 dependency on
number of speakers

2 label permutation

3 speaker tracing
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NN based speech separation

Popular approaches

1 permutation invariant training
permutes outputs of the network during training

2 deep clustering
projects T-F points to embedding space

PIT DC

# of speakers 3 3

label permutation 3 3

speaker tracing ? ?
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Speaker aware neural network
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Speaker information
• informs the network

about target speaker
• extracted from an

adaptation utterance

Solves issues
1 independent of

number of speakers
2 no label permutation
3 tracks the speaker
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Informing the neural network

auxiliary feature factorized layer scaled activations

· · ·
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Informing the neural network

auxiliary feature

factorized layer scaled activations

· · ·

• appending speaker information as additional input
• (Saon et al. 2013; Senior et al. 2014)
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Informing the neural network

auxiliary feature

factorized layer

scaled activations

· · ·

• splitting one of the layers into sublayers
• sublayers combined with weights derived from speaker info
• (Delcroix et al. 2015; Wu et al. 2015)
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Informing the neural network

auxiliary feature factorized layer

scaled activations

· · ·

• activations in one layer scaled by weights derived from
speaker info

• (Swietojanski et al. 2014; Samarakoon et al. 2016)
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Extracting the speaker information

mixture
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adaptation
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• speaker information
extracted from
adaptation utterance
with auxiliary network

• average pooling to
create utterance-wise
vector from frame-wise
features

• jointly trained with the
main network
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Experimental settings

Datasets
• WSJ0-2mix (Hershey et al. 2016)

about 10 second long fully overlapped mixtures
based on WSJ utterances

A

B

• WSJ0-2mix-long
same mixing process as WSJ0-2mix
three utterances from each speaker
about 1 minute long mixtures

A A A

B B B
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Experimental settings

Network configurations
• smaller configuration

BLSTM FC FC FC
300 1000 1000

• larger configuration

BLSTM BLSTM BLSTM FC
900 900 900

• magnitude STFT as input
• predicting T-F mask, MSE objective
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Comparing adaptation methods

• WSJ0-2mix, smaller NN configuration

method ∆SDR

auxliary feature -2.2
factorized layer 6.2
scaled activations 5.7

IBM 12.8

auxiliary feature factorized layer scaled activations

· · ·
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Comparison with DC and PIT

• larger NN configuration, scaled activations method

method 2mix 2mix-long

SpeakerBeam 8.2 12.2
PIT 8.2 9.9
DC 8.7 10.0
SpeakerBeam+DC 9.1 12.6

IBM 12.8 17.1

2mix

A

B

2mix-long

A A A

B B B
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Length of adaptation data
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• for 0.5 seconds, -0.9 dB SDR degradation
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Extracted speaker representations

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80

16 / 19



Conclusions

• Additional speaker information can help to avoid problems
of NN based speech separation and do speaker tracing.

• Methods adapting parameters of entire layer work well.

• This can be combined with deep clustering to enhance its
accuracy, especially on longer mixtures.

Thank you!
izmolikova@fit.vutbr.cz
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