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| NN based speech separation

Popular approaches
© permutation invariant training
permutes outputs of the network during training

® deep clustering
projects T-F points fo embedding space

PIT DC
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| Speaker aware neural network
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Speaker information

o informs the network
about target speaker

o extracted from an
adaptation utterance

Solves issues

© independent of
number of speakers

® no label permutation
® tracks the speaker



| Informing the neural network

auxiliary feature factorized layer scaled activations
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| Informing the neural network

auxiliary feature

factorized layer scaled activations

o appending speaker information as additional input
e (Saon et al. 2013; Senior et al. 2014)




| Informing the neural network

factorized layer

auxiliary feature scaled activations
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o splitting one of the layers into sublayers

e sublayers combined with weights derived from speaker info
o (Delcroix et al. 2015; Wu et al. 2015)




| Informing the neural network

scaled activations

auxiliary feature factorized layer

o activations in one layer scaled by weights derived from
speaker info

o (Swietojanski et al. 2014; Samarakoon et al. 2016)




| Extracting the speaker information
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| Experimental settings

Datasets

o WSJ0-2mix (Hershey et al. 2016)
about 10 second long fully overlapped mixtures
based on WSJ utterances
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* WSJ0-2mix-long
same mixing process as WSJ0-2mix
three utterances from each speaker
about 1 minute long mixtures
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| Experimental settings

Network configurations
o smaller configuration

300 1000 1000
— BLSTM FC FC FC

o |larger configuration

900 900 900
—1 BLSTM BLSTM BLSTM FC —

e magnitude STFT as input
o predicting T-F mask, MSE objective
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| Comparing adaptation methods

o WSJO-2mix, smaller NN configuration

method ASDR
auxliary feature 2.2
factorized layer 6.2
scaled activations 5.7
IBM 12.8
auxiliary feature factorized layer scaled activations
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| Comparison with DC and PIT

o larger NN configuration, scaled activations method

method 2mix  2mix-long
SpeakerBeam 8.2 12.2
PIT 8.2 9.9
DC 8.7 10.0
SpeakerBeam+DC 9.1 12.6
IBM 12.8 17.1

2mix 2mix-long




| Length of adaptation data

SDR improvement
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| Extracted speaker representations
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| Conclusions

o Additional speaker information can help to avoid problems
of NN based speech separation and do speaker tracing.

o Methods adapting parameters of entire layer work well.

o This can be combined with deep clustering to enhance its
accuracy, especially on longer mixtures.

Thank you!

izmolikova@fit.vutbr.cz
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