Learning to Unlearn and Relearn Speech Signal Processing using Neural Networks: current and future perspectives

Mathew Magimai Doss

Collaborators: Vinayak Abrol, Selen Hande Kabil, Hannah Muckenhirn, Dimitri Palaz, D. S. Pavan Kumar

Idiap Research Institute, Martigny, Switzerland

July 17, 2018
Conventional speech processing approach

▶ Conventional cepstral features extraction process:

- Conventional cepstral features extraction process:
 - FFT
 - Critical bands filtering
 - Non-linear operation
 - DCT
 - log(·)
 - AR modeling
 - MFCC
 - Derivatives \(\Delta + \Delta \Delta \)
 - Derivatives \(\Delta + \Delta \Delta \)
 - CNN
 - NN classifier
 - \(P(i|x) \)

▶ Recent trend using Convolutional Neural Networks (CNN):

- Recent trend using Convolutional Neural Networks (CNN):
 - FFT
 - Critical bands filtering
 - Derivatives \(\Delta + \Delta \Delta \)
 - CNN
 - NN classifier
 - \(P(i|x) \)

1. Quasi-stationarity (windowing, time-frequency resolution)
 ▶ Motivated from speech coding analysis-synthesis studies
2. Speech production knowledge
3. Speech perception knowledge
In this talk

- Can help in overcoming limitations of conventional short-term speech processing
- Can help in better understanding speech signal characteristics in a task specific manner
Minimal prior knowledge

- Short-term processing
- Feature extraction can be seen as a filtering operation
- Relevant Information can be spread across time

Determined in a data-driven manner.
All stages are trained jointly using back-propagation with a cost function based on cross entropy.
CNN-based system using raw speech as input

Illustration of the first convolutional layer

- w_{seq}: Input speech signal with temporal context
- kW: Window size
 - Sub-segmental (< 1 pitch period)
 - Segmental ($1 - 3$ pitch periods)
- dW: Window shift (< 1 pitch period)
- nf: number of filters
Speech processing applications

<table>
<thead>
<tr>
<th>Application</th>
<th>w_{seq}</th>
<th>kW</th>
<th># of conv. layers</th>
<th># of hidden layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speech reco. 1,2</td>
<td>250-310 ms</td>
<td>sub-seg</td>
<td>3-5</td>
<td>1-3</td>
</tr>
<tr>
<td>Speaker reco. 3,4</td>
<td>≈ 500 ms</td>
<td>seg, sub-seg</td>
<td>2-3</td>
<td>1</td>
</tr>
<tr>
<td>Presentation attack detection 5</td>
<td>≈ 300 ms</td>
<td>seg</td>
<td>2</td>
<td>1 or none</td>
</tr>
<tr>
<td>Gender reco. 6</td>
<td>250-310 ms</td>
<td>seg, sub-seg</td>
<td>1-3</td>
<td>1</td>
</tr>
<tr>
<td>Paralinguistic 7</td>
<td>250-500 ms</td>
<td>seg, sub-seg</td>
<td>3-4</td>
<td>1</td>
</tr>
</tbody>
</table>

In this talk

What information does such systems learn?

- Filter level analysis
- Whole network level analysis
Filter level analysis
First convolution layer

- Cumulative frequency response of filters

\[F_{\text{cum}} = \sum_{m=1}^{M} \frac{F_m}{\|F_m\|_2}, \]

(1)

where \(F_m \) is the DFT of filter \(f_m \) and \(M \) is number of filters.

- Response of filters to input speech by interpreting learned filters collectively as a spectral dictionary

\[\mathbf{X} = \sum_{m=1}^{M} \langle \mathbf{x}, f_m \rangle \text{DFT}[f_m], \]

(2)

where \(\hat{x}_m = \langle \mathbf{x}, f_m \rangle \) is output of filter \(f_m \) and \(\mathbf{X} \) is the spectral information modeled.

If \(\{f_m\} \) were Fourier sine and cosine bases then \(\mathbf{X} \) is DFT of \(\mathbf{x} \).
Filter level analysis
Speech recognition: cumulative response

- Filters model sub-segmental speech
- Standard filterbank: constant-Q filters, i.e. flat response.

![Graph showing normalized magnitude vs frequency for a CNN trained on WSJ corpus.](image)

CNN trained on WSJ corpus
Filter level analysis

Speech recognition: spectral response $\chi_{foraframeofspeech}$

Spectral response of /iy/ from American English Vowel dataset.

Magnitude spectrum of /iy/

<table>
<thead>
<tr>
<th>Speaker</th>
<th>F1 range</th>
<th>F2 range</th>
<th>Obs. 1st peak (in Hz)</th>
<th>Obs. 2nd peak (in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m01</td>
<td>328-357</td>
<td>2418-2458</td>
<td>375</td>
<td>2625</td>
</tr>
<tr>
<td>w01</td>
<td>439-441</td>
<td>2767-2822</td>
<td>437</td>
<td>2812</td>
</tr>
<tr>
<td>b01</td>
<td>468-554</td>
<td>2981-3024</td>
<td>500</td>
<td>3000</td>
</tr>
<tr>
<td>g01</td>
<td>382-392</td>
<td>3034-3078</td>
<td>375</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Gain normalized magnitude spectrum**
- **Frequency (Hz)**: 0 1000 2000 3000 4000 5000 6000 7000 8000
- **Spectral response of /iy/ from American English Vowel dataset.**
Filter level analysis
Speaker recognition: cumulative response

Segmental modeling
Sub-segmental modeling
Filter level analysis

Speaker recognition: spectral response \mathcal{X} (Segmental modeling)

F0 contours estimated on Keele pitch database using the CNN-based speaker classifier trained on Voxforge.

| \mathcal{X} |

F0 contours for female speaker f2nw0000

F0 contours for male speaker m3nw0000
Filter level analysis

Speaker recognition: spectral response χ of a frame of speech. (Sub-segmental modeling)
In this talk

What information does such systems learn?

- Filter level analysis
- Whole network level analysis
Whole network analysis
Gradient-based visualization

▶ In computer vision research, given an input image-output class pair and the trained system, finding contribution of each pixel in the image on the output score. (*guided backpropagation*)

▶ Given an input speech-output class pair and the trained system, what is the contribution of each sample on the output score?

Whole network analysis
Case study on speech recognition (1)
Whole network analysis
Case study on speech recognition (2)

- Analysis of CNN trained on TIMIT phone recognition task on American English Vowel (AEV) dataset
- F0, F1 and F2 estimated automatically for the relevance signal for the steady state regions and compared to the values specified on the original study.

Table: Average accuracy in (%) of fundamental frequencies, and formant frequencies of vowels produced by 45 male and 48 female speakers, estimated from relevance signal of AEV dataset.

<table>
<thead>
<tr>
<th></th>
<th>/ah/</th>
<th>/eh/</th>
<th>/iy/</th>
<th>/oa/</th>
<th>/uw/</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0</td>
<td>F</td>
<td>93</td>
<td>91</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>92</td>
<td>90</td>
<td>89</td>
<td>93</td>
</tr>
<tr>
<td>F1</td>
<td>F</td>
<td>90</td>
<td>92</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>88</td>
<td>92</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>F2</td>
<td>F</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>94</td>
<td>93</td>
<td>94</td>
<td>94</td>
</tr>
</tbody>
</table>
Whole network analysis
Case study on speaker recognition (1)

Original signal

Segmental modeling

Sub-segmental modeling
Whole network analysis
Case study on speaker recognition (2)

Utterance level average spectrum

Segmental modeling

Sub-segmental modeling
Whole network analysis
Listening to relevance signal

- Relevance signal obtained from speaker recognition CNN (segmental modeling)
- Relevance signal obtained from speech recognition CNN
- Original signal
Summary

- Can help in overcoming limitations of conventional short-term speech processing
 - Allows both segmental modeling and sub-segmental modeling
- Can help in better understanding speech signal characteristics in a task specific manner
 - Relevance signal can be analyzed using conventional signal processing techniques to gain insight
- Work under progress to understand how the neural network is modeling the relevant information
 - Potentially provide new algorithms for speech signal processing
Thank you for your attention!

Questions?
CNN-based system using raw speech as input

Detailed view for one example

Conv 1
$kW = 30$
d$W = 10$

MP 1
$kW = 2$
d$W = 2$

Conv 2
$kW = 5$
d$W = 1$

MP 2
$kW = 2$
d$W = 2$

Conv 3
$kW = 5$
d$W = 1$

MP 3
$kW = 2$
d$W = 2$

$\text{ANN } p(i|x)$
Whole network analysis
Speech recognition versus Speaker recognition

Original signal spectrogram

Phone CNN relevance signal spectrogram

Speaker CNN relevance signal spectrogram