Keyword based speaker localization Localizing a target speaker in a multispeaker environment

Sunit Sivasankaran

Emmanuel Vincent

Dominique Fohr

・ロット (雪) (コ) (コ)

Inria, Nancy, France

LISTEN Workshop, Bonn, Germany July 17, 2018

Overview Problem set-up Learning based approach to localization

Overview

- Prior work on localizing multiple speakers
- Localizing a specific speaker will need further post-processing. Can be error prone
- In our work we localize a speaker who uttered a keyword in a multispeaker environment such as 'OK Google' or 'Alexa'
- New Task
- Two problems :
 - How to identify the intended speaker
 - How to use this identifier information in localization pipeline
- We use time-frequency mask to identify speaker

イロン イヨン イヨン イヨン

Conclusion

Overview Problem set-up Learning based approach to localization

Problem set up

- Two microphones
- Target and interference speakers speak simultaneously
- Goal is to estimate the DOA of the target θ_t using :
 - The signal $s_c = t_c^R + i_c^R + \eta_c$
 - Keyword (any text) spoken by the target

Overview Problem set-up Learning based approach to localization

Learning based approach to localization

- DNN learns a mapping between input features and a discretized DOA space
- Different input features are used :
 - Phasemap = Raw phases of multichannel signals
 - GCC-PHAT features
 - Cosine-Sine Inter channel Phase Difference (CSIPD)
 - A concatenation of cosines and sines of the phase difference between the 2-channel microphones

$$\Delta \phi[\omega, n] = \angle S_1[\omega, n] - \angle S_2[\omega, n]$$
(1)

$$CSIPD[\omega, n] = [cos(\Delta \phi[\omega, n]), sin(\Delta \phi[\omega, n])]$$
(2)

 S_1 and S_2 are STFTs of signals captured at two microphones

イロト イポト イヨト イヨト

Overview Problem set-up Learning based approach to localization

Motivation for using CSIPD

Motivated by GCC-PHAT

$$C_{1,2}[\tau, n] = \sum_{\omega} \frac{S_1[\omega, n] S_2^*[\omega, n]}{|S_1[\omega, n]| |S_2[\omega, n]|} \exp^{j\omega\tau}$$
(3)
$$\frac{S_1(\tau, f) S_2^*(\tau, f)}{|S_1(\tau, f)| |S_2(\tau, f)|} = \exp^{j\Delta\phi} = \cos(\Delta\phi) + j\sin(\Delta\phi)$$
(4)

- Linear projection of CSIPD onto the sinusoidal sub-space
 C_{1,2}[τ, n] = A[τ, ω] × CSIPD[ω, n]
- CSIPD with DNN = Non-linear version of GCC-PHAT
- More invariant compared to Phasemap
- Useful to incorporate textual information
- Multiply the mask with CSIPD

Ínría

Approach

Approach

- Step1 : Obtain ASR alignments
- Step2 : Use alignments to obtain a representative spectra : Phone spectra
- Step3 : Estimate target mask and multiply with CSIPD
- Step4 : CSIPD \times target mask \implies [DNN] \implies DOA

6/21

Approach

Step1 : ASR alignments

・ロ・・ (同) ・ (目) ・ (目

- Wake-up word detects keyword
- Use ASR acoustic model to align speech with text
- HMM-GMM systems used in this work

Approach

Step2 : Phone spectra

- Pre-computed by averaging magnitude spectra per phone
- Distinct patterns are observed for every phone
- Pick spectrum corresponding to the aligned phone

• • • • • • • • • • • • •

Approach

Step3 : Target mask

- Masks represents the amount of target signal in each TF bin
- Three types of mask :
 - Clean target mask, M^D
 - Early target mask, M^E
 - Reverberated target mask

$$\delta_c^E = s_c - t_c^E$$
(5)
$$M^E = \frac{|T^E|}{|T^E| + |\Delta^E|}$$
(6)

 Need larger frame duration (100 ms) to estimate DOA, but ASR alignments are for short duration (25ms)

Approach

Step3 : Estimating target mask

Approach

Step3 : Target mask (contd..)

Magnitude Spectrum

Phone Spectrum

<□> < @> < ≧> < ≧> < ≧> ≥ のへで 11/21

Approach

Step3 : Target mask (contd..)

True Mask

Estimated Mask

Approach

Step4 : DOA estimation

Ínría_

conclusion

Experimental Setup

Generating RIR

- Discretize DOA space into 1[°] classes
 ⇒ 181 classes
- Create all possible target DOA and interference DOA pairs
 {θ_t, θ_i}, ∀θ_t ∈ [0, 180], ∀θ_i ∈ [0, 180] with
 the constraint |θ_t − θ_i| > 5°
- 50,1 and 2 such positions are created for every θ_i, θ_i for training, validation and test
- This resulted in 1557600, 31152, and 62304 configurations
- RIR simulated using RIR-Simulator

tion pipeline Experimental Setup Experiments Localization results Conclusion

Feature extraction

- Speech signals from Librispeech
- Two 0.5 s segments are randomly picked and convolved with the target and inference RIRs from a single room
- Signal-to-Interference ratio (SIR) [0, 10] dB
- Speech shaped noise (SSN) for training at SNR [0, 15] dB
- Real ambient noise for test at SNR [0, 30] dB

Experimental Setup Localization results

Metrics

Gross Error rate : % of estimated DOAs above a 5° error tolerance Interference closeness rate : % of estimated DOAs which are close (< 5°) to the interference DOA Mean absolute error(MAE) : Mean of the absolute error with respect to Target DOA (in degrees)

Experimental Setup Localization results

Results

- Target mask helps in identifying the target
- Estimated mask has low interference closeness rate

Experimental Setup Localization results

ヘロン 人間 とくほど 人間 と

18/21

With noisy alignments

	Clean Mask		Early Mask		Reverb Mask	
Alignments	Noisy	Clean	Noisy	Clean	Noisy	Clean
Gross Error Rate	15.2	14.3	14.8	13.9	15.9	14.9
Interference Close Rate	2.5	2.4	2.4	2.3	2.3	2.2
MEA	3.8	3.3	3.6	3.2	3.9	3.3

Using noisy alignments has negligible effect on performance

Experimental Setup Localization results

Other observations

• Other target identifiers : Spectrum based

Conclusion

- Mask identifiers works better than spectrum identifier
- Multiplying masks with CSIPD is better than appending
- Fricatives are better suited for localization and nasal are the worst

Phone	CH_I	CH_B	Z_B	SH_B	NG_E	N_E	M_E	B_B
Error rate	1.5	1.6	1.8	1.8	19.4	21.1	21.3	24.5

19/21

- Proposed methods to incorporate text into speaker localization pipeline
- Masks are good target identifiers. Multiply > Append
- Fricatives phones are better for localization and plosive sounds are the worst

• Ok Google sshhhhhhhhhhhhhhhhh

Thank you

