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Overview

@ Prior work on localizing multiple speakers

@ Localizing a specific speaker will need further
post-processing. Can be error prone

@ In our work we localize a speaker who uttered a keyword in
a multispeaker environment such as ‘OK Google’ or ‘Alexa’

@ New Task

@ Two problems :

e How to identify the intended speaker
e How to use this identifier information in localization pipeline

@ We use time-frequency mask to identify speaker
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Problem set up

target
t Interference

@ Two microphones

@ Target and interference speakers speak simultaneously

@ Goal is to estimate the DOA of the target 6; using :
o The signal s; = tf + i + 1 Lo
e Keyword (any text) spoken by the target wa—
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Learning based approach to localization

@ DNN learns a mapping between input features and a
discretized DOA space
@ Different input features are used :

e Phasemap = Raw phases of multichannel signals
o GCC-PHAT features
e Cosine-Sine Inter channel Phase Difference (CSIPD)

@ A concatenation of cosines and sines of the phase difference
between the 2-channel microphones

A¢[wvn] = 481 [wvn] - 482[(“‘)7”] (1)
CSIPD|w, n] = [cos(A¢[w, n]), sin(Ag[w, n])] (2)
S1 and S; are STFTs of signals captured at two microphones,/, .-
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Motivation for using CSIPD

@ Motivated by GCC-PHAT

C— SilenSslen

Cralrin =2 g mljSof m & @
Si(7,f)S5(r, 1)
(7, NSl

= exp/2? = cos(A¢p) + jsin(A¢)  (4)

@ Linear projection of CSIPD onto the sinusoidal sub-space

Ci o[r, n] = Alr,w] x CSIPD|w, n|

CSIPD with DNN = Non-linear version of GCC-PHAT

More invariant compared to Phasemap

Useful to incorporate textual information

Multiply the mask with CSIPD /o



Incorporating text into localization pipeline

Approach
Approach
’ ( \
Multichannel CsIPD
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Step1 :
Step2 :

Step3 :
Step4 :

Four step process :
Obtain ASR alignments

Use alignments to obtain a representative spectra : Phone
spectra

Estimate target mask and multiply with CSIPD
CSIPD x target mask — [DNN] — DOA .



Incorporating text into localization pipeline Approach

Step1 : ASR alignments
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@ Wake-up word detects keyword
@ Use ASR acoustic model to align speech with text
@ HMM-GMM systems used in this work



Incorporating text into localization pipeline

Approach

Step2 : Phone spectra

@ Pre-computed by averaging
magnitude spectra per phone

@ Distinct patterns are observed
for every phone

@ Pick spectrum corresponding to
the aligned phone
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Step3 : Target mask

@ Masks represents the amount
of target signal in each TF bin
@ Three types of mask : 3

e Clean target mask, MP
e Early target mask, ME 2
o Reverberated target mask

6 = 5o — tF (5)
E | TE| 0-

GRS ;

@ Need larger frame duration 0 02 04 06 08 1
(100 ms) to estimate DOA, but seconds )
ASR alignments are for short lovsi—
duration (25ms) >
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Step3 : Estimating target mask

Phone
spectra
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o000

Magnitude
spectra Ch 2
(201 X 8)

!
11 frames
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Batch normalization,
RelLU non-linearity
Dropout (p=0.1)

3X8X201x11
Input Features

Magnitude
spectra Ch 1
(201 X 8)

Batch normalization,
ReLU non-linearity
Dropout (p=0.1)

Batch normalization,
ReLU non-linearity
Dropout (p=0.1)

Batch normalization,
ReLU non-linearity

Sigmoid non-linearity

Dropout (p=0.1) max-pooling (2, 1, 1) max-pooling (2, 1, 1)
64 32 16 fil . Bidirectional
=) filters =524 filters ~ [==) filters = ; er;:ﬁps =) GRU
8x201 x 11 8x201 x 11 4x201 x 11 Xﬂ x 801 x 11

Target
= Dense | Mask
layer
801 x 11
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Step3 : Target mask (contd..

N—"

10 20 30

Magnitude Spectrum Phone Spectrum
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Step3 : Target mask (contd..)

True Mask Estimated Mask

,,,,,,,,,,,,,,,,
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Step4 : DOA estimation

Batch normalization, Batch normalization, Batch normalization,
Target  sin(Ag) ReLU non-linearity ReLU non-linearity ~ ReLU non-linearity
Mask cos(Ag) Dropout (p=0.1) Dropout (p=0.1) Dropout (p=0.1)
max-pooling (2) max-pooling (2)
X 64 32 16
=| [fitermaps|=) | |filtermaps| ==> fitermaps | ==

801 x 11 801 x 11 401 x 11

3x801x11

ReLU non-linearity
Dropout (p=0.1)
Softmax non-linearity

e Time Time
3 Bidvectonal distributed distributed | DOA
filtermaps = =4 C::n:f = ?ense
201 x 11 198 X 11 512yx11 18:;\y;ar"
Batch normalization, .

ReLU non-linearity
Dropout (p=0.1)
max-pooling (3)



Experimental Setup
Experiments Localization results

Generating RIR

@ Discretize DOA space into 1° classes
—> 181 classes

@ Create all possible target DOA and
interference DOA pairs
{6+,0,},¥0; € [0,180], VO; € [0,180] with
the constraint |6; — 6;| > 5°

@ 50,1 and 2 such positions are created for
every 0;,6; for training, validation and test

@ This resulted in 1557600, 31152, and
62304 configurations

@ RIR simulated using RIR-Simulator
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Feature extraction

@ Speech signals from Librispeech

@ Two 0.5 s segments are randomly picked and convolved
with the target and inference RIRs from a single room

@ Signal-to-Interference ratio (SIR) [0,10] dB
@ Speech shaped noise (SSN) for training at SNR [0, 15] dB
@ Real ambient noise for test at SNR [0, 30] dB
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Experimental Setup
Experiments Localization results

Metrics

Gross Error rate : % of estimated DOAs above a 5° error
tolerance

Interference closeness rate : % of estimated DOAs which are
close (< 5°) to the interference DOA

Mean absolute error(MAE) : Mean of the absolute error with
respect to Target DOA (in degrees)
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Results

Experimental Setup

Experiments Localization results

50.9 51.4 1] ] Gross Error
E 1 Interference closeness
wl MAE
9.2 30 Using ground truth Using estimated
mask mask
20| 14.3 13.9 14.9
6.8 8.6
27141 I 18 23 2.2
= | ] A [ =
GCC- CSIPD Clean Early Reverb Early - Reverb
PHAT Mask Mask Mask Mask - Mask
@ Target mask helps in identifying the target —
bozia

@ Estimated mask has low interference closeness rate
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Experimental Setup
Experiments Localization results

With noisy alignments

Clean Mask Early Mask Reverb Mask
Alignments Noisy | Clean | Noisy | Clean | Noisy | Clean
Gross Error Rate 152 | 143 | 148 | 139 | 159 | 149
Interference Close Rate | 2.5 2.4 2.4 23 23 2.2
MEA 3.8 3.3 3.6 3.2 3.9 3.3

Using noisy alignments has negligible effect on performance

Cota—
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Experimental Setup
Experiments Localization results

Other observations

@ Other target identifiers : Spectrum based
@ Mask identifiers works better than spectrum identifier
@ Multiplying masks with CSIPD is better than appending

@ Fricatives are better suited for localization and nasal are
the worst

Phone CHIICHB|ZB|SHB|NGE|NE| ME|BB
Error rate 1.5 1.6 1.8 1.8 194 | 21.1

19/21



Conclusion

Conclusion

@ Proposed methods to incorporate text into speaker
localization pipeline

@ Masks are good target identifiers. Multiply > Append

@ Fricatives phones are better for localization and plosive
sounds are the worst

@ Ok Google sshhhhhhhhhhhhhhhhh!!!
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Conclusion

Thank you
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