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1 A Brief Introduction to the Turbo Principle 

(Digital Communications)

Turbo principle introduced into forward error correction (FEC) by Berrou et al., 1993

 2 parallel (weak) convolutional encoders operating on interleaved bitstreams

 2 parallel convolutional decoders operating iteratively

(modified Viterbi algorithm or modified BCJR algorithm applied)

 In the decoder: Iterative exchange of (a posteriori) probabilities / likelihood ratios

 Error performance very close to theoretical bounds

Today, turbo codes are known in many variants and are deployed in many communication

systems (3G, LTE, ….)
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1 A Brief Introduction to the Turbo Principle 

The Encoder (simplified)

2 parallel (weak) convolutional encoders:
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1 A Brief Introduction to the Turbo Principle 

The Decoder

2 parallel convolutional decoders operating iteratively  (BCJR or soft-input/soft-output Viterbi):
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[L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, 

“Optimal Decoding of Linear Codes for Minimizing 

Symbol Error Rate”, 

Trans. on Information Theory, 1974]
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2 The Turbo Fusion Approach

The Decoder

Turbo fusion of magnitude and phase feature models: Forward-backward algorithms in iteration

- Dynamic range limitation of exchanged information (posteriors) between iterations

- Sequence of posteriors is subject to final Viterbi search

Observation streams:

emission probs

from DNN/CNN

acoustic models with

context input

recognized word sequence

feedback loop

Component

Recognizer

Component

Recognizer

iteration index

Viterbi

Search
Viterbi

Search

Limiter

Limiter

from magnitude

from phase

[T. Lohrenz and T. Fingscheidt, “Turbo-Fusion of Magnitude and Phase Information for DNN-Based Phoneme Recognition”, 

in Proc. of ASRU, pp. 118-125, Okinawa, Japan, Dec. 2017]

[S. Receveur, R. Weiss, T. Fingscheidt, “Turbo Automatic Speech Recognition”,                                                

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 5, pp. 846-862, May 2016]
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2 The Turbo Fusion Approach 

The Decoder (Details)

emission
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2 The Turbo Fusion Approach 

Limiting the Exchanged Posterior Information (Extrinsic)

In theory, the extrinsic information (posterior) has to be converted to the state space of the 

subsequent component recognizer by a state-space transformation matrix.

Analogy to the turbo codes: Interleaver matrix           also performs a (state) space transform.

For equal state spaces, this can be efficiently done by a simple                      function:Limiter
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time frame

3 Simulation Setup

Task Definition, Database and Feature Extraction

Experiments on the TIMIT dataset of continuous speech (phoneme recognition task)

 462 speaker training set, 50 speaker development set, and 24 speaker core test set

 61 phones during decoding, merged to 39 phones for scoring (common practice)

 Hybrid context-independent acoustic monophone models with 3 states per phone 

(= 183 HMM states)

 Phoneme error rate is evaluated as

 Magnitude features: 40 standard mel-filterbank coeffs

(FBANK) + with appended

 Proven to be suitable for DNN/CNN processing

 Phase features: 40 mel-filterbank coeffs extracted from               

all-pole model-based group delay function + +

 Narrow peaks in formant regions yields complementarity

[E. Loweimi, S.M. Ahadi, and T. Drugman, “A new Phase-Based Feature Representation for 

Robust Speech Recognition”, in Proc. of ICASSP, pp. 7155-7159, Sep. 2013]

m
e

l
c
o

e
ff
ic

ie
n
t

m
e
l
c
o
e
ff
ic

ie
n
t

% phonemes

exclusively 

correct:

6.85%

3.94%



18.07.2018 |  Tim Fingscheidt | Acoustic Model Fusion According to the Turbo Principle | 9

3 Simulation Setup

Acoustic Modelling

Training in clean conditions

Three different model topologies were used:

DNN: 33.5M parameters

 8 fully connected layers with 2048 sigmoid units

 RBM initialized weights, using dropout

 15 frames input context (-7 / +7)

CNN1: 5.4M parameters

 Limited weight sharing (LWS) for 1-D convolution 

along spatial dimension 

 15 frames input context (-7 / +7)

CNN2: 87.1M parameters

 Hierarchical network with 5 subnetworks

 LWS for 2-D convolution on local sections

 25 frames input context (-12 / +12)

[O. Abdel-Hamid et al., “Convolutional Neural Networks for Speech Recognition”, 

in IEEE/ACM Trans. on ASLP, vol. 22, no. 10, pp.1533-1545, Oct. 2014]

[O. Abdel-Hamid et al., “Phone Recognition with Hierarchical Deep Maxout

Networks”, in EURASIP Journ. on ASMP, vol. 2015, no. 1, pp.1-13, 2015]

CNN2

[G.E. Hinton, N Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, 

“Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors”, 

arXiv:1207.0580, pp. 1-18, 2012]
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Baselines with information fusion:

 Feature-level fusion: Feature concatenation (Fusion-CONCAT)

 Classifier-level fusion: Synchronuous multi-stream HMMs (Fusion-MSHMM):

(two independent hyperparameters )

 Classifier-level fusion: Linear combination of emission probs (Fusion-WA):

(one independent hyperparameter )

 Decision-level fusion: Recognizer output voting error reduction (Fusion-ROVER)      

(maximum weighted confidence scoring, one independent hyperparameter)

3 Simulation Setup

Baselines / Other Fusion Methods
Baselines without information fusion:

 Magnitude features (-mag)

 Phase features (-phase)

[A.V. Nefian, L. Liang, X. Pi, X. Liu, K. Murphy, “Dynamic Bayesian Networks for Audio-Visual Speech Recognition”, 

in EURASIP Journal on Applied Signal Processing 11(1), pp. 1274-1288, 2002]

single-model

approaches

[B. Hoffmeister, T. Klein, R. Schlüter, H. Ney, “Frame Based System Combination and a Comparison 

With Weighted ROVER and CNC”, in Proc. of Interspeech, Pittsburgh, PA, USA, pp. 537-540, Sep. 2006]

[H. Misra, H. Bourlard, V. Tyagi, “New Entropy Based Combination Rules in HMM/ANN Multi-Stream ASR”, Proc. of 

ICASSP, Hong Kong, China, pp. 741-744, 2003]
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Dev Set Core Test Set

DNN - 19.70

DNN-mag 18.24 19.85

DNN-phase 21.32 23.29

Fusion-CONCAT 19.92 21.58

Fusion-WA 18.04 19.74

Fusion-MSHMM 17.94 19.62

Fusion-ROVER 18.34 20.01

T-Fusion-DNN+DNN

(start: mag)

17.90 19.46

T-Fusion-DNN+DNN

(start: phase)

18.15 19.78

4 Simulation Results 

Turbo Fusion and Other Fusion Methods

Benchmarking of DNN-based turbo fusion w.r.t. [Hinton et al.], single-model DNN baselines, 

and some simulated fusion baselines

[G.E. Hinton, N Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, 

“Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors”, arXiv:1207.0580, pp. 1-18, 2012]

[Hinton et al.]

[T. Lohrenz and T. Fingscheidt, “Turbo-Fusion of Magnitude and Phase Information for DNN-Based Phoneme Recognition”, 

in Proc. of ASRU, pp. 118-125, Okinawa, Japan, Dec. 2017]

[Lohrenz, Fingscheidt]

(our impl. of Hinton et al.)

[Lohrenz, Fingscheidt]

Phoneme Error Rate 

(% PER)
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Core Test Set

CNN 19.92

DNN 19.70

T-Fusion-DNN

(start: mag)

19.46

CNN2-phase 19.13

DNN+RNN 18.80

T-Fusion-DNN+CNN1 18.80

WaveNet on raw audio 18.80

Connectionist

Temporal Classification

18.40

HMM-BLSTM 17.90

RNN Transducer 17.70

CNN2-mag 17.45

T-Fusion-CNN2+CNN2

(start: mag)

16.91

4 Simulation Results 

Turbo Fusion and Other TIMIT Benchmarks
Benchmarking of turbo fusion w.r.t. [Hinton et al.], single-model DNN or CNN1 or CNN2 

baselines, and various other TIMIT baselines

[Hinton et al., 2012]

[T. Lohrenz and T. Fingscheidt, “A New TIMIT Benchmark for Context-Independent Phone Recognition 

Using Turbo Fusion”, submitted to SLT, Athens, Greece, Dec. 2018]

Magn. baseline of [Lohrenz, Fingscheidt, 2018, subm.]

[Abdel-Hamid et al., 2014]

[Lohrenz, Fingscheidt, 2018,

submitted]

[Lohrenz, Fingscheidt, 2017]

Phase baseline of [Lohrenz, Fingscheidt, 2018, subm.]

[Li Deng, Chen, 2014]

[Lohrenz, Li, Fingscheidt, accepted for publication 2018]

[v.d. Oord et al., 2016]

[Graves, Mohamed, Hinton, 2013]

[Graves, Jaitly, Mohamed, 2013]

[Graves, Mohamed, Hinton, 2013]

4.4% rel.

Phoneme Error Rate 

(% PER)
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# of iteration 

CNN2-phase

CNN2-mag

Start: mag

Start: phase

4 Simulation Results

Behavior of Turbo Fusion Over Iterations 

How does T-Fusion-CNN2+CNN2 (magnitude and phase turbo fusion) perform over the

iterations                       ?

 Both component recognizers (CRs) reach good consensus after a few iterations

 Even the weaker phase CNN2 model improves the CNN2-mag model after 10 iterations 

by 17.45% - 16.91% = 0.54% absolute (3.1% relative)

Phoneme Error Rate 

(% PER)

16.91%

Start: mag

Phoneme Error Rate 

(% PER)
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5 Conclusions

Applying the “turbo principle” from Communications to model fusion in ASR:

 Minor modification to the forward-backward algorithm (FBA) 

 Feedback of posteriors and simple dynamic range limitation

 HMMs trained separately for each input stream (flexible and scalable towards multiple CRs!)

Performance:

 Control of limiter range over iterations makes the component recognizers 

“listen and talk” to each other

 Any recognizer output can be used as final result after some iterations 

 Turbo fusion of magnitude/phase models outperforms all investigated reference methods    

on TIMIT:

16.91% PER for context-independent models

Outlook: Turbo model fusion for ASR …

 … could replace multicondition training in the future

 … could be realized by using BLSTMs instead of the FBA

 … could be used in really distributed intelligence and recognition

 … could be used in acoustic sensor networks
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Thank you for your attention.

Tim Fingscheidt

t.fingscheidt@tu-bs.de
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