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1 A Brief Introduction to the Turbo Principle 

(Digital Communications)

Turbo principle introduced into forward error correction (FEC) by Berrou et al., 1993

 2 parallel (weak) convolutional encoders operating on interleaved bitstreams

 2 parallel convolutional decoders operating iteratively

(modified Viterbi algorithm or modified BCJR algorithm applied)

 In the decoder: Iterative exchange of (a posteriori) probabilities / likelihood ratios

 Error performance very close to theoretical bounds

Today, turbo codes are known in many variants and are deployed in many communication

systems (3G, LTE, ….)
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1 A Brief Introduction to the Turbo Principle 

The Encoder (simplified)

2 parallel (weak) convolutional encoders:
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1 A Brief Introduction to the Turbo Principle 

The Decoder

2 parallel convolutional decoders operating iteratively  (BCJR or soft-input/soft-output Viterbi):
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[L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, 
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Trans. on Information Theory, 1974]
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2 The Turbo Fusion Approach

The Decoder

Turbo fusion of magnitude and phase feature models: Forward-backward algorithms in iteration

- Dynamic range limitation of exchanged information (posteriors) between iterations

- Sequence of posteriors is subject to final Viterbi search

Observation streams:

emission probs

from DNN/CNN

acoustic models with

context input

recognized word sequence

feedback loop

Component

Recognizer

Component

Recognizer

iteration index

Viterbi

Search
Viterbi

Search

Limiter

Limiter

from magnitude

from phase

[T. Lohrenz and T. Fingscheidt, “Turbo-Fusion of Magnitude and Phase Information for DNN-Based Phoneme Recognition”, 

in Proc. of ASRU, pp. 118-125, Okinawa, Japan, Dec. 2017]

[S. Receveur, R. Weiss, T. Fingscheidt, “Turbo Automatic Speech Recognition”,                                                

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 5, pp. 846-862, May 2016]
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2 The Turbo Fusion Approach 

The Decoder (Details)
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2 The Turbo Fusion Approach 

Limiting the Exchanged Posterior Information (Extrinsic)

In theory, the extrinsic information (posterior) has to be converted to the state space of the 

subsequent component recognizer by a state-space transformation matrix.

Analogy to the turbo codes: Interleaver matrix           also performs a (state) space transform.

For equal state spaces, this can be efficiently done by a simple                      function:Limiter
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time frame

3 Simulation Setup

Task Definition, Database and Feature Extraction

Experiments on the TIMIT dataset of continuous speech (phoneme recognition task)

 462 speaker training set, 50 speaker development set, and 24 speaker core test set

 61 phones during decoding, merged to 39 phones for scoring (common practice)

 Hybrid context-independent acoustic monophone models with 3 states per phone 

(= 183 HMM states)

 Phoneme error rate is evaluated as

 Magnitude features: 40 standard mel-filterbank coeffs

(FBANK) + with appended

 Proven to be suitable for DNN/CNN processing

 Phase features: 40 mel-filterbank coeffs extracted from               

all-pole model-based group delay function + +

 Narrow peaks in formant regions yields complementarity

[E. Loweimi, S.M. Ahadi, and T. Drugman, “A new Phase-Based Feature Representation for 

Robust Speech Recognition”, in Proc. of ICASSP, pp. 7155-7159, Sep. 2013]
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3 Simulation Setup

Acoustic Modelling

Training in clean conditions

Three different model topologies were used:

DNN: 33.5M parameters

 8 fully connected layers with 2048 sigmoid units

 RBM initialized weights, using dropout

 15 frames input context (-7 / +7)

CNN1: 5.4M parameters

 Limited weight sharing (LWS) for 1-D convolution 

along spatial dimension 

 15 frames input context (-7 / +7)

CNN2: 87.1M parameters

 Hierarchical network with 5 subnetworks

 LWS for 2-D convolution on local sections

 25 frames input context (-12 / +12)

[O. Abdel-Hamid et al., “Convolutional Neural Networks for Speech Recognition”, 

in IEEE/ACM Trans. on ASLP, vol. 22, no. 10, pp.1533-1545, Oct. 2014]

[O. Abdel-Hamid et al., “Phone Recognition with Hierarchical Deep Maxout

Networks”, in EURASIP Journ. on ASMP, vol. 2015, no. 1, pp.1-13, 2015]

CNN2

[G.E. Hinton, N Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, 

“Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors”, 

arXiv:1207.0580, pp. 1-18, 2012]
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Baselines with information fusion:

 Feature-level fusion: Feature concatenation (Fusion-CONCAT)

 Classifier-level fusion: Synchronuous multi-stream HMMs (Fusion-MSHMM):

(two independent hyperparameters )

 Classifier-level fusion: Linear combination of emission probs (Fusion-WA):

(one independent hyperparameter )

 Decision-level fusion: Recognizer output voting error reduction (Fusion-ROVER)      

(maximum weighted confidence scoring, one independent hyperparameter)

3 Simulation Setup

Baselines / Other Fusion Methods
Baselines without information fusion:

 Magnitude features (-mag)

 Phase features (-phase)

[A.V. Nefian, L. Liang, X. Pi, X. Liu, K. Murphy, “Dynamic Bayesian Networks for Audio-Visual Speech Recognition”, 

in EURASIP Journal on Applied Signal Processing 11(1), pp. 1274-1288, 2002]

single-model

approaches

[B. Hoffmeister, T. Klein, R. Schlüter, H. Ney, “Frame Based System Combination and a Comparison 

With Weighted ROVER and CNC”, in Proc. of Interspeech, Pittsburgh, PA, USA, pp. 537-540, Sep. 2006]

[H. Misra, H. Bourlard, V. Tyagi, “New Entropy Based Combination Rules in HMM/ANN Multi-Stream ASR”, Proc. of 

ICASSP, Hong Kong, China, pp. 741-744, 2003]
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Dev Set Core Test Set

DNN - 19.70

DNN-mag 18.24 19.85

DNN-phase 21.32 23.29

Fusion-CONCAT 19.92 21.58

Fusion-WA 18.04 19.74

Fusion-MSHMM 17.94 19.62

Fusion-ROVER 18.34 20.01

T-Fusion-DNN+DNN

(start: mag)

17.90 19.46

T-Fusion-DNN+DNN

(start: phase)

18.15 19.78

4 Simulation Results 

Turbo Fusion and Other Fusion Methods

Benchmarking of DNN-based turbo fusion w.r.t. [Hinton et al.], single-model DNN baselines, 

and some simulated fusion baselines

[G.E. Hinton, N Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, 

“Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors”, arXiv:1207.0580, pp. 1-18, 2012]

[Hinton et al.]

[T. Lohrenz and T. Fingscheidt, “Turbo-Fusion of Magnitude and Phase Information for DNN-Based Phoneme Recognition”, 

in Proc. of ASRU, pp. 118-125, Okinawa, Japan, Dec. 2017]

[Lohrenz, Fingscheidt]

(our impl. of Hinton et al.)

[Lohrenz, Fingscheidt]

Phoneme Error Rate 

(% PER)
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Core Test Set

CNN 19.92

DNN 19.70

T-Fusion-DNN

(start: mag)

19.46

CNN2-phase 19.13

DNN+RNN 18.80

T-Fusion-DNN+CNN1 18.80

WaveNet on raw audio 18.80

Connectionist

Temporal Classification

18.40

HMM-BLSTM 17.90

RNN Transducer 17.70

CNN2-mag 17.45

T-Fusion-CNN2+CNN2

(start: mag)

16.91

4 Simulation Results 

Turbo Fusion and Other TIMIT Benchmarks
Benchmarking of turbo fusion w.r.t. [Hinton et al.], single-model DNN or CNN1 or CNN2 

baselines, and various other TIMIT baselines

[Hinton et al., 2012]

[T. Lohrenz and T. Fingscheidt, “A New TIMIT Benchmark for Context-Independent Phone Recognition 

Using Turbo Fusion”, submitted to SLT, Athens, Greece, Dec. 2018]

Magn. baseline of [Lohrenz, Fingscheidt, 2018, subm.]

[Abdel-Hamid et al., 2014]

[Lohrenz, Fingscheidt, 2018,

submitted]

[Lohrenz, Fingscheidt, 2017]

Phase baseline of [Lohrenz, Fingscheidt, 2018, subm.]

[Li Deng, Chen, 2014]

[Lohrenz, Li, Fingscheidt, accepted for publication 2018]

[v.d. Oord et al., 2016]

[Graves, Mohamed, Hinton, 2013]

[Graves, Jaitly, Mohamed, 2013]

[Graves, Mohamed, Hinton, 2013]

4.4% rel.

Phoneme Error Rate 

(% PER)
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# of iteration 

CNN2-phase

CNN2-mag

Start: mag

Start: phase

4 Simulation Results

Behavior of Turbo Fusion Over Iterations 

How does T-Fusion-CNN2+CNN2 (magnitude and phase turbo fusion) perform over the

iterations                       ?

 Both component recognizers (CRs) reach good consensus after a few iterations

 Even the weaker phase CNN2 model improves the CNN2-mag model after 10 iterations 

by 17.45% - 16.91% = 0.54% absolute (3.1% relative)

Phoneme Error Rate 

(% PER)

16.91%

Start: mag

Phoneme Error Rate 

(% PER)
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5 Conclusions

Applying the “turbo principle” from Communications to model fusion in ASR:

 Minor modification to the forward-backward algorithm (FBA) 

 Feedback of posteriors and simple dynamic range limitation

 HMMs trained separately for each input stream (flexible and scalable towards multiple CRs!)

Performance:

 Control of limiter range over iterations makes the component recognizers 

“listen and talk” to each other

 Any recognizer output can be used as final result after some iterations 

 Turbo fusion of magnitude/phase models outperforms all investigated reference methods    

on TIMIT:

16.91% PER for context-independent models

Outlook: Turbo model fusion for ASR …

 … could replace multicondition training in the future

 … could be realized by using BLSTMs instead of the FBA

 … could be used in really distributed intelligence and recognition

 … could be used in acoustic sensor networks
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Thank you for your attention.

Tim Fingscheidt

t.fingscheidt@tu-bs.de
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