Diplomarbeit im Fach Informatik
RHEINISCH-WESTFALISCHE TECHNISCHE HOCHSCHULE A ACHEN
Lehrstuhl fiir Informatik 6
Prof. Dr.-Ing. H. Ney

Appearance-Based Features for
Automatic Continuous
Sign Language Recognition

vorgelegt von:
David Rybach
Matrikelnummer 229337

Gutachter:
Prof. Dr.-Ing. H. Ney
Prof. Dr. J. Borchers

Betreuer:
Dipl.-Inform. T. Deselaers
Dipl.-Inform. P. Dreuw

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit selbststdndig verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe. Alle Textausziige
und Grafiken, die sinngemifl oder wortlich aus vertffentlichten Schriften entnommen
wurden, sind durch Referenzen gekennzeichnet.

Aachen, im Juni 2006

David Rybach

Abstract

This diploma thesis investigates appearance-based features for the person-independent
vision-based recognition of continuous sign language. A large variety of methods which
have been successfully used for automatic speech recognition is applied to this task.
Appearance-based approaches do not rely on a segmentation of the images or on pre-
defined models of the image content and use the image itself as the feature. A novel
tracking algorithm is introduced and applied to hand and head tracking. The tracked
body parts are used in order to calculate additional features to improve recognition
performance. The presented automatic sign language recognition system is evaluated
on a set of sentences in American Sign Language.

Acknowledgment

I would like to express my gratitude to all people who supported me during the progress
of this work. Especially I would like to thank:

Prof. Dr.-Ing. Hermann Ney for the interesting possibilities at the Chair of Com-
puter Science 6 of the RWTH Aachen University and for many helpful discussions,

Prof. Dr. Jan Borchers who kindly accepted to co-supervise this work,

Thomas Deselaers and Philippe Dreuw for the supervision of this work and for their
countless ideas and suggestions,

Morteza Zahedi for the collection and the transcription of the RWTH-Boston-201
database,

Daniel Stein for the introduction to sign language and for the annotations of the
RWTH-Boston-104 database,

Stefan Hahn and Arne Theres for many helpful tips, comments and discussions about
speech recognition,

Daniel Schneider for proof reading the manuscript and a lot of helpful suggestions,
Julia Klubert who helped me annotating the RWTH-Boston-Hands database,

and finally my parents for supporting me in every way.

vii

Contents

1 Introduction

2 Sign Language

2.1 Manual Components
2.2 Non-Manual Components
2.3 Grammar e e
2.4 Notation Systems L

3 Sign Language Recogpnition

3.1 System Overview e
3.2 Visual Modeling L
3.3 Language Modelingo
3.4 Trainingo
3.5 Recognition Lo o
3.6 State of the Art in Sign Language Recognition

4 Tracking

4.1 Stateofthe Art
4.2 Tracking using Dynamic Programming
4.3 Hand Tracking
4.4 Head Tracking e

5 Features for Sign Language Recognition

5.1 Image Features o
5.2 Manual Features
5.3 Non-Manual Features
5.4 Feature combination

6 Databases
6.1 RWTH-Boston-104 Database
6.2 RWTH-Boston-Hands Database

S Ut Ot W W

7 Results

7.1 Tracking

7.2 Sign Language Recognition
8 Conclusion and Perspectives
A Additional Tables
List of Figures
List of Tables

Bibliography

51
51
60

79
83
89
91

93

Chapter 1
Introduction

This diploma thesis presents a system for the automatic recognition of continuous sign
language. Different features describing visual and temporal aspects of signs and the
usage of these features for sign language recognition are investigated.

Sign language is used by deaf people and people being hard of hearing for com-
munication. It is a structured form of visual communication, comparable to spoken
languages in complexity and expressiveness. Approximately 80,000 deaf people live in
Germany, most of them speaking German Sign Language (Deutsche Gebérdensprache,
DGS). German Sign Language has been recognized legally in 2002 and can be used
for the communication with public authorities (Gesetz zur Gleichstellung behinderter
Menschen § 6). However, in most cases the direct communication between deaf and
hearing people is difficult, because either a sign language interpreter has to mediate
or written communication has to be used.

Recent progress in image processing [Huang & Sebe™t 06], speech recognition [Gau-
vain & Lamel™ 05], and machine translation [Ney 05a] gives a prospect of using com-
puters to bridge this communication barrier by automatically translating sign language
in spoken language and vice versa. Automatic sign language recognition plays an im-
portant role in this — currently still academic — translation system. Systems for the
automatic recognition of sign language aim at recognizing single signs or sequences
of signs in continuous signing. The translation of the recognized signs to a spoken
language can be done by an additional translation system [Stein & Bungeroth™ 06]
or by coupling recognition and translation [Ney 99]. In the statistical approach to
automatic sign language recognition, the structure of signs and language is modeled
by probabilistic knowledge sources, which enables the system to learn automatically
without human intervention.

Research in the area of sign language recognition is challenging, because it requires
methods known from gesture recognition, speech recognition, and image processing.
Automatic sign language recognition can be applied, for example, to the following
tasks:

Translation. Translation systems can aid the communication between deaf and hearing
people.

Sign language learning. An application to teach sign language should control the
progress of the user by examining the performed signs.

Transcription of videos. Transcriptions of sign language videos are needed for differ-
ent kinds of further processing, for example sign language translation. Currently,
transcribing sign language videos, i.e. writing down the performed signs, is usu-
ally done manually, which is a rather simple but nevertheless very costly process.
The transcription proposed by the automatic recognition system could be mod-
ified by a human operator afterwards.

Dialog systems. Dialog systems and information systems are usually operated by
speech and are thus unusable for deaf people. Interfaces for barrier free dia-
log systems should allow sign language input.

In current research systems, different types of input data are used: Some systems
use data gloves or motion capturing systems to measure the position and movements of
body parts directly. In contrast, vision-based systems use images captured by a video
camera, which is less intrusive and does not require complex and expensive hardware.
Features of the signs have to be extracted from the captured sequence of images.

The focus of this work is set on appearance-based features for vision-based recog-
nition of continuous sign language. Appearance-based features are obtained directly
from the input images without a feature extraction of segmented image parts. Ad-
ditionally, features describing special aspects of signs are investigated in this work.
For the extraction of these features, new methods for hand and head tracking in sign
language videos are developed. Methods that have been investigated successfully in
speech recognition are applied to sign language recognition.

The main contributions of this work are quantifiable analyses of several features,
different tracking methods, and a large number of model parameters. A sign language
recognition system has been implemented based on the RWTH speech recognition
system developed by the Human Language Technology and Pattern Recognition group
of the RWTH Aachen University. Furthermore, a set of tools for the visualization and
analysis of recognition and tracking results has been developed.

This document is organized as follows: Chapter 2 gives an overview on sign lan-
guage, its grammar, and commonly used notation systems. Chapter 3 describes the
underlying theory of sign language recognition and gives a survey on available sys-
tems for the recognition of isolated and continuous sign language. In Chapter 4, the
tracking framework and the used methods for hand and head tracking are presented.
Chapter 5 describes appearance-based features, features for specific aspects of sign lan-
guage, and their combinations. The databases used for the evaluation of the features
and the tracking methods are presented in Chapter 6. Results of the experiments with
different features and various tracking methods are shown and discussed in Chapter 7.
Finally, Chapter 8 gives a conclusion of this work and perspectives for further research.

Chapter 2
Sign Language

Deaf persons use a sign language for communication with each other. Sign languages
are self-contained languages with their own structure and grammar. They have devel-
oped in a natural way in deaf communities and independent from spoken languages.
Therefore sign language is not universal. Instead, a different type of sign language
has evolved in every deaf community. Sign languages can be grouped into national
languages, e.g. American Sign Language (ASL) and German Sign Language (Deutsche
Gebérdensprache, DGS), which can have several dialects again.

Sign language is frequently confused with pantomime, where the whole body is
used to illustrate the meaning of single words or phrases. Some signs in sign language
(iconic signs) are illustrative, too. However, pantomime is limited to concrete subjects,
whereas sign language is not limited in expressiveness.

Research in sign languages is relatively young. The first serious investigations started
about forty years ago [Stokoe 60]. Most of the work has been done in linguistics, but
in the last few years research in statistical sign language translation [Bungeroth & Ney
04, Stein 05] and sign language recognition has been done as well. A detailed discussion
on past and ongoing research in sign language recognition is given in Section 3.6.

In contrast to spoken languages, which use acoustic signals, sign language uses visual
communication. The devices for visual communication can be divided into two groups:
manual components and non-manual components.

2.1 Manual Components

In [Stokoe & Casterline™ 65] it is stated that there are three manual components: hand
configuration, place of articulation and movement. These components were extended
by hand orientation as fourth component [Klima & Bellugi 79, Battison 78].

Hand configuration. The hand shape, i.e. the positions of the fingers, is called hand
configuration. Due to the high degree of freedom of the fingers, a lot of hand
shapes are possible, but not all of them are used in sign language. Which con-
figurations are used, differs from language to language. However, six basic con-
figurations can be found in most languages [Battison 78] (see Figure 2.1). Each

Figure 2.1. Basic hand shapes (from [Braem 95])

Figure 2.2. The signing space (from [Braem 95])

language defines additional hand shapes. For example, in DGS there are 34
additional configurations.

Place of articulation. The location in signing space, where the sign takes place, is
referred to as place of articulation. The signing space is the area in front of the
signer in which the signs are performed. It includes the face and the upper part
of the body (see Figure 2.2). Places of articulation can be grouped into lexical
meaningful areas. The area in front of the face is used often, because signing
persons look in the eyes of each other not on the hands while they are “listening”.
The size of a sign can change depending on the “loudness”. Whispered signs are
smaller than shouted ones.

Hand movement. Hand movement refers to the trajectory of one or both hands in
space. Some signs are performed with only one hand, called the dominant hand.
In signs performed with two hands the non-dominant hand performs a similar
movement as the dominant hand or has a supporting role. Deaf people recognize
many signs already using only the hand movement [Braem 95].

Hand orientation. The hand orientation is defined by the situation of wrist, elbow,
and shoulder. Signs with equal hand configuration can differ in hand orientation.
Differences in hand orientation become apparent by different views of the palm.

A pair of signs can be found for each component, such that both signs differ only
in this component. The combination of manual components is subject to (national)
rules. Not all combinations are allowed, similar to spoken languages, where not all
possible phoneme combinations are used.

2.2 Non-Manual Components

Non-manual components include facial expression, eye gaze, head tilt and body pos-
ture. They are used for flection and other grammatical purposes. For example, facial
expression and head position can be used to indicate questions, negations, and subor-
dinate clauses [Sandler 99]. One of the first studies on non-manual components showed
that it is possible to obtain some information about the topic of a conversation if the
hands are not visible [Baker & Padden 78].

2.3 Grammar

Sign language grammar differs to spoken language grammar to a large extent. For
example, in DGS the verb is always placed at the end of a sentence. Furthermore,
there are no articles and copula.

In spoken language, speech has a linear structure: A sentence is a sequence of words,
and a word consists of a sequence of sounds. Also in sign language, signs are produced
one after the other to formulate a sentence. However, in sign language sub-lexical
units can occur simultaneously. Hand movement, hand shape, place of articulation,
and non-manual signals can be produced simultaneously and independent from each
other. One reason for this simultaneity is that the eye can capture more simultaneously
occurring events than the ear [Braem 95].

The use of the spatial dimension, in addition to the temporal one, gives supplemen-
tary possibilities to convey meaning. Spatial information is used to flex and to derive
words. Flexed verbs consist of the same basic gesture but differ in movement speed,
direction, and expansion. Figure 2.3 shows examples for inflection.

Another unique feature of sign language is indexing. Objects can be positioned in
signing space and then used again by pointing to them [Wrobel 01]. For example,
unknown words, like names or foreign words, are spelled (using a finger alphabet) and
placed in signing space to avoid spelling them again. Absent persons can be described
and indexed similarly. Temporal information is also transfered with spatial principles.

Figure 2.3. Inflection of the sign “ASK™ (a) Personal aspects (from left to right): lexical
form of “ASK", “I ask you", “I ask her/him”, “you ask me" (from [Klima & Bellugi
79]). (b) Temporal aspects (from left to right): “ask regularly”, “ask over and over
again”, “ask continuously”, “ask for a long time” (from [Poizner & Klima™ 83])

Incorporation gives the ability to deliver parallel information on different levels.
Additional information to the basic sign can be delivered with manual and non-manual
components. The upper part of the body, for example, is used to indicate a role
change of the speaking character in direct speech. Lips can be used to distinguish
between signs with the same manual components. The modification of adjectives
and adverbs is also done with non-manual devices. To incorporate several meanings,
multiple signs of a phrase can be merged to a single new sign, containing aspects of
all separate signs, with the semantic of the whole phrase. Incorporation allows fast
speech production. [Bellugi & Fischer 72] found out that, although the production of
single signs is significantly slower than the production of spoken words, the duration
of signed and spoken sentences with the same content are nearly equal.

2.4 Notation Systems

It is possible to represent sign language in written form, because only a limited set of
components is used in sign language.

Notation systems for a description of the syntactic form of a sign are based on
a phonological model, which describes the organization of the basic components in
subunits. A subunit of sign language was formerly named chereme but it has been
replaced by the term phoneme, which is also used for spoken languages. Currently
there is neither an official definition of subunits nor a common pronunciation lexicon
for ASL or DGS.

The Stokoe model defines 55 phonemes for ASL in three classes: hand configuration,

place of articulation and movement (as described Section 2.1). A sign is described with
at least one phoneme of each class, whereas the phonemes occur simultaneous. This
model does not give a precise definition of a sign, as it is ambiguous in some aspects.

[Liddell & Johnson 89] introduces the movement-hold model, where signs are defined
as a sequence of movement and hold parts. In movement parts some components
change, in hold parts the configuration of the signer stays constant. This model is
used by [Vogler & Metaxas 99b] for sign language recognition.

More recent models take into account both the simultaneous and the sequential
structure of signs [Sandler 03, Vogler & Metaxas 01].

At the moment no official standard for written sign language exists. Commonly
used notation systems are briefly described in the following:

Glosses. Glosses give a semantic representation of sign language instead of describing
the syntactic form of the signs. The meaning of a sign is written as the stem form
of the corresponding word in spoken language. Transcriptions of incorporations
(see Section 2.3) can be added to the base form.

HamNoSys. The Hamburger Notation System [Prillwitz & Leven™ 89| describes the
syntactic structure of signs with approximately 150 symbols. The transcription
of a sign is done on four levels: hand shape, hand orientation, location, and
movement. For non-manual components, especially facial expression, there are
only few symbols.

SiGML. The Signing Gesture Markup Language [Elliott & Glauert™ 00] defines an
XML data format for the representation and transmission of information about
sign language sequences. It is based on HamNoSys with extensions for the rep-
resentation of non-manual components.

Chapter 3
Sign Language Recognition

Approaches to sign language recognition can be divided into isolated sign recognition
and continuous sign language recognition. Isolated sign recognition is a special case of
gesture recognition. Gesture recognition systems are typically designed to recognize
artificial gestures. The user has to learn these gestures in order to communicate with
the system. In sign language the interpersonal and intrapersonal variance between per-
formed gestures is usually higher than between gestures of gesture recognition system,
due to their natural usage in speech. In addition, the artifically defined vocabulary,
i.e. the set of gestures, for a gesture recognition system is designed for an easy discrim-
ination of the gestures, whereas the vocabulary of a sign language recognition includes
gestures that are difficult for the system to disambiguate. Gesture recognition is often
used to control an electronic device with a limited number of gestures. Isolated sign
recognition deals with larger vocabularies. The use of appearance-based methods for
gesture recognition is covered by [Dreuw 05].

This work is concerned with continuous sign language recognition, thus with the
recognition of complete sign language sentences. One challenge in continuous sign
language recognition is the absence of evident sign boundaries. Start and end of each
sign have to be estimated by the recognition system in order to classify the single signs.
The estimation of sign boundaries is done implicitly during the recognition process of
the presented system. Furthermore, in continuous signing the hands have to move from
the ending location of one sign to the starting location of the next. Hand orientation
and hand shape change between signs as well. These segments between signs, called
movement epenthesis [Liddell & Johnson 89], are not part of either of the signs. The
appearance of a sign can change depending on the preceeding and the succeeding sign.
These coarticulation effects are similar to those observed in speech recognition [Hwang
& Hon™ 89].

Sign language recognition is considered as a type of speech recognition in this work.
The investigated methods have been applied successfully in automatic speech recog-
nition. The following sections give a short overview on the fundamentals of speech
recognition in general and the used methods for sign language recognition. A survey
of available sign language recognition systems is given in Section 3.6.

3.1 System Overview

Current speech recognition systems use a statistical approach [Jelinek 98]. Given a

sequence of features x{ = x1,..., o7 describing the input data, the best sequence of

words w) = wy, ... wy (to simplify matters we refer to a sign as word in the following)
is chosen according to Bayes’ decision rule which maximizes the a-posteriori probabilty

[Bayes 63]:

il = svgma {p(w 2]} (3.)
= argr;laX{p(w{V)-p(wﬂw%} (3.2)

Equation (3.2) introduces the two basic stochastic models: p(zf|w{') is the proba-
bility of observing a sequence of features #7 given a word sequence w. p(zT|wi') is
referred to as the visual model, according to the acoustic model in speech recognition.

The language model p(w{V) provides the a-priori probability for a word sequence w{v .

The basic architecture of a statistical speech recognition system is shown in Fig-
ure 3.1. Different parts of the system are described in the following sections. Word
models are described in Section 3.2, the language model in Section 3.3. Section 3.5
depicts the search module. The focus of this work is the feature analysis, covered by
Chapter 5.

3.2 Visual Modeling

The aim of the visual models is to provide stochastic models of speech units. These
models capture static features of speech as well as temporal features.

The acoustic models of speech recognition systems (especially those for large vocab-
ulary speech recognition) use sub-word units such as phonemes to model whole words.
These sub-word units are shared among all words in the vocabulary. The model of
a whole word is built by connecting the models of the sub-word units according to
a pronunciation lexicon. The usage of sub-word units allows to recognize words, for
which no example is available in the training phase of the system, by only providing
knowledge about the pronunciation of the word. Another advantage of sub-word units
is that their models can be estimated more reliable, because more training data is
available for each of them.

As mentioned in Section 2.4, no proper sub-word definition for sign language is
available. The system presented here uses whole word models as applied, for example,
in spoken digit recognition and command-and-control tasks.

10

Video Input
Xq.. . Xr

Feature
Analysis

T ... TT

Pr(zy...z7jwy.. . wy
Global Search:)T Word Model Inventory |
argmax {Pr(wy ... wy) - Pr(zy .. opjwy .. wy)}
- . W) I Language Model |
wy .. WY
Recognized

Word Sequence

Figure 3.1. Basic architecture of a statistical speech recognition system

3.2.1 Hidden Markov Models

Hidden Markov models (HMM) are used to model the features of speech units. In the
presented system, the speech units are whole words. HMMs allow proper modeling of
variations in speaking rate. They have been established as the de facto standard in
speech recognition [Baker 75, Rabiner 89]. Their ability to model variations of speed
and amplitude has been proven also for gesture recognition [Schlenzig & Hunter™ 94,
Bobick & Wilson 97, Pavlovic & Sharma™® 97] and sign language recognition [Starner
& Pentland 94, Assan & Grobel 97, Vogler & Metaxas 99a] (see also Section 3.6).

HMDMs are stochastic finite state automata. Each part of a word is represented by
states of the automaton. These states are an abstract concept and cannot be observed,
they are hidden. The presented system uses the Bakis topology [Bakis 76], where each
state has three outgoing transitions: a loop transition to stay in the state, a forward
transition to the next state, and a skip transition to the state after the next one (see
Figure 3.2). The skip transitions are disabled in some experiments, as discussed in
Section 7.2.4.

The probability p(x?|w) of observing the feature sequence x? given a word w is
defined as the sum over all possible state sequences slT for this word:

pla]w) => p(al, sT|w) (3.3)

[s1]

11

11} Pl2|2) P33

T i (/"‘\

N Ji'slf"|llrf““\.la|>|llf 4
O N
A NS !

AL

Figure 3.2. Hidden Markov model with 3 states in Bakis topology

p(zT, sT|w) can be rewritten as:

T

pa], sT|lw) =[] plar sidaf ", 851 w) (3.4)
t=1

HMDMs for subunits, if existent, are concatenated to models for whole words. These
word HMMs are concatenated to model a whole word sequence. Using (3.3) and (3.4)

one can write the probability of observing =1 given a sentence w)' as

2 [wi') ZHP e, st s wl) (3.5)

T =1

Where the sum is taken over all possible state sequences 31 for the given word sequence
N. Using Bayes’ identity, (3.5) can be rewritten to:

Tl = 3 [T plerle st wd) - ploclat, 1,) (3.6)

sT t=1
51

With the model assumptions that the probability of observing x; depends only on
state s; and that state s; depends only on the preceeding state s;_1 (first order Markov
assumption), the equation can be further simplified:

\wl ZHP 93t|5t,w1 (St‘St—l,w{V) (3.7)

sT t=1
51

Equation (3.7) splits p(z] \wl) into a transition probability p(si|si—1,w]) and an emis-
sion probability p(wi|s, w)). The emission probability denotes the probability of ob-
serving feature x; in state s;. The probability of moving from state s;_1 to state s; is
given by the transition probability (see also Figure 3.2).

12

The sum in (3.7) is approximated by the maximum. This approximation is called
the Viterbi or mazimum approzimation [Ney 90].

T
p(atwi’) ~ maX{Hp (@ese, i) -p(StIStl,w{V)} (3-8)

S e

Both (3.7) and (3.8) can be evaluated efficiently with the forward-backward algorithm
[Baum 72, Rabiner & Juang 86] or with dynamic programming [Bellmann 57, Viterbi
67, Ney 84].

If the transition probability is assumed to be independent of the word model contain-
ing the transition, the transition probability can be replaced by an auxiliary function
q(st—s¢—1). In case of the Bakis topology ¢ has to be defined for ¢(0) (loop-transition),
q(1) (forward-transition) and ¢(2) (skip transition). q(s; — s;—1) is called time distor-
tion penalty (TDP). In the presented system the TDPs are defined by fixed values
instead of estimated them on the training data.

T
plafw)’) ~ max {Hp |, wi) - q(se — St—l)} (3.9)

st i

3.2.2 Mixture Densities

In the presented system, emission probabilities are modeled with continuous prob-
ability distributions. The mixture densities consist of a weighted sum of Gaussian
probability densities, as in speech recognition:

Ls
=1
Ls Ls
= > eq - N(zlpg, Saywl’) with Y eg=1 (3.11)
=1 =1

where L, is the number of densities, ¢y denotes the mixture weights and N (x|u, X)
is the normal distribution with mean p and covariance Y. For efficiency reasons, a
diagonal covariance matrix is used, assuming statistical independence of the features.
Furthermore, to avoid problems of estimating the covariance of high dimensional fea-
tures, the number of parameters to be estimated is reduced by pooling the covariance
over all states, such that g = X. For a state s of a single word w the emission
probability is:

p(z|s, w) chl (x|pst, X,w) (3.12)

13

The sum over all densities is approximated with the maximum over all densities. This
approximation is possible, because the mixture probability is dominated by one den-
sity in most cases. The advantage of this approximation is a reduced computational
complexity in training and in recognition. Using the maximum approximation we get

plals, w) = max {eq - Nalpgs 5, 0)) (313)

with

D 2
1 1 —
N (z|pst, Bw) = e (—2 E (W) >) (3.14)
[T, /2702 d=1 %d

where o4 is the d-th diagonal entry of the covariance matrix.
The negative logarithm is applied to speed up calculations and for numerical stability
reasons:

D

D 2
1 — 1
—log p(z|s, w) = mlin {2 E <$Ulgsml> —logcg + 3 dgl log(27m§)} (3.15)

d=1

The negative logarithm — log p(z|s, w) can be interpreted as a distance between the
observed feature x and a reference model pg,. This distance is called score of x,
denoted d(x; s, w). A low score of x means, that x fits the model.

3.3 Language Modeling

The purpose of the language model is to provide a model for syntax and semantics
of speech. A stochastic model is used which provides an a-priori probability p(wi)
of a word sequence w{v , which is independent of the visual model. In the field of
speech recognition, especially large and very large vocabulary speech recognition, the
language model gives a significant contribution to the recognition performance.

The probability of observing a word sequence w{v is

N
p(wy’) = [plwnlwi™) . (3.16)
n=1

Because the number of possible word sequences is unlimited, this probability can not
be estimated without some model assumptions. A word sequence is assumed to follow
a (m — 1)-th order Markov process. Thus a word w, depends only on its (m — 1)

predecessors h,, := wZ:}n 41, referred to as the history of word wy. The language
model probability is then
N
p(w{V) = Hp(wn’hn> : (3.17)
n=1

14

This model is called a m-gram language model [Bahl & Jelinekt 83]. m-gram language
models with a history length of 1, 2 and 3 are called unigram, bigram and trigram,
respectively. A trigram language model is used in this work.

For the evaluation of language models the perplexity is commonly used. The per-
plexity of a language model and a test corpus wi' is defined as:

PP = pwl)yw (3.18)

N _
= [H p(wn|hn)] (3.19)
n=1

Z[=

As the perplexity is an inverse probability, it can be interpreted as the average number
of possible words at each position in the text. The logarithm of the perplexity

N
1
log PP = — > " log p(wn|hn) (3.20)

n=1

is equal to the entropy of the text, i.e. the redundancy of words in the test corpus,
with respect to this language model.

In equation (3.2), the acoustic model and the language model have the same impact
on the decision. Experiments in speech recognition have shown that the recognition
performance can be improved, if the language model has more weight than the acoustic
model. The weighting is done by introducing a language model scale o and an acoustic
model scale 3:

argmax {p(w]'|z])} = argmax {p"(w]) - p (@] ul)} (3.21)
wi’ wi’
= argmax{glogp(w{\[)+logp(x1T|w{V)} (3.22)
wiy

The factor % is referred to as language model factor.
Details about the language model implementation of the presented system can be

found in [Wessel & Ortmanns™ 97].
3.4 Training
As described in Sections 3.2 and 3.3, we use stochastic models as knowledge sources

of the recognition system. The true model distributions are not known and have to be
estimated from training data.

15

3.4.1 Training of the Visual Model

As described in Section 3.2, Gaussian mixture densities are used for the emission
probabilities p(x|s, w). Their parameters mean fi,,, mixture weights ¢;s,, and variance
o have to be estimated. The parameters are summarized as a parameter set ¥. A set
of R pairs is assumed as training data, each consisting of a feature vector sequence
[z17], and a corresponding transcription [wl],. The feature vectors are calculated by
the feature analysis (see Chapter 5) from the original input data.

The training data is processed sentence wise. The word boundaries are not known
and have to be estimated, too. This estimation is done implicitly by constructing a
super HMM for each sentence by concatenating the individual word HMMs.

The parameters are estimated with the maximum likelihood principle using an ez-
pectation mazimization (EM) algorithm. The parameter set J is searched which max-
imizes the likelihood of the training data:

R
9 = argmax {Hp ([%Tr]r | [w1"]r, v“) } (3.23)
r=1

Because we use the Viterbi approximation (3.8), a feature vector contributes to the
estimation of exactly one emission probability p(z|s,w). The training is done with the
following algorithm:

1. Estimate the best path, i.e. the best sequence of HMM states. This mapping of
feature vectors to HMM states is called time alignment.

2. Collect the observations (feature vectors) for each state.
3. Estimate the model parameters for the emission probabilities.

This procedure is iterated until the alignment remains stable or a fixed number of
iterations is reached.

The training algorithm needs an initialization, i.e. an initial alignment to estimate
initial model parameters. Linear segmentation is used for the initialization. In a first

step the sequence of feature vectors 7 is split into three parts:

T1...Tp—1 Lp.--Te Letl-.--TT
—_———— N———
silence speech silence

The start-stop detection searches optimal b and e by minimizing the log likelihood of
the segments using two Gaussian densities, one for speech and one for silence [Bridle
& Sedgwick 77]. A problem specific to sign language recognition is the selection of the
feature which should be used for the detection of silence. This problem is discussed in
Chapter 5.

16

The feature vectors, which are classified as silence, are assigned to a silence model.
The feature vectors in the detected speech segment are linearly aligned with the HMM
states. Initial model parameters are estimated using the aligned features.

To increase the number of densities in the mixture densities, successive splitting of
the mixture densities is applied [Ney 05b, Chapter 2.2].

3.4.2 Training of the Language Model

The transcription of the training data is used to estimate the language model. The
training criterion for the language model training is minimal perplexity of the language
model on the training data. A closed form solution exists for the maximum likelihood
training. The log likelihood is maximized:

F =) N(hw)logp(w,h) with > plwlh)=1 Vh, (3.24)
h,aw w

where N (h,w) is the number of word sequences h w in the training text. The solution
of this maximization is:

pulh) = Y1) (3.25)

N(h)

The number of possible m-grams grows exponentially with the history size. With the
used trigram language model, we get |V |? possible trigrams for a vocabulary of size
|V'|. Therefore, a large number of m-grams will not be observed in training. An unseen
m-gram would have a zero likelihood. To avoid this problem, smoothing techniques are
applied. The smoothing is based on discounting, where the probability mass is shifted
from seen to unseen events [Katz 87, Ney & Essen™ 94, Generet & Ney™ 95, Ney &
Martin™ 97].

The SRILM toolkit [Stolcke 02] is used to estimate the language model parameters.

3.5 Recognition

The aim of the recognition process is to find a word sequence [wi Jopt which maximizes
the posterior probability given a sequence of feature vectors x{ With the models
derived in Section 3.2 and Section 3.3, the task can be formulated as the following
optimization problem:

[w{V]om = argr}r\[lax {p(w{V|$1T)}
' N T
= argmax { [H p(wnlhn)] - max {Hp(wtsze, wy') - p(sise—1, w{V)}}
wy n=1 51 t=1
(3.26)

17

For a vocabulary consisting of |V| words, the number of possible word sequences of
length less or equal to N grows exponentially with the sequence length:

|V|N+1 1

Z v = — (3.27)

Viterbi-search is used, which solves the problem by dynamic programming [Ney 84]. At
each time step the HMM states of all hypotheses are expanded, i.e. the set of successors
for each state is calculated. A hypothesis consists of a sequence of words recognized so
far up to the current time step and the path of states in the hypothesized current word.
The likelihood of all hypotheses can be directly compared and unlikely hypotheses can
be discarded, because Viterbi-search is time-synchronous. The discarding of unlikely
hypotheses is called pruning [Ney & Mergel™ 87].

3.5.1 Evaluation

For the evaluation of recognition results, the word error rate (WER) is commonly used.
The WER is calculated using the Levenshtein distance [Levenshtein 66], also called
edit distance, between the true word sequence w{v and the recognized word sequence
V. This distance is defined as the minimal number of edit operations needed to
transform one sequence into the other. Edit operations are substitutions, insertions
and deletions.

F#substituions + #insertions + #deletions

ER =
WER #reference words

(3.28)

The edit distance can be calculated efficiently with a dynamic programming algo-
rithm [Ney 05b].

3.6 State of the Art in Sign Language Recognition

Research in automatic sign language recognition is done for both isolated sign recogni-
tion and continuous sign language recognition. It is difficult to compare the available
systems, because they differ in many aspects. A main difference is the type of data ac-
quisition: direct measurement or vision-based. Direct measurement is done with data
gloves [Fang & Gao 02] or motion capturing systems [Vogler & Metaxas 01], which
provide for example 3D spatial information of the hand, fingers, and other body parts
with high accuracy and high sampling rates. However, the user is forced to wear a
device limiting his movements and needs complex preparation and calibration. These
expensive systems can be used mainly in research environments but not in real world
applications.

18

Vision-based systems acquire the used data with video cameras, which are widely
used in combination with personal computers. To capture the whole signing space, the
entire upper body needs to be in the field of view of the camera. To detect the hands
and fingers of the signer, some systems require the signer to wear colored gloves or long
sleeved cloth. Many system have constraints regarding lighting, background (uniform
colored, static) or the position of the signers. However, many of these constraints
conflict with recognizing sign language in a natural context.

A further problem arises from the lack of a common database for the evaluation of
sign language recognition systems. Almost all databases used by the different research
groups are not publicly available, making a comparison of performance nearly impos-
sible. Additionally, the used databases differ in language, vocabulary size, grammar
restriction, and selection of signs [Ong & Ranganath 05].

One should distinguish between signers who learned the gestures only for the record-
ing of a database, and native signers who use sign language in normal communication,
because of their different manners of signing. To allow statements about recognition
performance in real world applications, the evaluation should be done with recordings
of native signers. Most publications do not mention the signers’ background in sign
language.

Speaker dependence is another important aspect which can be taken into account.
Systems which recognize signs for a single signer, who has previously trained the
system, are called speaker dependent. Speaker independent systems use many signers
for training and aim at recognizing signs of arbitrary signers. In speech recognition,
speaker dependent systems achieve error rates that are a factor of 2 or 3 lower than
those of speaker independent systems [Woodland 01].

An overview about research in sign language recognition, feature extraction and
classification methods is given in [Ong & Ranganath 05]. The authors also discuss
the analysis of inflection, non-manual components, and grammatical processes in sign
language.

This work focuses on vision-based sign language recognition, thus the following two
sections present an overview on vision-based systems for isolated sign recognition and
continuous sign language recognition.

3.6.1 Recognition of Isolated Signs

One of the first vision-based systems for isolated sign recognition is presented in [Assan
& Grobel 97]. The system uses colored gloves for the detection of both hands and the
fingers of the dominant hand. Their database consists of 262 signs (sign language of
the Netherlands), performed by two non-native signers who learned the signs for this
task. The color of the signers’ cloth is equal to the background color. A rule-based
“classifier” detects the shoulders and the vertical body axis. The feature vector includes
hand shape, orientation of the hands and of the fingers of the dominant hand, and

19

the hand position normalized with respect to shoulder and vertical body axis. The
HMM classifier achieves error rates between 7 % and 9 % for the person dependent
recognition. If videos of both signers have been used in training and test, an error rate
of 8 % is achieved.

[Huang & Huang 98] presents a model based tracking method, witch assumes that
the hand shape does not change much between consecutive frames. The tracker needs
an initialization with difference images which requires the hand to be the only moving
object. Additionally, the signer has to be dressed in dark cloth with long sleeves in
front of a dark background. The tracked hand region is used for the calculation of
the features: global motion, hand orientation and Fourier descriptors for hand shape.
Features are only extracted for frames, in which the hand shape changes. Classification
is done by a 3D Hopfield neural network with an error rate of 9 % for 15 signs.

In [Holden & Owens 00] colored gloves are required for a 3D hand model based
tracker. The used signs have a fixed starting and ending hand posture. The estimated
configuration of the hand model is the input of an adaptive fuzzy expert system, which
classifies 22 signs (Australian Sign Language mixed with artificial signs) with 5 % error
rate. Training and test are performed with one utterance per sign.

A time-delay neural network is used for classification in [Yang & Ahujat 02]. The
described system uses pixel level motion trajectories of the hand as feature. These
trajectories are created with image segmentation and motion segmentation. The hand
and head regions are selected and merged using a skin color model and geometric
constraints. For 40 ASL signs and an unknown number of samples the system achieves
an error rate of 4 %.

[Tanibata & Shimada™ 02] describes a system for the recognition of signs in Japanese
Sign Language. In an initialization step the positions of hand, head, and elbows are
detected using restrictive person specific templates but allowing complex background.
These positions are used for the segmentation of skin, cloth, head, and elbows. Hand
and face are distinguished with texture templates from preceeding detections. Geo-
metric features of the hand shape, hand position, and direction of hand motion are
extracted from the segmented and labeled hand regions. HMMs are trained for both
hands in such a way that each HMM state models either hand shape or motion. The
state boundaries are checked manually. 65 samples have been selected manually such
that all features are extracted correctly. The authors report no error for the classifi-
cation of these selected samples.

In [Zhang & Chen™' 04] geometric features for both hands and the fingers of the
dominant hand are extracted using pupil detection, colored gloves, background sub-
traction, and geometry constraints. HMMs are trained with 4 samples of each sign for
a vocabulary of 439 signs (Chinese Sign Language). One sample of each sign is used for
person dependent recognition, resulting in an error rate of 7 %. The authors carried
out additional experiments with tied mixture densities, which yield an error rate of
8 %. The usage of tied mixture densities improves the runtime of the recognition by

20

a factor of 2.

A binary feature vector, called linguistic feature vector, is proposed in [Bowden &
Windridget 04]. The described system uses a two stage classification. In the first stage
position, movement, and shape are classified. These classification results are encoded
in a 34 dimensional binary feature vector. In the second stage independent component
analysis (ICA) is applied to project the binary feature vector into an Euclidean feature
space of lower dimension. The classification is done with Markov chains, which have
been trained with only one sample for each of the 49 signs (British Sign Language),
resulting in an error rate of 16 %.

[Zieren & Kraiss 05] describes a system that uses features for both hands. Face
detection is done using skin color and geometry constrains. The complex background
is removed by subtracting the median on pixel level. The hands are tracked with
skin color segmentation, a bio-mechanical body model, and other heuristics. Hand
positions, geometric features, and their derivatives (22 features in total) are normalized
using position and size of the face. The HMM classifier achieves an error rate of 1 % for
person dependent classification of 229 signs. The experiments for person independent
recognition with four signers (three for training, one for test) yield error rates between
69 % and 56 % depending on the combination of training and test signers. Signer
adaptation techniques applied to this system are proposed in [von Agris & Schneider™
06] which yield an error rate of 21 % for the speaker independent recognition of 153
signs using supervised adaptation.

The person dependent system is extended with non-manual features in [Canzler 05].
Additional features for head position, eye gaze and contour of the mouth are added.
Experiments are done on a database of 145 signs. The system achieves an error rate
of 36 % with non-manual features only. Using only manual features, the systems
achieves an error rate of 3 %. The combination of both feature types improves the
result obtained with manual features only by 0.22 %.

The usage of self organizing subunits is analyzed in [Bauer & Kraiss 02]. The
subunits are defined data-driven without linguistic models. Features regarding size,
shape, and position of hands, fingers and body are extracted using colored gloves. The
system achieves an error rate of 7 % on 100 signs with 150 subunits (7 samples per
sign in training, 3 samples in test). 50 new signs, automatically transcribed using the
trained subunit models, are recognized with an error rate of 19 %.

3.6.2 Continuous Sign Language Recognition

One of the first vision-based system for continuous sign language recognition is de-
scribed in [Starner & Pentland 94]. A segmentation based on colored gloves is used
to extract features for hand position, angle, and hand shape. The system is tested
with 40 ASL signs in sentences consisting of 5 signs each, constructed with a fixed
grammar (pronoun, verb, noun, adjective, same pronoun). 395 sentences are used to

21

train HMMs. The person dependent recognition of 99 sentences achieves an word error
rate of 1 % with the fixed grammar and 9 % without grammar restrictions.

[Starner & Weaver™ 98] describes an extended system, where no colored gloves are
necessary, because hands are detected with skin color segmentation. The authors have
carried out two experiments with different types of videos: one showing the frontal
view of a signer in front of a complex background, the second video is recorded by
a hat-mounted camera. The hat-mounted camera is pointed downward towards the
hands and showes mainly the hands. Absolute position, movement, and shape features
are used for classification. For the evaluation, 384 sentences are used in training, and
94 are used for testing. The sentences have the same restrictions as in [Starner &
Pentland 94]. A word error rate of 8 % is achieved with the frontal view videos. The
videos captured by the hat-mounted camera have been recorded with another signer
and are recognized with a word error rate of 2 %.

In [Holden & Leet 05] the authors describe a tracking algorithm, which uses skin
color detection, and a so called correspondence algorithm that identifies hands and
face. Position, shape and movements of the hands are used as features. The HMM
classifier achieves an error rate of 3 % on sentence level and a word error rate of
1 %. The 14 distinct sentences consist of 21 signs (Australian Sign Language) and are
constructed with a fixed grammar, which is also used by the recognition system. 216
of 379 utterances are used for training, but each sentence occurred both in the training
set and in the test set.

The subunit approach presented in [Bauer & Kraiss 02] is also applied to continuous
sign language recognition in [Bauer 04] using the same features. The subunits are
created based on isolated signs. Experiments with 52 signs in 100 distinct sentences
result in a word error rate of 12 %.

22

Chapter 4
Tracking

The aim of tracking methods is to detect and to follow one or several objects in a
sequence of images. It can be seen as a kind of object detection in a series of similar
images. In most cases, tracking methods are applied to videos, which means a large
number of images has to be processed. Therefore, methods used in object detection
tasks are normally not applicable, because they need too much computation time.
Many applications require processing in real-time. Furthermore, the knowledge about
previous object positions can be used to predict and detect objects in following images.

Appearance-based features (see Section 5.1) often use a downscaled input image.
Details of small image regions, like the hand and the face of the signer, are not visible
in the scaled image. Tracking gives the possibility to extract specific regions of interest
out of the image. Not only the extracted image patch can be used as feature, but
also the detected object positions. In the field of sign language recognition tracking
methods can be used to keep track of the hands and of the head. The tracked head
and hands are used for the computation of visual features and positional features (see
Chapter 5).

Section 4.1 gives an overview about state of the art methods for tracking. The
approach used in this work is introduced in Section 4.2. The applications to hand
tracking and head tracking are shown in Section 4.3 and Section 4.4.

4.1 State of the Art

Tracking methods are applied to many different tasks including gesture recognition,
human movement tracking, face recognition, aerial surveillance and traffic supervision.
A good overview on tracking methods used in gesture and human movement recog-
nition can be found in [Gavrila 99]. Some of the widely used methods are described
briefly in this section.

[Comaniciu & Ramesh™ 00] presents the Meanshift algorithm which tracks non-rigid
objects based on visual features such as color and texture. Statistical distributions are
used to characterize the object of interest. The algorithm tolerates partial occlusions
of the tracked object, clutters, rotation in depth and changes in camera position.

23

The Camshift (continuously adaptive meanshift) algorithm is a extension of the
Meanshift algorithm that is able to deal with dynamically changing color probability
distributions. In the system presented in [Bradski 98] it is used to track human faces
in real-time.

In [Isard & Blake 98] the Condensation (conditional density propagation) algorithm
is presented. It is a model based method that is able to track objects in visual cluttered
scenes.

An earlier version of the tracking method described in this work and its application
to sign language recognition is described in [Dreuw & Deselaers™ 06].

4.2 Tracking using Dynamic Programming

The task of tracking one object in an image sequence X{ = X1,..., X7 can be formu-
lated as an optimization problem. Expressed in a probabilistic framework, the path
of object positions ul = uy,...,ur is searched that maximizes the likelihood of this

path given the image sequence X7 :

[ulT]OPt = argr?ax {P(U{|X1T)} (4.1)

Uy

T
= argmax {Hp(ut]u'i_l,Xf)} (4.2)

Uy t=1

The advantage of this approach is the optimization over the complete path, which
avoids local decisions that might not be correct.

Assuming a first-order Markov process for the path, meaning that an object position
depends only the previous position, (4.2) can be simplified to:

T
[oyt = argmax {Hp<ut|ut1, Xz_o} (43)
uy t=1

This assumption allows easier modeling of the object behavior, because only succeeding
object positions have to be rated. Applying the logarithm to (4.3) yields:

T
[t Jopt = argmanx {Z log p(ut|us—1, Xf_l)} (4.4)
uy t=1

The probability p(u|u;—1, X}_;) can be expressed by a function q(us—1,us; X}) that
rates the object position u; with a score depending on the previous position ;1
and the images X} ;. In order to fulfill the requirements of a probability density

24

function, the score has to be normalized by the sum over the scores of all possible
object positions. The logarithm can be omitted due to its monotonicity:

Y 7Xt
[u Jopt = argmax{Zlo ut LU Xiy) } (4.5)

q(ur—1,u; Xt 1)
qlug—1,up, X} 1)
= ar Inax 4.6
g {ZZ qutla/th) (4.6)

The normalizing part is constant with respect to an object position u;, thus it can be
omitted for the maximization:

T
[u] |opt = argmax {Z G(ug—1,us; Xf_l)} (4.7)

T
Uy t=1

The score function G(ut—1,us; X}) is split into a function q(u¢—1,ut; X}_;) depend-
ing on the image sequence, and an image independent part 7 (us—1,us) to control
properties of the path.

7 (u,u’) is function similar to the time distortion penalty of the visual model (see
(3.9), page 13). Here one wants to penalize large distances between consecutive object
positions, as it is not likely that succeeding object positions are far away from each
other. This function is called jump penalty. The squared Euclidean distance is used
here as the jump penalty:

T(u,v)=ar - |lu—d||?>=ar- (u—-u)T - (u—-1), (4.8)

where a7 is weighting factor for the jump penalty.
Using these score functions, (4.7) can be rewritten to (4.9). The jump penalty
7 (ug—1,uy) is subtracted from the score to penalize wide movements.

T
[u{]opt = argmax {Z q(up—1, ug; Xf,l) — T (ug—1, ut)} (4.9)

uf =1

This optimization problem is solved using dynamic programming. An auxiliary
function C'(t,u) is introduced, which gives the best score for the path at time ¢ ending
in position wu.

t
C(t,u) = max {Z q(up 1, uy; Xf,l_l) - T(utfl,ut/)} (4.10)

t,
uj tut=u)

C(t,u) can be defined recursively. The auxiliary function needs to be maximized only
over the direct predecessor positions:

C(t,u) = max {Ct—1,u) =T v+ q,u; X{_)} (4.11)

25

The maximization does not need to consider all predecessor positions of position u,
but a limited set of predecessor positions M(u). This limitation avoids large distances
between consecutive object positions (additional to the jump penalty) and decreases
computation time.

The score C(t,u) is calculated for each time step t and each position u successively,
starting from ¢ = 1, yielding a table of scores. To reconstruct the best path, a table
of back-pointers B(t,u) is needed, which stores the best predecessor position for each
time step ¢t and each position u:

C(t,u) = mja;((: {Ct—1,u)—TW v+ q,u; X{_))} (4.12)
u'eM(u

B(t,u) = argmax{C(t—1,u")—T (v, u)+q(/ ,w; X{_1)} (4.13)
u'eM(u)

The best path is traced back as follows:

1. Search best last position:

up = argmax {C(T,u)}

2. Repeat for t =T — 1 down to t = 1:

ur = B(t +1,uz41)

One can expect that the scores will be high in a region around the true object posi-
tion. If computation time needs to be decreased, not each possible position has to be
evaluated. From ¢ = 2 onwards, only those scores have to be calculated, for which the
score of the predecessor position w is high enough:

Ct—1,u) >ma}x{C(t—1,u/)}—dg (4.14)

where dy is an accurate pruning threshold. If the pruning threshold is too low, the
best path is possibly not found.

This work considers only tracking of image regions of a constant size. The extension
to tracking with variable size is described in [Dreuw 05].

4.3 Hand Tracking

The dominant hand in an image sequence is tracked in order to extract manual features
for sign language recognition. The dominant hand can be expected to be the object
that moves more than every other object in the sequence. Another attribute of the
hand is its color. A skin color likelihood can be calculated for color images [Jones &
Rehg 02]. Brightness can be used to detect skin in gray level images.

Challenges for hand tracking in sign language videos are:

26

Q:

Xy

Figure 4.1. Notation used in scoring functions

e Two hands appear in the video. The tracker should not confuse left and right
hand during the sequence.

e The hands may overlap. In many signs performed with both hands, the hands
overlap at some time. This overlap does not have to be a direct contact of the
hands, because of the two dimensional projection of the camera. The same hand
should be tracked before and after the crossing of the hands.

e Depending on the camera location, a hand can temporarily disappear. This is
mostly the case at sentence begin and sentence end, when the hand is in an idle
position. The tracker should find the hand immediately when it appears.

e Many signs are performed in front of the face. Due to the similar color of the
face and the hand it is difficult to distinguish between them.

The following section describes different score functions that can be used for hand
tracking and in general for the tracking of moving objects changing moderately in
appearance.

4.3.1 Score Functions

In the equations of the following sections
Qr={w+u:ue@} with Q:={(i,j) : —w<i<w, —h<j<h} (4.15)

denotes the set of positions in a rectangle of size w x h around position u; (see also
Figure 4.1). This rectangle is called tracking window. X[u] denotes the pixel in image
X at position wu.

One of the simplest approaches to hand tracking is to search the regions in all images
where the most motion occurs. Motion means a difference in consecutive images:

27

M~

Figure 4.2. A difference image. Pixel values range between -1 (black) and 1 (white)

X/ := X; — X;—1. An example of such a difference image is shown in Figure 4.2.
Moving objects are visible in difference images, while all constant parts of the image
have an uniform color. Score functions using only difference images are:

e Motion score

w1, X{y) = Y X[l (4.16)
u€Qy
e Absolute motion score
Q(Ut—laut;Xf—l) = Z ’X{[u” (4.17)
ueQRy
e Squared motion score
2
(w1, us XF) =Y (X{[u)) (4.18)
ueQt

When the hand is moving, the image changes at two locations: at the former position
and at the new position of the hand. This is considered in the following score function
(4.19), by maximizing the motion in successive hypothesized object regions. This
means that the regions including the pixels with the highest absolute pixel values
in the difference image are detected. In Figure 4.2 these regions are visible as nearly
black region (pixel values approximately -1) at the former position and as nearly white
region (pixel values approximately 1) at the new position of the hand.

que—1,us; X{_1) = Z (X{[u])2+ Z (Xé[u])Q (4.19)

u€Qi—1 u€Qy

Another approach is to assume that the tracked object is nearly constant in ap-
pearance from one image to the next, which means a small distance between two

28

consecutive object appearances. Because (4.13) uses a maximization, the negative
distance is used as score:

—qur—1,us; X{_y) = > (Xe[ur +] = Xy a[ug—1 + u))? (4.20)
UEQR

If this score function is used for tracking, the scores C'(t = 1,u) need to be initialized
with another score function. Without an initialization, the tracker would stay on some
constant background image part. An initialization can be done, for example, with a
score for each image region provided by an object detection method.

The score function (4.20) uses the Euclidean distance between two image patches as
distance measurement. The Euclidean distance does not account for image transfor-
mations such as scaling, rotation, and translation. The tangent distance (introduced
by [Simard & LeCun™ 98]) as described in [Keysers & Macherey™t 01] is one approach
to incorporate invariance with respect to certain transformations in the distance be-
tween two images. Invariance in this context means that image transformations should
not have a large impact on the distance between two images. A detailed description
of the tangent distance can be found in [Keysers & Macherey™ 04], its application to
gesture recognition is presented in [Dreuw & Keysers™ 06].

No initialization is needed, if one assumes a constant background as the tracking
criterion. That is, the only image parts assumed to change are those where the hand
has been in the previous image and where the hand is in the current image. Thus, the
difference in succeeding images between pixels belonging to the background should be
minimal. Background pixels are those pixels which do not belong to the hypothesized
tracking regions Q¢ and Q¢_1:

2
—q(u—,us X[= Y (X[u]) (4.21)
ugQtUQt—1

The sum over u ¢ Q; U Q;—1 can be split in components (see also Figure 4.3):

S (xiul)® = S0 (X)) - 30 (i) - S (X)) > (X))

u€QiUQ—1 uelU UEQ+ UEQ¢—1 UEQr—1NQ¢
= const(X]) — Y (Xil))’ — N (Xiu)?+ Y (Xiu))?
UEQR: u€Qt—1 u€Qt—1NQt

(4.22)

The constant part does not need to be considered in the score function, because it is
independent of the object position. Using this split into components, it can be seen
that score function (4.21) is equal to the total motion score function (4.19) except for
the factor that compensates overlapping regions.

29

Qt Qtfl N Qt

g

Qtfl

U

Figure 4.3. Two overlapping image regions

Score functions can be combined to new score functions, to take advantage and to
compensate for disadvantages of the single functions. The influence of each functions
is weighted with factors «;

q(ur—1,us X7 0) = ai - g1, us XE) (4.23)
%

The score functions (4.20) and (4.21) can be combined. This combination results in
a score function which checks that both background and object appearance stay nearly
constant. This score function needs no initialization. The influence of both parts is
controlled with the weighting factors «;.

—q(ug—1,u; X{_1) = a1 Z (Xilur +u) — Xy 1usq +u))? + ap Z (Xé[u])z

ueqR UEQ—1NQ¢
(4.24)
Using (4.22), (4.24) can be rewritten to:
—q(u—1,up; X{) = o (Z (Xelug +u] — Xy qug—1 + U])2>
ueQ
—o (X X+ Y (XK) - Y (X))
u€EQ+ UEQt—1 UEQL—1NQ¢
(4.25)

4.3.2 Integral Images

Most scoring functions presented in Section 4.3.1 use the sum of pixel values in a
rectangular region of an image or a difference image. The computation of the sum
over a rectangle of size w X h needs to access w - h pixel values. This computation can
be done more efficient using integral images [Viola & Jones 04].

30

Figure 4.4. The sum of pixels in rectangle () can be computed using the integral image at
locations a, b, c and d

An integral image I is an intermediate representation for an image X, which contains
at position (7, 7) the sum of pixels above and left of (i,):

Ii,)= > X[, J (4.26)

/<45 <j

This can be computed in one pass over the image using the cumulative row sum

S[i, 5] -

The sum of a rectangular image region can now be computed using only four refer-
ences to the integral image. Using the notation of Figure 4.4, the sum in region Q@ is:

> X[u] = Ifa] + Ic| — (I[b] + I[d)) (4.29)
ueEQ

4.4 Head Tracking

The score functions used for hand tracking cannot be used for head tracking, because
the head is assumed to move not much in sign language videos.

The simplest approach is to use the property of the head as being the largest skin
colored object in the image. In color images the above mentioned skin color probability
can be used, if no other objects with skin like color, an orange t-shirt for example,
occur in the images. In gray level images the head can be expected to be the brightest
region of the image. This works only if no larger skin colored or bright regions appear
in the image. Furthermore, this method will not always find the same face region, i.e.
the tracking window is not centered on a reference point like the nose.

A face detection method is used in the presented system to track the head of the
signer. Widely used face detection methods include:

31

Figure 4.5. The first 10 eigenfaces, calculated on the BiolD database

e [Viola & Jones 04] presents a face detection method, which is based on the
AdaBoost algorithm from machine learning.

e [Rowley & Baluja™ 98] describes a neural network for face detection.

e The eigenface approach presented in [Turk & Pentland 91] applies principal com-
ponent analysis to face detection.

The eigenface approach is used for head tracking, because it yields good results and
it is easy to integrate into the presented tracking framework. In contrast to the Viola
& Jones method, which calculates classifiers that discriminate only between “face”
and “no face”, the eigenface method calculates distances, that can be used in a score
function.

Eigenfaces are calculated by performing principal component analysis (PCA, see
also Section 5.1.1) on a training set of face images. The resulting eigenvectors span a
subspace, called the face space, of the image space. Figure 4.5 shows eigenfaces, which
have been calculated on the BiolD database!. The images of the BioIlD database show
one person per image and are annotated with the face positions.

An image X can be projected to face space by a linear transformation ¢:

$(X) = V(X - p) (4.30)

where V' = [v1...vy] is the matrix of the first m eigenvectors and p is the mean
face calculated on the set of training images. The image X is used in vector form,
by sorting the pixel in lexical order. The projection from the face space back to the
image space is:

N (Xp) =VXi+u, (4.31)

where X is the image representation in face space ¢(X).

"http://www.humanscan.de/support/downloads/facedb.php

32

http://www.humanscan.de/support/downloads/facedb.php

X | o7 (0(X) | X =97 (0(X)) | dp(X)
r: > T S T
\ ‘Eq .31; ' 278
. _»(h' ‘ R

|
4 ’-: "‘b- :-: -"'}v 139
Ll 3 it

Figure 4.6. Projected images and their face space distance. The lower non-face image yields
a higher face space distance than the face image.

The distance df(X) between an image and its forward and backward projected
version, is called the face space distance. It can be used as a measure of “faceness”.

dp(X) = | X — ¢~ (o(X))] (4.32)

An example of projected images and the resulting distance is shown in Figure 4.6.
For face detection the face space distance is calculated for each region of an image. A
face is detected at the region with the lowest face space distance. No face is detected,
if all distances is are higher than some threshold. The Viola & Jones method fails
directly when a hand occludes the face, whereas eigenfaces might still have a low face
space distance.
We use the negative face space distance as score function to detect and track heads:

qup—1,u; X{_p) = —dy (X¢(uy)) (4.33)

where X;(u;) denotes a rectangular patch of image X; centered in position u;. This
score function is combined with a skin color or brightness score function to avoid
high scores for face like structures in the background [Dreuw & Deselaers™ 06]. The
calculation of the face space distance is relatively time consuming, but the eigenface
score function needs to be evaluated only for a few regions of each image if pruning is
used. The eigenface approach is not only applicable to face detection but also for the
detection of other objects that can be modeled with an eigenspace representation.

33

Chapter 5
Features for Sign Language Recognition

Most research groups use complex methods to extract features for the recognition
of sign language or gestures. Hand shape, hand orientation, finger orientation, or 3D
models are often used features. In most cases, the calculation of these features depends
on a segmentation of the input image, geometric constraints, and other heuristics. A
disadvantage of some of these methods is that local decisions are taken. Especially
segmentation of images is difficult and error-prone. A possible segmentation error and
errors of a mismatched model or constraint are propagated through the whole system.
In contrast, appearance-based approaches do not rely on models for single objects and
use the image itself as a feature for recognition.

As mentioned in Section 2.1, signs consist of four basic manual components. The
movement of the hands is not observable in single images. Therefore, special methods
have to be applied to extract features for this component as well. The presented
appearance-based system uses downscaled versions of the input images. The resolution
of these images is too low to observe details of special regions of interest, like the
signer’s hand or face. Therefore, tracking of the signer’s hand and head is used to
extract appearance-based features for these specific regions. Additionally, features
describing the positions of the dominant hand and its movement are investigated.

Appearance-based features of whole images are presented in Section 5.1. Features
for manual and non-manual components of sign language are discussed in Section 5.2
and 5.3. The combination of features is described in Section 5.4.

5.1 Image Features

When using appearance-based methods, a gray level image of size I x J is often
represented by a vector in an I - J dimensional vector space. In practice, such a
high dimensional vector space is too large to allow robust classification. A common
way to resolve this problem is to apply dimension reduction techniques [Martinez &
Kak 01]. Principal component analysis and linear discriminant analysis are widely
used dimension reduction methods. Linear discriminant analysis is often applied in
speech recognition for feature combination and feature reduction [Haeb-Umbach &

35

Ney 92]. Principal component analysis is used for a wide range of image processing
tasks.

5.1.1 Principal Component Analysis

Principal Component Analysis (PCA), also known as Karhunen-Loéve transformation,
is an unsupervised approach to select features for a data set. It is a linear transfor-
mation that projects a feature vector x € R” to a representation of lower dimension
i € R After calculating the eigenvectors of the empirical covariance matrix for the
full data set, the eigenvectors are sorted according to their corresponding eigenvalues
in decreasing order. The first d eigenvectors are used as columns for the transformation
matrix V. This matrix is then used to project a vector to the subspace spanned by the
d principal components. It can be shown that this transformation is the best linear
transformation to a feature space of dimension d with respect to the representation
error E, {||z — 2|} [Duda & Hart™ 01, Chapter 3.8.1]. Details about PCA and its
applications can be found in [Jolliffe 02].

PCA is expected to capture the most relevant parts of a vector, because it discards
directions of low variance. This property makes PCA well suited for the analysis of
video frames. If the background of all images does not change much, pixels belonging
to the background have a small variance and will be discarded by the PCA. The impact
of each pixel on the lower dimensional representation can be visualized by the row sum
of V as an image Xy: Xy[i] = 23,21 |Via|- Figure 5.1 shows some example images
of the data set, the variance and the visualization of the PCA transformation matrix.

PCA does not take into account class information. Thus, it is possible that the
discriminative components of the features will be discarded. The dimension reduc-
tion of PCA is optimized for an efficient representation of the features, not for class
discrimination.

5.1.2 Linear Discriminant Analysis

In contrast to PCA, the aim of the linear discriminant analysis (LDA), also called
Fisher’s LDA, is to maximize the separability of classes in the transformed feature
space. It creates a linear combination of independent features which maximizes the
distances between the means of all classes. Details about LDA calculation can be
found in [Duda & Hart™ 01, Chapter 3.8.2].

LDA requires class information of the feature vectors in the training set. Thus, in
speech recognition one needs to classify the feature vectors, before the LDA can be
calculated. Therefore, an initial alignment, i.e. a mapping of feature vectors to HMM
states, is done using untransformed features. This alignment is estimated and may
contain wrong class information. In other applications of LDA, e.g. in visual object

36

hlald
|'."
L8

Figure 5.1. First row: example images of the data set (D = 3232 = 1024), second row:
variance of the data set, visualization of the PCA transformation matrix (d = 110).
A black pixel means that this component is discarded by the PCA.

classification tasks, the class information of the training samples is usually known.

Scatter matrices, which measure variance in classes and between classes, are used
for the calculation of the LDA. Their robustness depends on the dimensionality of the
feature vectors and on the number of available feature vectors for each class. Though
LDA is theoretically better suited for pattern recognition tasks than PCA, PCA is
reported to be more stable for high dimensional data and small training sets [Martinez
& Kak 01].

5.1.3 Motion

The silence detection in the linear segmentation step of the training procedure (see
Section 3.4.1) needs a feature that can be used to discriminate between silence and
non-silence segments. Speech recognition systems often use the energy of the acoustic
input signal as the feature for silence detection.

It is not obvious how silence in sign language should be defined. The approach
used in the presented system is to define silence as segments without motion. The
motion occurring at time ¢ can be measured as motion energy, which is defined by
the square root of the sum of pixel values in the difference image of two consecutive

37

" annotatidn - ; J T anhotatibn -

estimated ---- : ! estimated ----
5| [i sL . i i
4t E 4t B
s3r B $3r b
2+ E 2+ B
1+ E 1+ B

0 : I I I n 0 I 1 I I I I HER
0 0.5 1 15 2 25 3 35 0 0.5 1 15 2 25 3 35 4 45

Figure 5.2. Motion energy over time for two example sequences. The annotated begin and
end times of the sentence and their estimates are marked.

frames X;_1, Xy

e = | > (Xe[u) = X [u])? (5.1)

uelU

However, the signer does not move his hands all the time while signing. Some signs
include segments where the signer’s configuration stays constant for a few frames. A
plot of the motion energy over time for two sentences is shown in Figure 5.2. It can
be seen that the motion energy is very low in some segments. Furthermore, motion
occurs in some sentences also before and after the sentence.

The motion energy feature is used for silence detection in the presented system.
Additionally, the use of motion energy as feature for sign language recognition is
investigated.

5.2 Manual Features

Manual features describe manual components of a sign (see Section 2.1). In this work,
only features for the dominant hand are used. It is assumed that the features of the
dominant hand are significant enough for most signs. The positions of the dominant
hand are detected with the tracking method presented in Section 4.3.

5.2.1 Hand Position and Velocity

Using only the hand position (see also Figure 5.3), one can compute the following
simple features:

e Position of the hand in the two dimensional projection of the signing space: u;

e Hand motion or velocity: m; = uy — up—n, A € {1,2,...}

38

Figure 5.3. Overlay of two consecutive frames with labeled hand positions

5.2.2 Hand Trajectory

Hand position and hand motion describe manual features only in the immediate vicin-
ity of a specific point of time, thus they are local features. The trajectory of the hand
describes properties of a sign on a more global level. The global features used in this
work are similar to the features presented in [Vogler & Metaxas 99a]. The system
of Vogler and Metaxas used 3D hand position information from a motion capturing
system.

In order to calculate global features describing geometric properties of the hand tra-
jectory, the covariance matrix for hand positions in a certain time window is estimated.
For a window size of 2A + 1, the covariance matrix 3; and its eigenvectors v;; and
eigenvalues \;; at time ¢ are calculated as follows:

1 t+A
t'=t—A
1 t+A
— T
YN D (=) (wr —) (5.3)
t'=t—A
hIM Vi = Atﬂ‘ * Ui 1 € {1, 2} (54)

The eigenvalues \;; and eigenvectors v;; of the covariance matrix can then be used
as global features. The eigenvector with the larger corresponding eigenvalue can be
interpreted as the main direction of movement. The eigenvalues describe the form of
the movement. If one eigenvalue is significantly larger than the other, the movement
fits a straight line. Figure 5.4 shows examples of trajectories and their eigenvectors
and eigenvalues. The eigenvalues can be normalized such that), A;; = 1. The ratio

i—; can also be used as feature describing the form of the movement.

39

40 0
handé) ositions u, -+ - h‘andé) 0SItions 11y - -+ -
eigenvectors v; ----- 20 b eigenvectors v; ----- |
eor 1 4of]
60 - 4
T i 80
100 - a
100 - a
120 - 4
120 4 140 4
160 - a
140 | | | | | 180 | | | | | | | |
20 40 60 80 100 0 20 40 60 80 100 120 140 160 180
60 60
| ‘ héndéa ositions ut R ‘ ‘handé) ositions m R
eigenvectors v; ----- eigenvectors v; -----
80 - 1 b]
100 - 4
80 - i
120 - 4
90 i
140 - a
100 4
160 - a
| | | | |

110
40 60 80 100 120 140 50 60 70 80 90 100

Figure 5.4. Examples of different hand trajectories and corresponding eigenvectors. The
covariance matrices are visualized as ellipses with axes of length v/ ;.

5.2.3 Hand Shape

As stated in Section 2.1, there are only few basic hand shapes. A simple approach to
create an appearance-based feature for hand shapes is to use distances to clusters of
hand patches.

The clustering is done before the training of the visual models. The tracked hand
patches of all frames in the training set are used to find clusters of hand shapes. In
the presented system, the LBG-clustering algorithm [Linde & Buzo™ 80] is used. This
algorithm calculates image clusters by iteratively splitting Gaussian densities, starting
with one density that is calculated using all images. Examples of estimated hand
shape clusters are shown in Figure 5.5. PCA can be applied to the input images
before clustering to reduce the dimensionality of the clusters.

The hand shape feature for a hand patch is composed of the Mahalanobis distances

40

K

A

™M ¥

Figure 5.5. First row: examples of input images. Other rows: cluster centers of hand
patches

between this patch and all clusters.

Differences in hand size are a problem for this approach. The hand size differers not
only between different signers but also because of changing distances between hand
and camera.

5.3 Non-Manual Features

The analysis of facial expressions, the detection of eye gaze and lips, and other non-
manual features is complex, while the advantage of these features for sign language
recognition is reported to be relatively low [Canzler 05]. Therefore, this work investi-
gates only a simple appearance-based feature for non-manual components.

Mean face difference images (MFDI) are difference images between the mean face
and the tracked face patch. The mean is computed for the face patches of a complete
sequence, i.e. the frames of a sentence. Examples for mean face difference images
are shown in Figure 5.6. These difference images show deviations of the face to the
“normal” face of the signer. The dimensionality of this face feature can be reduced by
applying PCA to the difference images.

41

yir

¥l
o

Figure 5.6. Examples of two mean face difference images. From left to right: Mean face,
face patch, mean face difference image

5.4 Feature combination

The features presented in this chapter can be concatenated to composite feature vectors
in order to model the different aspects of signs.

Another type of feature combination is often applied in speech recognition. Succeed-
ing feature vectors are combined and LDA is applied to find an optimal combination
of these features [Haeb-Umbach & Ney 92]. Feature vectors in a sliding window are
combined to one feature vector by concatenating the individual vectors:

Tt—1
Tt
Tt41

The concatenated vector is then transformed with LDA.

A critical point is the size of the sliding window, because for an increasing window
size an increasing amount of training data is needed [Katz & Meier™ 02].

As mentioned in Section 5.1.2, LDA requires class information and depends on the
amount of training data. Therefore, the application of PCA instead of LDA for feature
combination has been investigated in this work as well.

Another possibility to use several features is the combination of visual models, like
the combination of acoustic models in speech recognition [Zolnay & Schliiter™ 05].
Therefore, visual models are trained independent of each other with different types

42

scaling —»PCA/LDA
hand | > manual | ‘r—"
tracking features "| feature
combi-
(" head) () nation
! MHDI >
| tracking | >] —x

motion
energy

Figure 5.7. Overview on the feature extraction process

of features. These visual models are then combined for the recognition, by replacing
the emission probabilities of the visual models. For a HMM state s and M models
pm(x|s), the emission probability is:

M

p(zls) = [T pml@m, o)™, (5:5)

m=1

where A\, is a model weight, and x,, is model specific feature vector. The feature vector
x is here composed of different types of feature vectors x = (z1,...,Tm, ..., Tar).

Figure 5.7 depicts the overall feature-extraction process. Features are extracted in
several steps by different modules. Input frames of the videos are processed by two
tracking algorithms, one to track the signer’s dominant hand (Section 4.3) and the
other one to track the head (Section 4.4). The extracted regions and positions are then
used to compute manual features (Section 5.2) and non-manual features (Section 5.3).
A scaled version of the input frames is transformed by either LDA or PCA to a feature
vector of lower dimension (Section 5.1). Additionally, the motion energy in consecutive
frames is measured (Section 5.1.3). All features are then concatenated to a composite
feature vector. This feature vector can be combined with surrounding feature vectors
by concatenation and application of PCA or LDA (Section 5.4).

43

Chapter 6
Databases

Databases for the evaluation of vision-based sign language recognition systems consist
of videos showing a person that performs single signs or sign language sentences. Each
video is annotated with data describing the performed signs. As mentioned in Sec-
tion 3.6, all research groups use different databases for the evaluation of their systems.
These databases differ in many aspects, for example in language, in vocabulary and
in the number of signers. No database containing continuous sign language that has
been used by other research groups for automatic sign language recognition is publicly
available, except for the 16-BOSTON201 database mentioned in Section 6.1.

The RWTH-Boston-104 database is used for the evaluation of the methods presented
in this work. This database is described in Section 6.1. The database used for the
evaluation of the tracking methods is described in Section 6.2.

6.1 RWTH-Boston-104 Database

The RWTH-Boston-104 database is based on a sign language database published by the
National Center for Sign Language and Gesture Recognition of the Boston University!.
It has been recorded mainly for research on the syntactic structure of ASL [Neidle &
Kegl™ 99]. Thus, the data is not optimized for recognition tasks and the data is more
realistic than databases recorded for the purpose of sign language recognition, e.g.
the database used in [Bauer & Hienz* 00]. The original annotation provided by the
Boston University has been created using SignStream™ and includes many aspects of
sign language [Neidle 01]. At the Chair of Computer Science 6 of the RWTH Aachen
University, 201 sentences have been composed for a new database. The annotation
has been revised to fulfill the requirements of a sign language recognition system.

An earlier version of this database, called “I6-BOSTON201” was presented in [Zahedi
& Dreuw™ 06] and is publicly available?.

The RWTH-Boston-104 database consists of 201 annotated videos of ASL sentences.
The sentences have been performed by three signers (two women, one man). The

"http://www.bu.edu/asllrp/ncslgr.html
’http://www-i6.informatik.rwth-aachen.de/"zahedi/databaseBOSTON201.html

45

http://www.bu.edu/asllrp/ncslgr.html
 http://www-i6.informatik.rwth-aachen.de/~zahedi/databaseBOSTON201.html

(b) ﬂ

43

’

Figure 6.1. Sample frames of the RWTH-Boston-104 database: (a) frontal view, (b) side
view, (c) extracted part of the frontal view

videos have been captured simultaneously with four stationary standard cameras. Two
cameras forming a stereo pair show the frontal view of the signers. Another camera
is located at the side of the signers. The fourth camera captures only the face of the
signer. The videos are captured at a frame rate of 30 frames per second and at a
resolution of 312 x 242 pixels. All cameras, except the face camera, have captured
gray-scale videos. Sample frames are shown in Figure 6.1.

Most of the experiments presented in Chapter 7 have been carried out using one
of the frontal cameras. The upper center part of the frames (size: 195 x 165 pixels)
is extracted (see Figure 6.1), because the lower part of the frames contains textual
information about the frames and the left and right borders of the frames are unused.
Additional experiments have been carried out using the videos of the side view (250 x
240 pixels).

The set of 201 sentences is divided into a training set and a test set consisting of
161 and 40 sentences respectively. The sentences share a vocabulary of 104 words in
total, 103 of them occur in the training set. The word that occurs only in the test set,

46

Table 6.1. Corpus statistics for the training and the test set. OOV means out of vocabulary

sentences glosses

corpus total wunique total unique singletons OOV signs
training 161 121 710 103 27 -
test 40 35 178 65 9 1

[

26.2% |HN:

[

Ny

my;

.Nn>5

10.7%

26.2%

8.7%

Figure 6.2. Word counts in the training set. N, := |[{w : Ny, = n}| denotes the number of
words which occur n times. N,, is the number of occurrences of word w.

called out of vocabulary (OOV) word, cannot be recognized correctly, because there
is no trained visual model for it. Detailed statistics about the training and the test
set are shown in Table 6.1. The term singleton denotes words that occur only once in
training. Nine of these singletons occur also in the test set.

The database is annotated with glosses (see Section 2.4). Start and end time of
each sign in the training set have been detected manually and are included in the
annotation data. Different pronunciations of words, i.e. different signs with the same
meaning are annotated as well.

A disadvantage of this database is the high number of singletons. If a visual model is
trained with only few observations, especially with only one observation, it is unlikely
that this model matches unseen utterances. As can be seen in Figure 6.2, about 45 % of
the signs in the training set occur only once or twice. The low number of observations
of these signs also affects the other visual models, because continuous signing is used
for the training of the visual models and the correct estimation of sign boundaries
depends on the quality of all visual models.

Each signer occurs both in the training set and in the test set. The distribution of

47

Table 6.2. Number of sentences and words performed by each signer

training set test set
signer sentences words sentences words
A 53 224 9 35
B 48 232 12 58
C 60 254 19 85

Table 6.3. Language model statistics for the RWTH-Boston-104 database. A zerogram
language model is an uniform distribution of a-priori word probabilities. Sentence
boundaries are modeled in the language model, too.

language model type perplexity

zerogram 106.0
unigram 36.8
bigram 6.7
trigram 4.7

signers in the corpus is shown in Table 6.2.

The perplexity of the test corpus and different language models which have been
estimated on the training corpus of this database are shown in Table 6.3. The per-
plexity of the bigram and trigram language model is low, because the sentences have
a simple structure and 31 of the 40 test sentences occur in the training set. 60 % of all
sentences start with the word “JOHN”, showing the simple structure of the sentences.

6.2 RWTH-Boston-Hands Database

There are many databases for the evaluation of tracking systems, e.g. the widely used
PETS04 database [Fisher 04]. These databases are collected for tasks like human
activity surveillance. The tracking algorithm presented in this work is specialized for
tracking in sign language videos. It is not designed to handle leaving objects, multiple
objects and other events that occur in person tracking tasks.

Therefore, a database for the evaluation of hand tracking methods in sign language
recognition systems has been prepared. The RWTH-Boston-Hands database consists
of a subset of the RWTH-Boston-104 videos. The positions of both hands have been
annotated manually in 15 videos with an application developed for this work (see
Figure 6.3). 1119 frames in total are annotated. All three signers of the RWTH-
Boston-104 database appear in the annotated videos. Examples of annotated frames
are shown in Figure 6.4.

48

() left hand

right hand: 131, 166 Delete

left hand: 212, 173

O

Video: 0130

Frame: 43

Corpus: JurybachiDA/misc/boston201-eaf/train. sentences. corpus
File: boston201. corrected. sl

Figure 6.3. Screenshot of the annotation tool for hand positions.

Figure 6.4. Sample frames of the RWTH-Boston-Hands database with annotated hand
positions. Left and right hand are marked with red and blue circles respectively.

49

Chapter 7
Results

In this chapter the experimental results for the tracking methods and for sign language
recognition are presented. The sign language recognition system, including the track-
ing algorithm, has been implemented in the framework of the RWTH large vocabulary
speech recognition system [Kanthak & Molau™ 00].

7.1 Tracking

The methods for hand tracking described in Section 4.3 are evaluated using the RWTH-
Boston-Hands database (see Section 6.2). The results of the head tracking are pre-
sented only visually, because no database is available for the evaluation of head tracking
methods in the context of sign language.

7.1.1 Performance Measurement

To be able to compare the different tracking methods and their parameters, two per-
formance measurements are introduced. The tracking error rate (TER) measures the
number of correctly positioned tracking windows. Only the center of the tracking win-
dow is used for the evaluation, because the annotations contain no information about
the object size. The annotated hand position and the center of the tracking window
do not need to be exactly identical, because the manual annotation is not exact and
it suffices that the tracking window covers the object to be tracked. However, precise
tracking is appreciated. Therefore, a tolerance 7 is introduced defining the maximally
allowed distance between annotated and tracked position (see Figure 7.1 for examples
of this tolerance). For an image sequence X f and corresponding annotated hand posi-
tions uf, the TER of tracked positions 4! is defined as the relative number of frames
where the Euclidean distance between the tracked and the annotated position is larger
than or equal to 7:

T
. _
TER == 6:(u,d) with 5T(u,v)r={0 = vl < (7.1)
t=1

1 otherwise

N

o1

Figure 7.1. Tolerance for tracking results. The circles show the range of allowed distances
between annotated and tracked position.

The other used performance metric is the average distance between annotated and
tracked positions:

T
1 .
Hi = ; [— g | (7.2)

These measurements do not distinguish between false positive and false negative
detections, as it is done in other works concerning tracking methods, because we
assume that the tracked object does not disappear. The tracking algorithm does not
account for leaving objects.

For the calculation of tracking error rate and average tracking distance, frames in
which the hand is not visible are disregarded.

7.1.2 Hand Tracking

Experiments for different score functions (see Section 4.3) have been carried out using
the same basic setup. All parameters are kept constant and only the score function is
changed:

e The set of allowed predecessor positions M (u) is set to

M, g) ={G+ij+5):—T<i,j <J} with J =10, (7.3)

e a window size of 20 x 20 pixels is used,

e the jump penalty weight a7 is set to 0.1.

52

Table 7.1. Results for different score functions. All experiments use the same setup. The
tracking error rate is given for different tolerances 7.

TER [%]
score function T=15 7=20 g
motion (4.16) 17.80 6.07 10.06
absolute motion (4.17) 14.97 6.28 10.38
squared motion (4.18) 14.14 3.87 9.17
total motion (4.19) 11.83 3.56 8.72

constant background (4.21) 10.05 2.30 7.92

10
éonstant backdrou_nd
squared motion ------
total motion -----
8 - —
8
I 6r 4
=
=
=
2 -
O 1 1 1 1
0 2 4 6 8 10

Figure 7.2. Results for the combination of score function (4.20) with other score functions.
« is the weighting factor of the respectively other score function.

Table 7.1 shows the results of these experiments. The score function (4.20) is not
included in this series of experiments with single score functions, because it needs
an initialization with another score function. The score functions (4.16) and (4.17)
use a linear relationship between image difference and score, while the other score
functions use squared differences. The score functions that use squared differences
perform better, as they penalize large differences more than small differences.

To avoid an initialization of the tracking, the “constant object” score function (4.20)
can be used in combination with other score functions. Experiments with the combi-
nation of score function (4.20) and the best three scoring functions of Table 7.1 were
carried out, using different weights. The results of these experiments are shown in
Figure 7.2, the detailed results for the best weight of each combination is shown in
Table 7.2.

93

Table 7.2. Results for the combination of score function (4.20) with other score functions. «
is optimized (see Figure 7.2).

TER [%]
score function a 7=15 7=20 g
squared motion (4.18) 3 1257 2.93 8.54
total motion (4.19) 2 974 2.20 8.27
constant background (4.21) 2 8.80 1.99 7.67

A weight of @ = 0 in Figure 7.2 does not produce meaningful results. If both score
functions are weighted equally (o = 1), only the combination with the total motion
score function (4.19) yields a tracking error rate in a reasonable range. In the other
combinations the constant object score functions seems to dominate the score. The
combination of the constant background score function and the constant object score
function (4.24) yields the best results as it considers both object and background
constraints. A weighting of 1 : 2 for (4.20) and (4.21) respectively produces the
fewest errors. The usage of higher weights for the constant background score function
converges to the error rate of the experiment using only this score function. Other
parameters of the tracking algorithm are evaluated using this combination of score
functions.

Figure 7.3 analyzes the influence of the jump penalty weight. It can be seen that
jump penalties larger than 0.3 deteriorate the results. The benefit of the jump penalty
is obvious as it decreases the error rate from 7.4 % with a7 = 0 to 1.6 % with a7 = 0.3.
Without a jump penalty the path of object positions is not required to be smooth, i.e.
the object is allowed to “jump” inside the area of allowed predecessor positions.

The tracking window size is varied in Figure 7.4. It can be seen that a window size
between 20 x 20 and 25 x 25 is a good estimate. This window size corresponds to the
average hand size, as can be seen in Figure 7.1.

The maximum jump width J determines the set M (u) of allowed predecessors (see
Equation 7.3). Figure 7.5 shows that a maximum jump width between 10 and 11 is
optimal with respect to the tracking error depending on the tolerance. The maximum
jump width should match the maximal hand speed divided by the frame rate of the
recording. The speed of the tracked object is usually not known in advance, thus
a high maximum jump width can be chosen, because it has mainly impact on the
computation time and not on the error rate.

Replacing the Euclidean distance in the calculation of the difference between two
tracked windows by the tangent distance increases the error rate, as shown in Table 7.3.
These additional errors may result from the higher tolerance of the tangent distance
regarding image transformations, especially translation.

o4

N
N

L~
N A OO 0 O

TER[%]
=
o

oN K~ O ®
I
I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 7.3. Results for different jump penalty weights aq. (4.24) is used as the score
function.

0 5 10 15 20 25 30 35 40 45 50
window size
Figure 7.4. Results for different tracking window sizes. (4.24) is used as score function with
a jump penalty weight of 0.3

Table 7.3. Results for different distances in (4.20). The score weights « are optimized for
both distances separately. Score function (4.24) is used with a window size of 20 x 20
and a jump penalty weight of 0.3.

TER [%]
distance a 7=15 7=20 g4

Euclidean distance 2 8.48 1.57 7.52
Tangent distance 6 9.01 3.25 7.93

95

30

25 B
20 - b

s .

TER[%]

10 - s

Figure 7.5. Results for different sets of allowed predecessors. J is the maximum jump width.
(4.24) is used as score function with a jump penalty weight of 0.3

Table 7.4. Comparison of local decisions to decisions on the whole sequence. Score function
(4.19) is used.

TER [%)]
decision based on 7T=15 7=20 hd

complete sequence 11.83 3.56 8.72
single frames 33.82 23.66 23.67

The dependency of the error rate on the tolerance 7 is shown in Figure 7.6. For
tolerances larger than 20 the error rate is very low. The usage of tolerances lower than
10 does not give realistic results, because in the presented system the tracking window
is required only to cover the object to be tracked and not to be centered on an exact
point.

Table 7.4 shows that the approach of avoiding local decisions works well. If the
best object position is determined for each frame separately, the error rate increases
significantly.

The following parameters have been proven to yield good results in the experiments
presented in this section. Thus, they are used in the experiments for sign language
recognition:

e score function “constant window and constant object” (4.24) with a weighting of
a = 2 for the “constant window” part.

e window size 20 x 20

56

100

80 - b
70 b
60 - b
50 - b
40 - b
30 b
20 - b

TER[%]

10 - b

Figure 7.6. Results for different tolerances 7. The best settings for score function
(Equation 4.24) described in Section 7.1 are used.

e jump penalty weight a7 = 0.3
e maximum jump width J = 10

Sample frames of an experiment with these settings and activated pruning can be found
in Figure 7.7. It can be seen that the set of considered hand positions becomes small
after a few frames (¢ = 6). If the hands are crossing (t = 2642), the set of considered
object positions includes the non-dominant hand, but the tracked window stays on the
dominant hand. In the first few frames the hand moves very fast (t = 9...12), so that
the maximum jump width is not large enough to allow the tracking window to cover
the hand. However, after a few frames the tracking window catches up with the hand.

7.1.3 Head Tracking

The results of the head tracking experiments are evaluated only visually. As the
RWTH-Boston-104 database consists of gray level videos, the skin color score function
cannot be used. Instead, a brightness score is used, which is simply the sum of all pixel
values in the tracking window. Results of experiments using this score (see Figure 7.9)
show that the tracking window is not centered on the face. Instead, more homogeneous
regions, like the neck, or brighter regions, e.g. the white collar of one of the signers,
are detected. In Figure 7.8 it can be seen that the tracking becomes wrong when the
face is partially occluding with a hand.

The eigenface scoring function alone does not always detect the face, depending on
facial expressions and the signer’s cloth (see Figure 7.9). The combination of these two

o7

o8

t =063 t =65 t =68

Figure 7.7. Sample frames of a hand tracking experiment with activated pruning. The
tracking window is marked with a yellow rectangle. The active hypotheses, i.e.
positions that are considered as possible object positions in each frame, are marked
as a blue region.

t=20 t=35 t=44

Figure 7.8. Sample frames of a head tracking experiment using a brightness scores only. The
tracked window is marked with a yellow rectangle.

Figure 7.9. Sample frames of experiments with different score functions for head tracking in
different videos. The following score functions are used (from top to bottom):
brightness, eigenface, combination of brightness and eigenface.

99

- .

t=9

t=14 t=19
t=26 t =28 t=44 t =46

Figure 7.10. Sample frames of a head tracking experiment using a combination of the
eigenface scoring function with a brightness score. The tracked window is marked
with a yellow rectangle.

score functions compensates the errors of both. Facial expressions and head rotations
are tolerated as shown in Figure 7.10.

7.2 Sign Language Recognition

In this section, the results of the sign language recognition experiments are presented.
All experiments have been carried out using the RWTH-Boston-104 database. The
system is trained to recognize glosses without explicit modeling of inflections and
incorporations. Special properties of sign language like indexing are not considered.
Thus, pointing gestures are recognized as a pointing gloss without information about
subject or direction of the sign.

First, parameters for word modeling are investigated. These parameters are then
used in the experiments comparing different features and the combination of features.

7.2.1 Word Modeling

The duration of signs differs significantly. For example, the sign “BUY” has an average
length of 0.18 seconds (6 frames), while an utterance of the sign “LEG” can take up
to 0.96 seconds (29 frames). Small differences between the length of utterances are
compensated by the HMM, but different lengths of the signs have to be modeled by
the number of HMM states.

The relationship between average sign length and number of states is determined
empirically. The number of states can be set to the same value for all signs or indi-

60

Table 7.5. Results for different numbers of HMM states for the visual models. The average
length per state is the average sign length divided by the number of states of its visual
model.

avg. length per state [ms] avg. frames per state WER [%]

30 1.0 43.3
40 1.3 37.1
50 1.7 39.3
60 2.0 38.8
90 3.0 51.1
fixed: 3 states / word 6.6 44.9
fixed: 6 states / word 3.3 38.7

vidually for each sign. The individual number of states of each word is adapted to the
average length the word in the training set. The average length of a sign is calculated
from the start and end times included in the annotation data of the database.

A basic setup is chosen for the experiments described in the following. The frame is
scaled to a size of 32 x 32 pixels and transformed with LDA to 90 features. A trigram
language model is used.

Table 7.5 shows that an average length of 40 ms per state yields the best error rate.
If all words have the same number of states, i.e. word length is not modelled, the error
rate is higher. The average number of frames per state for the fixed length models is
not directly comparable to the variable length models, as frames are distributed over
all states of all words in the training corpus. Thus, long words have too few states and
short words have too many states.

If the number of states for the visual models is too low, the models of the states tend
to be too generic, because the features of many succeeding frames will be mapped on
one state. On the other hand, if the model has too many states, it may happen that
the number of frames of an observation is lower than the number of states, resulting in
a wrong model or in an error of the training algorithm. The usage of skip transitions
can avoid some problems with too long models, as described in Section 7.2.4.

Different signs can convey the same meaning, i.e. there are different pronunciations
of a sign [Zahedi & Keysers™ 05]. As mentioned in Section 6.1, these pronunciation
variants are labeled in the database. The length of each pronunciation is estimated
separately. The results in Table 7.6 show that the consideration of pronunciations
improves the results, because pronunciations of a sign differ in visual appearance and
in duration.

61

Table 7.6. Results with and without consideration of pronunciations.

words pronunciations WER [%]

103 103 39.9
103 112 37.1

7.2.2 Features

The simplest features are the appearance-based features based on complete frames.
The results of experiments with the frame itself as feature and transformed repre-
sentations of it are shown in Table 7.7. The frames are downscaled to 32 x 32 pixels.
The table shows also the result of an experiment where two transformation are applied.
PCA is used to reduce the dimensionality of the features, then the reduced features are
transformed with LDA. The other way around, first LDA then PCA, is not reasonable,
as the results show that the dimension reduction of PCA produces better results than
LDA. Thus, a further dimension reduction with PCA of LDA transformed features is
not expected to produce better results. The results of the feature dimension reductions
of LDA and PCA are analyzed in Figure 7.11. Both dimension reduction techniques
improve the results, because less parameters of the emission probabilities of the visual
models have to be estimated with the low amount of training data. The application of
PCA yields the best results. The difference between LDA and PCA can be seen in the
visualization of both in Figure 7.12. The LDA transformation discards pixels in center
of the image which have a low between class variance and keeps the border pixels.
In contrast, the PCA discards these border pixels because of their low total variance.
Most border pixels belong to the background and do not change in the videos. Thus,
they are not likely to be useful for recognition. As mentioned in Section 5.1.2; the
calculation of a robust LDA relies on correct class information and a large amount
of training data, which is not given in the RWTH-Boston-104 database. The visual-
ization shows also the so-called “salt-and-pepper” structure [Hastie & Tibshirani™ 03,
page 398] of the LDA projection vectors. The combination of PCA and LDA does not
improve the results.

Scaling the frames to 32 x 32 pixels introduces a slight distortion, because the
original aspect ratio is not kept. Experiments with other scalings in Table 7.8 show
that undistorted frames yield better results, but higher resolutions do not give further
improvements. The usage of larger frames requires the estimation of a larger covariance
matrix for the calculation of the PCA transformation. The more parameters have to
be estimated the more training data is needed. If the PCA transformed frame is
combined with other features, the benefit of the undistorted frames vanishes, as can
be seen in Table 7.14 (page 66). Thus, a PCA transformation of the 32 x 32 frame to
110 features is used in further experiments, abbreviated as PCA-frame.

62

Table 7.7. Results using the original frame downscaled to 32 x 32 pixels and LDA, PCA
transformations.

dimensionality
transformations after PCA after LDA WER [%)]
- - - 483
LDA - 80 36.0
PCA 110 - 275
PCA, LDA 110 80 30.3
90 —
PCA —
LDA -
80 [b
70 - .
= 60
o
£ 50
40
30
20 — —
10 100 1000

dimension

Figure 7.11. Results for different dimensionalities of PCA, LDA transformations.

Figure 7.12. Visualization of a LDA (left) and PCA (right) transformations.

Table 7.8. Results of experiments with PCA transformed frames for different frame sizes.
The dimensionality of the PCA transformed features is optimized for each frame size.

frame size dimensionality after PCA WER [%]

32 x 32 110 27.5
38 x 32 110 24.2
48 x 32 110 25.8
48 x 48 100 27.5
D7 x 48 100 27.5
64 x 64 200 29.2

Table 7.9. Results for combinations of manual features. The error rates are given for
successively added features. The results for all combinations can be found in
Appendix A in Table A.1.

dim. of the
features feature vector WER [%]
hand position u; 2 59.6
+ hand motion m; with A =1 4 48.9
+ hand motion m; with A = 2 6 46.1
+ motion energy e; 7 42.1

Results of experiments with manual features, motion energy, and combinations are
shown in Table 7.9. As one can expect, the usage of these simple features alone does not
produce good results. However, it can be seen that the combination of hand position
and hand motion features produces relatively good results, whereas position alone
does not achieve good results. The best results are obtained when all four features are
combined.

Manual features and motion energy can be combined with the PCA transformed
frame (32 x 32 pixels, transformed to 110 features). The results of the experiments
in Table 7.10 show that all manual features except of the combination position with
motion slightly improve the result. The largest improvement is observed when both
hand motion features are used. The hand position is encoded in the image, whereas
information about movements cannot be observed in single frames. Furthermore,
the hand position heavily depends on the speaker and his distance to the camera.
Additional usage of motion energy does not yield further improvements.

Table 7.11 shows that the combination of PCA transformed frames and eigenvalue
trajectory features outperforms the results of both PCA transformed frames and com-
binations with manual features (see Table 7.10). The trajectory features contain more

64

Table 7.10. Results for the combination of PCA-frames and hand position u, hand motion
m¢, motion energy e:. The results for all combinations can be found in Appendix A

in Table A.2.
dim. of the

features feature vector WER, [%)]
PCA-frame 110 27.5
PCA-frame + wuy 112 25.3
PCA-frame + m; with A =1 112 27.5
PCA-frame + m; with A € {1,2} 114 24.2
+ e 115 24.7
+ uy 117 27.0

Table 7.11. Results for combination of PCA-frames with trajectory eigenvalues A1, A2 and
eigenvectors v1, vz (sorted by decreasing eigenvalues). The window size is set to
2A 4 1 = 5. Results for experiments with single trajectory features and for all
combinations can be found in Appendix A in Table A.3.

dim. of the
features feature vector WER [%)]
PCA-frame 110 27.5
PCA-frame + A1, Ao 112 23.6
PCA-frame + v 112 26.4
+ vy 114 27.0
PCA-frame 4+ A1, Ao + v1 116 26.4

global information of the hand positions than the other manual features. The analy-
sis of different sizes of the sliding window in Table 7.12 shows that a window size of
5 yields the best results for the eigenvalues feature. If the window is too large, the
direction and the shape of the movement become imprecise.

In Table 7.13 it can be seen that the combination of PCA transformed frames, the
trajectory eigenvalue feature, and manual features does not improve the results of the
combination of transformed frame and trajectory eigenvalue feature. All combinations
yield higher error rates than the best result in Table 7.12; two combinations yield even
higher error rates than the usage of the transformed frame only.

The results of experiments with mean face difference images are shown in Table 7.15.
Mean face difference images (MFDI) and PCA transformed MFDI alone do not yield
good results, as no information about manual components is included. The combina-
tion of PCA transformed MFDI and PCA transformed frames yields an improvement
in comparison to the error rate obtained with frame features alone. The best result

65

Table 7.12. Results for combinations of PCA-frames and trajectory features with different
window size 2A + 1

WER [%] obtained with

A)\1,)\2 (%])\1,)\2, (%1
1 26.4 25.3 26.4
2 23.6 26.4 26.4
3 25.3 27.0 24.7
4 24.2 28.1 26.4
) 28.7 27.0 25.8

Table 7.13. Results for the combination of PCA-frames, trajectory eigenvalue feature
(window size 5), and manual features. All combinations include PCA-frames and
trajectory eigenvalues. Results for all possible combinations can be found in
Appendix A in Table A .4.

dim. of the
additional features feature vector WER [%)]
- 112 23.6
Ut 114 28.1
my with A =1 114 27.0
me with A € {1,2} 116 27.0
+ e 117 24.7
+ uy 119 25.8

Table 7.14. Comparison of results obtained with combinations of manual features with PCA
transformed frames of size 32 x 32 and 38 x 32.

WER [%)]
features 32x32 38 x 32
PCA-frames 27.5 24.2
PCA-frames, m; with A € {1,2} 24.2 27.5

PCA-frames, trajectory eigenvalues 23.6 27.5

Table 7.15. Results for mean face difference images, PCA transformations of it
(MFDI-PCA), and the combination with PCA-frames, trajectory eigenvalue features,
and manual features. The dimensionality of the MFDI-PCA is given in brackets.

features WER [%)]

MFDI 56.2
MFDI-PCA (110) 54.0
PCA-frames, MFDI-PCA (110) 35.4
(55) 29.8

(30) 26.4

(20) 25.3

(10) 28.1

(5) 26.4

PCA-frames, MFDI-PCA (20), trajectory 30.3
PCA-frames, MFDI-PCA (20), m; with A € {1,2} 25.3

is obtained, if the number of MFDI features is much lower than the number of frame
features resulting in a relatively low influence of the MFDI. Results obtained with the
combination of MFDI and manual features or trajectory features are equal to or worse
than the results obtained without additional features.

The usage of hand patch clusters for hand shape features deteriorates the results,
as can be seen in Table 7.16. The hand patch clusters (see Figure 5.5, page 41)
are visually not similar to real hand shapes, because the hand patches obtained with
the used tracking method are not aligned to a fixed point of the hand and are not
normalized in size.

In addition to the frontal view used so far, the RWTH-Boston-104 database provides
also videos of the signers’ side view. This perspective shows the vertical position
of the hands, like the frontal view does, and the distance between hand and body
which is not directly measurable in the frontal view. However, the hand position on
the horizontal axis in front of the signer can not be quantified from this perspective
with the used tracking method. The results in Table 7.17 show that the side view
contains data which can improve the recognition performance. The usage of PCA
transformed frames of the side view yields better results than the usage of the PCA
transformed frontal view frames. A scaling of 38 x 32 improves the results even though
it introduces a deformation. When trajectory features are added, results obtained with
the eigenvalue feature are worse than those obtained with the trajectory of the frontal
view, but the combination with eigenvalues and eigenvector yields better results than
any combination of features of the frontal view.

The frames of the two cameras can be combined by either concatenating the PCA
transformed frames or by applying one PCA transformation to feature vectors con-

67

Table 7.16. Results of experiments with hand patch clusters. The hand patches have a size
of 20 x 20 pixels. Experiments have been carried out with clusters of untransformed
hand patches (HP), clusters of PCA transformed hand patches (HP-PCA, 40
features), and in combination with PCA-frames.

features number of clusters WER [%]

HP 16 57.3
HP, PCA-frame 4 28.6
8 31.5

16 33.2

32 34.8

74 41.1

HP-PCA, PCA-frame 16 33.7

Table 7.17. Results obtained with features of frames captured by the side view camera. The
extracted frame has a size of 250 x 240 pixels. Frame features are calculated from
scaled versions of size 32 x 32, if not explicitly stated. Trajectory features are
calculated with a window size of 5 frames unless otherwise noted.

features WER [%)]
PCA-frame 25.3
PCA-frame (frame size 38 x 32) 24.7
PCA-frame (frame size 48 x 48) 27.0
PCA-frame, trajectory eigenvalues 27.0
PCA-frame, trajectory eigenvector 25.8
PCA-frame, trajectory eigenvalues, eigenvector 23.0

sisting of concatenations of both frames. The results in Table 7.18 show that the
concatenation of transformed frames produces more errors while the transformed con-
catenation yields an error rate slightly lower than the one obtained with the frontal
view but higher than the error rate of using only the side view. However, the setup
with two cameras is not likely to be found in other sign language databases. The three
dimensional data obtained from a pair of stereo cameras is expected to provide similar
or even more improvements, but was not investigated in this work.

The results presented in this section show that combinations of PCA-frames with
hand motion features or trajectory eigenvalues yield good results, if the frontal view
used. For the side view, the combination of PCA-frames with trajectory eigenvalues
and eigenvectors performs best. These features will be considered in the following
sections.

68

Table 7.18. Results obtained with combinations of both cameras. Combination is done by
using either one PCA for the combination of frames or by concatenating
PCA-transformed frames.

combination WER [%]
concatenation of PCA-frames 34.8
one PCA transformation (dim.: 140) 27.0
window size =5 ——
window size =3 ------
window size =7 -----
35 -
S
x 30
L
=
25

20 | | | | | |
50 100 150 200 250 300 350 400 450 500

feature dimensionality

Figure 7.13. Results for feature combination of PCA transformed frames using LDA.

7.2.3 Feature Combination

Features of succeeding frames can be combined using both LDA and PCA (see Sec-
tion 5.4). Parameters of these feature combinations are the number of frames combined
and the dimensionality of the resulting feature vectors. Experiments have been carried
out to compare both linear combination techniques and to find meaningful parame-
ters. The comparison of the results in Figure 7.13 and Figure 7.14 shows that the
application of PCA yields better results than the application of LDA. Both feature
combination methods improve the results over those obtained with features of one
frame. Furthermore, it can be seen that a window size of 5 frames gives the lowest
error rates when using PCA. If too many frames are combined, coarticulation effects
emerge, because frames belonging to adjacent signs influence the calculation of the
features. The best result is obtained with a feature dimensionality of 100 using PCA,
although each of the combined features has a dimensionality of 110.

Results of feature combinations for composite features are shown in Table 7.19. The
feature combination improves all results obtained in experiments with the frontal view
camera while the results obtained with the side view camera become worse. The best

69

40

. T . T
window size =5 ——
window size =3 ------
window size =7 -----

35 b

WER [%]
w
o
T
Il

S ’
8 ‘ ’
25 vl -
Ny 4 N

20
50 100 150 200 250 300 350 400 450 500
feature dimensionality

Figure 7.14. Results for feature combination of PCA transformed frames using PCA.

result in this series of experiments is obtained with the combination of side view frames
and frontal view trajectory features.

7.2.4 HMM Topology

All experiments presented in the previous sections have been carried out without skip
transitions in the HMMs, because they can produce errors in the training algorithm
for the visual models. If skip transitions are allowed, HMM states can be skipped in
the alignment of feature vectors to HMM states. If a state is skipped in the alignments
of all training samples of a sign, the state is completely unseen in training and thus,
the parameters of the emission probability of this state cannot be estimated. This
situation is not unlikely, especially if only one training sample is available for a sign.
To avoid this problem of unseen states while allowing skip transitions, one can set the
transition probabilities of the skip transitions so low, that it is used in exceptional
cases only.

The missing skip transitions can produce recognition errors, if the observed sign is
shorter than the minimal length of the visual model. For example, a sign that occurs
over a length of 4 frames cannot be recognized correctly with a 6 state visual model.
Thus, allowing skip transition for recognition is expected to reduce recognition errors.
This expectation is met, as can be seen in Table 7.20. The relatively high number of
deletion errors compared to the number of insertion errors in the experiment without
skip transitions indicates that the length of some recognized words is too long, such
that surrounding words are not recognized. Deletion and insertion errors are more
balanced when skip transitions are allowed. The results in Table 7.21 show that the
usage of skip transitions improves also the recognition performance of setups with

70

Table 7.19. Results for feature combination of composite features using PCA. 5 succeeding
feature vectors are combined and transformed to 100 features. Frames have a size of
32 x 32 unless otherwise noted.

camera features WER [%]
PCA-frame 21.4
frontal PCA-frame, m; with A € {1,2} 23.6
view PCA-frame, trajectory eigenvalues 21.4
PCA-frame, trajectory eigenvalues, eigenvectors 24.2
PCA-frame 26.4
side PCA-frame, m; with A € {1,2} 23.0
view PCA-frame, trajectory eigenvalues 23.0
PCA-frame, trajectory eigenvalues, eigenvectors 23.6
both frontal view PCA-frame, side view trajectory eigenvalues 22.5
side view PCA-frame, frontal view trajectory eigenvalues 20.2

Table 7.20. Comparison of results with and without skip transitions in training and
recognition. The experiments use 5 combined PCA-frames (frontal view) as feature.
Word errors are split in substitution errors (sub.), insertion errors (ins.), and deletion
errors (del.).

skip transitions word errors
allowed in del. ins. sub. WER [%)]
- 20 3 15 214
recognition 11 8 18 20.8
recognition, training 12 7 18 20.8

composite features and feature combination.

7.2.5 Language Modeling

The impact of the language model on the recognition performance can be analyzed
by comparing results obtained with different types of language models. A zerogram
language model assigns the same probability to all words, i.e. the structure of the lan-
guage is not modeled. Unigram language models rate words by their frequency in the
training set. More complex language models incorporate word sequences. Figure 7.15
shows that the usage of bigram and trigram language models improves the recognition
performance significantly. The optimal language model scale is lower for zerogram and
unigram language models, because they are less meaningful so the visual model must
have more influence on the decision.

71

Table 7.21. Experiments with different features comparing results with and without skip
transitions in training and recognition. All features include the PCA transformed
frames. Feature combination is used in the two lower experiments.

feature WER [%]
additional features combination w/o skips skips
- 27.5 247
my with A € {1,2} 242 225
trajectory eigenvalues X 214 20.2
(side view) trajectory eigenval., -vec. X 23.6 19.7
80
zerggram -
70 - “Digram - 1
trigram - - - -
60 - e
S50t s
o
L a0 P .
30 |- e T .
20 b L e
lo | | | |
0 100 200 300 400 500
LM scale

Figure 7.15. Comparison of the effect of different language models and different language
model scales

One has to keep in mind that the vocabulary of 104 words is very small compared to
those of current speech recognition systems and the structure of the sentences in the
Boston-RWTH-database is rather simple. Thus, the obtained results are not directly
transferable to corpora with larger vocabulary and more complex sentence structures.
In speech recognition, where large corpora with a huge amount of data are used, the
impact of the language model is higher than in the presented experiments.

7.2.6 Model Combination

As mentioned in Section 5.4, several visual models with different types of features
can be combined. Models that yield good results when used alone are used for the
combination (see Table 7.22). The results of the experiments with combined models
are shown in Table 7.23. It can be seen that the combination of models can improve
the results over the results obtained with single models.

72

Table 7.22. Description of the models that are combined in Table 7.23. Feature combination
with a window size of 5 is used for all models.

model name camera features

model-1 frontal PCA-frames, trajectory eigenvalues

model-2 frontal ~PCA-frames, m; with A € {1,2}

model-3 side PCA-frames, trajectory eigenvalues, eigenvector
model-4 side PCA-frames, m; with A € {1,2}

Table 7.23. Results obtained with the combination of several visual models. The used
models are described in Table 7.22. Skip transitions are used.

models WER [%)]
model-1, model-2 18.0
model-2, model-3 20.2
model-1, model-3 18.5
model-1, model-2, model-3 19.7

7.2.7 Cross Validation

All results presented in this chapter are obtained using the same partition of the
available data into training and test sets. Due to the small amount of data it is not
reasonable to split the data further to create an additional development set. Devel-
opment sets are used to optimize the parameters of the recognition system, which is
then evaluated using the optimized parameters on a separate evaluation set.

Due to the missing development set in the Boston-RWTH-database some of the
parameters of the recognition system have been optimized on the test data. This
practice may distort the results as the parameters are optimized for this specific test
set and it is difficult to make a statement on the recognition performance in general.

In k-fold cross validation, the set of data is partitioned into k distinct subsets. Each
of the subsets is used one time as test data while the other k — 1 sets have been used
for training. Thus, k£ recognition experiments with different training and test sets can
be carried out.

In this work, a 20-fold cross validation is used, resulting in test sets of 10 and
training sets of 191 sentences. Details about the cross validation corpus can be found
in Table 7.24. The number of singletons in the training corpus is lower than in the
normal training corpus (see Table 6.1, page 47), because the training sets include more
utterances. Visual models and trigram language models are estimated for each of the
training sets. One half of the test sets was used to optimize two parameters, namely
the language model scale and the word penalty, the optimized parameters are then

73

Table 7.24. Statistics about the cross validation corpus

training sets test sets

min max avg. min max avg.
sentences 190 191 191 10 11 10
glosses 833 851 844 37 55 44
unique glosses 101 104 103 21 34 27
singletons 12 28 19 0 4 2
OOV glosses - - - 0 3 1
perplexity - - - 42 155 8.2

Table 7.25. Results of cross validation experiments using PCA-frames and trajectory
eigenvalues (both from the frontal view camera) combined with a window size of 5.
Skip transitions are allowed during recognition.

dev. sets eval. sets
partitioning min max avg. min max avg.
1 21.6 575 399 275 61.5 43.5
2 25.0 61.5 43.2 21.6 551 37.3

used in the experiments on the remaining test sets.

The average error rates in Table 7.25 are significantly higher than those obtained
using the normal training and test sets. It can be seen that the error rate depends on
the used test set. The obtained results range between 22 % and 62 % error rate. The
recognition experiments have been carried out using two different partitions of the test
sets into development and evaluation set. In one partition, the first ten test sets are
used for the parameter optimization, the remaining test sets are used for evaluation,
and vice versa in the other partition. One half of the test sets obtains better results
whether or not it is used for parameter optimization.

Several aspects are analyzed in order to find a reason for the huge differences between
the results of the test sets. Figure 7.16 shows the number of sentences Ny that occur
both in training and in test (sentences that consist of the same sequence of words, not
the same utterance) as the result obtained with this combination. One can see, that
there is no correlation between these two factors. If the word error rate would depend
on Ny, the visual models would be sentence specific and not able to match words in
an unseen context.

Another interesting aspect is the frequency of the test words in the training corpus,
meaning how often a word has been seen in training. In Figure 7.17 the average
frequency of all words and the average frequency of all unique words in a test set is

74

A O o o
G & o1 © O
LI B —|
+
+
+
T N N

WER [%]
I
o
T
.
.
Il

4
35+ N a
30 b
25 b

20 ! ! I !
30 40 50 60 70 80

Figure 7.16. Results of the cross validation experiments. Each point represents a test set.
On the x-axis the number of sentences in the test set that occur also in its training
set (Ns) is listed and the error rate obtained with this test set on the y-axis.

Table 7.26. Summary of the results presented in this chapter.

features result table WER [%]
untransformed frames 7.7 48.3
PCA-frames 7.7 27.5
PCA-frames, hand motion 7.10 24.2
PCA-frames, trajectory 7.11 23.6
feature combination using PCA 7.19 21.4
skip transitions 7.21 20.2
model combination 7.23 18.0

plotted in combination with the obtained error rates. Also in this graph no correlation
is noticeable. Thus, it is most likely that the different error rates are caused by the
different compositions of words in the particular cross validation partitions.

7.2.8 Summary

The results presented in the different sections of this chapter are summarized in Ta-
ble 7.26. In the progress of this work, the the presented features and methods are able
to improve the error rate from 48 % to 18 %.

The best presented automatic sign language recognition system recognizes the sen-
tences of the RWTH-Boston-104 test set with a word error rate of 18 % (see Table 7.23).
The test set consists of 40 sentences, 22 of them are recognized correctly. In the re-

75

65 T T T T
o . total words ~ +

[}
60 1 unique words

55 - = + .

o

50 & m]
45 .

40 O + =

WER [%]
]
+

35 - O o N + a

30 b

20 ! \ ! ! ! ! !
10 15 20 25 30 35 40 45 50

word frequency

Figure 7.17. Results of the cross validation experiments. Each point represents a test set.
On the x-axis the average frequency of the test words in the training set is listed
and the error rate obtained with this test set on the y-axis. Frequencies are given
both for all words and for all unique words.

maining 18 sentences, 32 word errors occur (10 insertion errors, 10 deletion errors,
and 12 substitution errors). Examples of remaining errors in the recognized sentences
using the best presented automatic sign language recognition system are shown in Ta-
ble 7.27. It can be seen that many errors occur in utterances of sentences that have
not been seen in training, only one of these unseen sentences is recognized without any
error. However, parts of the unknown sentences are recognized correctly showing that
the visual models match also signs in an unknown context.

Deletions errors occur, for example, in the sentence “JOHN LIKE IX IX IX” (row 1)
where “IX” is a pointing sign (meaning something like “John likes this subject, this
subject, and this subject”). One of the pointing signs is recognized as part of the
other signs. The unknown word in sentence 2 in Table 7.27 cannot be recognized
correctly, because no visual model has been trained for it. The occurrence of unknown
words can lead to subsequent faults, as happened in the recognition of this sentence.
The word “JOHN” is inserted at the beginning of two sentences (rows 8 and 15). It
has as a relatively high language model probability at the sentence begin, because
of its frequent occurrence at this position in the training set (see Section 6.1). The
insertion of the sign “MARY” (rows 14 and 15) is also caused by high language model
probabilities. The main part of the sentence in row 14 is recognized correctly, even
though it is performed by signer C during the training and by signer A in the test.
Many of the correctly recognized sentences have been performed by several signers
during the training (see Table A.5 in Appendix A), showing that the recognition is
not p