
Diploma thesis (Diplomarbeit)

N-Best Hidden Markov Model
Supertagging for Typing with

Ambiguous Keyboards

Saša Hasan

July 2, 2003

Universität Koblenz-Landau
Campus Koblenz

Fachbereich Informatik
Universitätsstraße 1

56070 Koblenz, Germany

Supervisors (Betreuer):
Prof. Dr. Karin Harbusch

Dipl. Inform. Michael Kühn

Acknowledgements

“It seems very pretty, but it’s rather hard to understand! Somehow it seems to fill
my head with ideas — only I don’t exactly know what they are!” These are the
comments of Alice on the poem Jabberwocky in the book Through the Looking Glass
written by Lewis Carroll. The quotation reflects in a way my state of mind (not
only) at the beginning of working on this thesis project.

As time progressed, things fortunately became much clearer. First of all, I would
like to thank my supervisors, Prof. Karin Harbusch and Michael Kühn, for creating
a congenial atmosphere and pushing me back into the right direction when things
got a bit out of hand. Without their valuable comments, this thesis would simply
not be this thesis.

I am grateful to Jens Bäcker for providing his supertagger and other scripts that
made the uncountable hours in front of the computer feel shorter than they actually
were.

I am also indebted to Kerstin Wiebe and Sebastian Bochra for pointing out that
there actually is life beside the worktable. I thank them for many pleasant discussions
that helped me to keep a level head.

Thanks also go to Daniel Fastner, Christian Kölle and Jan Spiekermann who were
willing to glance at early drafts of this work.

I acknowledge the generosity of Alexander Fuchs who, in times of low printing
quotas, helped me with printouts which accounted for finding the one or another
small error that is, funnily enough, invisible on monitors during early morning hours.

Special thanks go to Hajo Hoffmann for many insightful discussions about life, the
universe and everything.

Finally, I am greatly indebted to my parents and my brother for the persistent
encouragement and support and patience and love. Thank you.

Declaration (Erklärung)

I hereby declare that this diploma thesis is entirely written by myself. All sources of
information are listed in the bibliography.

Hiermit versichere ich, dass ich diese Diplomarbeit selbständig verfaßt und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Saša Hasan
Koblenz, July 2, 2003

i

ii

Abstract

Individuals with severe speech impairment are dependent on communication aids
that allow them to communicate with other people. Communication is an important
factor against isolation of the disabled and is necessary in everyday life for exchanging
information, making requests or expressing thoughts. So far, several predictive text
entry devices have been developed that reduce the number of keystrokes needed for
entering a word by proposing possible candidates to the current input prefix. By
selecting one of the available completions, the number of keypresses decreases but
the overall time to enter the word is not necessarily reduced because of the cognitive
load that emerges while scanning the candidate lists for the target word. Another
restriction arises for motor impaired users that cannot operate a common keyboard
and have to rely on reduced keyboards instead. These keyboards map several letters
to a single physical key which results in an ambiguous coding of the words. Thus, a
code entered with this kind of keyboard usually yields a list of matching words. The
primary goal is to order these candidates in a way that the most appropriate words
are placed at the top for minimal selection costs. The easiest way to achieve this is
to sort the list according to word frequencies obtained from large corpora.

In this study, the attention is focused towards a sentence-wise text entry system
with a highly reduced ambiguous keyboard containing only three letter keys and
one command key. The main idea is to utilize the syntactic dependencies that exist
between the words of a sentence and use this information to adjust the candidate
lists such that more likely words appear at the top. Instead of being distracted by
a list of proposals after every keypress as it is the case with a predictive word-wise
approach, the user can concentrate on what she wants to express in the first phase,
i.e. the ambiguous typing of the words, and disambiguate the target words from the
candidate lists in a second phase. In an idealistic scenario, the system would find the
correct sentence hypothesis, resulting in minimal selection costs for the user. The
technique that is chosen in this work to achieve this goal is supertagging, a procedure
that associates so-called supertags, i.e. elementary trees that code local dependencies,
with the corresponding words of the sentence. The core of the system is an n-best
supertagger that is based on a trigram Hidden Markov Model and is able to find the
n best sentence hypotheses for a sequence of coded words. An additional lightweight
dependency analysis results in a “shallow parse” and retains only the most promising
hypotheses for adjusting the final candidate lists.

The results obtained from a very small evaluation corpus (250 sentences) show that
the approach yields better rankings. The percentage of target words that appear at
the first position in the suggestion list could be increased from 50 to 62%, whereas on
average, the words appear at the second position with the n-best approach. 95.8%
are placed within the top 5 ranks. It is assumed that with a larger training corpus
and thus better language model, the rankings could even be improved. Further
evaluations have to be carried out in the future to prove this claim.

iii

iv

Contents

Abstract . iii

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of this work . 2
1.3 Organization . 4

2 Statistical Language Modeling 5
2.1 Markov models . 6

2.1.1 Discrete Markov processes . 6
2.1.2 Hidden Markov Models . 8

2.2 N-gram models . 15
2.2.1 Discounting . 17
2.2.2 Back-off . 18
2.2.3 Entropy . 19

3 Text Entry with Ambiguous Keyboards 21
3.1 Augmentative and Alternative Communication 21

3.1.1 Selection methods for augmentative devices 23
3.2 Word completion and prediction . 24

3.2.1 Letter-wise approaches . 25
3.2.2 Word-wise approaches . 26

3.3 Ambiguous keyboards . 28
3.3.1 Sentence-wise text entry . 29
3.3.2 Unknown words . 31

3.4 The UKO-II communication aid . 32
3.4.1 Keyboard layout . 33
3.4.2 Frequency-based static language model 34

3.5 Summary . 35

4 Partial Parsing and Search Techniques 37
4.1 Part-of-Speech Tagging . 37

4.1.1 History of taggers . 38

v

Contents

4.1.2 Probabilistic data-driven tagging 39
4.1.3 Rule-based data-driven tagging 41

4.2 Tree Adjoining Grammars . 42
4.2.1 Lexicalized Tree Adjoining Grammars (LTAG) 43
4.2.2 LTAG example . 45

4.3 Supertagging . 46
4.3.1 Lightweight Dependency Analysis 48
4.3.2 Bäcker’s Supertagger . 51

4.4 Other shallow parsing techniques . 54
4.4.1 Chunking . 54
4.4.2 Deterministic partial parsers 55

4.5 Search methods . 56
4.5.1 Uninformed search . 57
4.5.2 Informed search . 59
4.5.3 N-best search . 61

5 N-best Supertagger for Ambiguous Typing 65
5.1 N-best tree-trellis algorithm . 66
5.2 System’s components . 72

5.2.1 Coping with ambiguity . 73
5.2.2 Implementation of the tree-trellis search 75
5.2.3 Adjusting the candidate lists 76

6 Results and Discussion 81
6.1 Evaluation corpus . 81

6.1.1 German LTAG . 83
6.1.2 Lexicon . 83

6.2 Baseline results . 86
6.3 N-best supertagging results . 87

6.3.1 Reference test set and cross-validation 88
6.3.2 Upper bound . 90
6.3.3 A* versus greedy search . 93
6.3.4 Experiment with word trigrams 93

6.4 Discussion . 94

7 Conclusion 97
7.1 Future work . 98

A UML class diagrams 101
A.1 Package supertagging . 101
A.2 Package supertagging.nbest . 101

vi

Contents

A.3 Package LDA . 101
A.4 Package evaluate . 101

B Evaluation graphs 107
B.1 STAG vs. BEST . 107
B.2 STAG A* vs. greedy search . 107
B.3 STAG vs. TRIGRAM . 107

C Test run 117

vii

Contents

viii

List of Figures

2.1 A simple Markov model with 3 states. 7
2.2 A Hidden Markov Model with 3 states. 9
2.3 The trellis structure of an HMM. 12
2.4 The Viterbi algorithm. 14

3.1 The reduced keyboard of a modern cellular phone. 29

4.1 The substitution operation in Tree Adjoining Grammars. 44
4.2 The adjunction operation in Tree Adjoining Grammars. 44
4.3 A lexicalization example for LTAGs. 45
4.4 The LTAG example for the sentence who does Bill think Harry likes. . 47
4.5 The derived structure for the sentence who does Bill think Harry likes. 47
4.6 Example of a phrase structure tree. 49
4.7 Example of a derivation tree. 50
4.8 The two-pass LDA algorithm. 50
4.9 Two trees for uninformed search. 58
4.10 The city map example for informed search techniques. 59
4.11 Comparison of best-first, greedy and A* search for the city map example. 61

5.1 The modified Viterbi algorithm. 67
5.2 Merging forward and backward partial paths in the n-best tree-trellis

search. 68
5.3 The backward A* tree search. 70
5.4 Disambiguation of coded words and the corresponding supertag ex-

pansion. 74
5.5 The algorithm for match list boosting. 77
5.6 Boosting LDA matches with maximum coverage. 78

6.1 Zipf’s law and the modified lexicon. 85
6.2 Graphical n-best supertagging results. 88
6.3 Graphs showing the cumulative accuracy for the reference test set and

the averaged cross-validation runs. 91
6.4 The average rank of the reference test set. 92

ix

List of Figures

6.5 The average rank of the cross-validation runs. 92

A.1 UML class diagram: Supertagger. 102
A.2 UML class diagram: N-best supertagger 103
A.3 UML class diagram: N-best stack . 104
A.4 UML collaboration diagram: LDA to XTAG connection 105
A.5 UML class diagram: Evaluation . 105

B.1 STAG vs. upper bound, rank = 1. 108
B.2 STAG vs. upper bound, rank ≤ 2. 108
B.3 STAG vs. upper bound, rank ≤ 3. 109
B.4 STAG vs. upper bound, rank ≤ 4. 109
B.5 STAG vs. upper bound, rank ≤ 5. 110
B.6 STAG vs. upper bound, average rank. 110
B.7 STAG A* vs. Greedy, rank = 1. 111
B.8 STAG A* vs. Greedy, rank ≤ 2. 111
B.9 STAG A* vs. Greedy, rank ≤ 3. 112
B.10 STAG A* vs. Greedy, rank ≤ 4. 112
B.11 STAG A* vs. Greedy, rank ≤ 5. 113
B.12 STAG vs. Greedy, average rank. 113
B.13 STAG vs. word trigrams, rank = 1. 114
B.14 STAG vs. word trigrams, rank ≤ 2. 114
B.15 STAG vs. word trigrams, rank ≤ 3. 115
B.16 STAG vs. word trigrams, rank ≤ 4. 115
B.17 STAG vs. word trigrams, rank ≤ 5. 116
B.18 STAG vs. word trigrams, average rank. 116

x

List of Tables

2.1 The elements of a Hidden Markov Model λ = (A,B,Π). 9

3.1 The keyboard layouts of the UKO-II prototype. 34

4.1 Example output of the XTAG supertagger. 48
4.2 The summary of the LDA on the sentence who does Bill think Harry

likes. 51
4.3 The straight-line distances for the city example. 60

5.1 Space and time complexity of all components of the n-best supertagger. 76

6.1 Examples of sentences from the evaluation corpus. 82
6.2 The modified German lexicon used for building the candidate lists. . . 84
6.3 Baseline results of ambiguously typing the test corpus. 87
6.4 N-best supertagging results of ambiguously typing the test corpus. . . 89

xi

List of Tables

xii

1 Introduction

Communication is self-evident. It is a basic necessity for everyday interaction with
other people and enables individuals to convey thoughts, ideas, feelings or whatever
needs to be expressed in some way. In its broadest sense, communication can be
situated in the area of cognitive science which is “the study of human intelligence
in all its forms from perception and action to language and reasoning” (Gleitman
and Liberman, 1995). It is also covered in many other areas beside linguistics, such
as neuroscience or psychology, but in the following we restrict our considerations to
written or spoken communication from a natural-language processing viewpoint. For
the majority of the population, it is hard to imagine what it would be like without
communication. The ability to communicate is so ubiquitous that the importance of
its social function is rarely noticed. The need for information exchange is natural.
But there are also people who lost or even never had the ability of communicating
verbally due to physical disabilities. It does not matter whether this is caused by
an accident or disease, the resulting loss affects everyday life immensely. The speech
impairment is often correlated with severe motor impairment. Thus, usual computer
keyboards are not sufficient to help these people to enter texts and alternative text
entry devices have to be developed instead.

1.1 Motivation

The area of Augmentative and Alternative Communication (AAC) deals with the
previously mentioned problems and forms an interdisciplinary research area that
combines several domains, like e.g. educational sciences, clinical psychology, speech-
language pathology, speech synthesis, sociology and psycholinguistics (Loncke et al.,
1999). The main attention of this thesis is turned to highly ambiguous keyboards
that enable the handicapped user to type unrestricted text (or ideally operate whole
computer programs) with only a few keys. The research area that deals with this
task is usually known under the name of predictive text entry or more specifically text
entry with ambiguous keyboards and can be situated within a series of workshops on
natural language processing for communication aids (cf. (ACL97-WS, 1997; Boguraev
et al., 1998; Loncke et al., 1999; EACL03-WS, 2003)). An ambiguous keyboard maps
several letters to a single key and thus reduces the number of physical switches or
keys needed for typing, but has the disadvantage of making additional disambiguation

1

1 Introduction

steps necessary for resolving the correct target word out of the possible candidates
matching the ambiguous code sequence that has been entered.

Up to now, there are quite a few text entry programs that help the user to enter
texts by completing or predicting words from already entered code prefixes and hence
accelerate the typing process in terms of keystroke savings. Nevertheless, these pre-
diction lists may change with each new key being entered and also give only a limited
view on all possible candidates. This results in a high cognitive load for the user since
she has to scan the prediction list for the target word after every keypress. It turned
out that a person who uses a prototype of a predictive text entry developed at the
University of Koblenz-Landau almost never used the predictions of the system and
rather typed the whole word and concentrated on the list with exact matches after
that (personal communication). This observation motivated the main question of
this thesis: instead of concentrating on a word-wise predictive text entry, how about
investigating the process of ambiguously entering text sentence-wise and go through
the candidate lists afterwards to make additional disambiguations if necessary? The
results of the evaluation undertaken in this work look quite promising.

The basic idea of the approach is to use syntactic information on a sentence level
to adjust the candidate lists of the corresponding target words. Common word com-
pletion software only considers a small context of already entered words (usually the
previous one or two words) for arranging more likely words to come up at the top of
the current suggestion list. With a sentence-wise approach, the process of entering a
text is not interrupted by searching lists of word proposals as typing advances, but
rather split into two phases. During the first phase, the user can concentrate on what
she wants to express, and in the second phase, the intended words are selected from
the match lists. The advantage of this kind of approach lies in the local dependencies
that are postulated by the words. These syntactic relations can be used to help to
adjust a sentence-based language model and provide the user with better candidate
lists during the final disambiguation. For this procedure prove itself to be feasible,
it needs additional evaluation sessions with real users to determine its practicability.
Nevertheless, this approach gives a new point of view on ambiguous text entry.

1.2 Outline of this work

The area of AAC, ambiguous keyboards and predictive text entry is introduced in
Chapter 3. It gives a short overview on the history of this research area and presents
several frameworks for text entry systems using word prediction. Furthermore, it
introduces a prototype of a communication aid with a highly reduced keyboard using
only four keys which is used as an evaluation basis for the procedures presented in
this study.

The basic characteristic of an ambiguous keyboard is that several words are coded

2

1.2 Outline of this work

by the same key sequence since the keys contain sets of letters and thus, by pressing
a single key, these letters are activated in parallel. The resulting list of matches
can be ordered according to a language model such that frequently used words ap-
pear at the top and less frequently used words are placed at the bottom. This is
the easiest approach and is thus referred to as the baseline. Language models, as
the name constitutes, try to model the properties of a natural language. Ordering
the words by frequencies of use is a very simple model but also the most intuitive
one. More complex (and usually much better) models comprise n-grams or Hidden
Markov Models (HMMs) which are described in Chapter 2. The idea of n-grams is
to base the ordering of the candidates according to the context, i.e. the history, of
already typed text. HMMs and related procedures, among other things, allow for
finding the most likely “reading” of a sequence of observations. In automatic speech
recognition (ASR), for example, HMMs are used to find the best sequence of recog-
nized words from an utterance (Rabiner et al., 1996). These approaches to language
modeling are statistically based. All probabilities of specific word occurrences given
some context are estimated from large corpora that are considered to represent the
language as close as possible. The employment of these techniques helps to filter out
unlikely word-sequence hypotheses that are produced by the ambiguous keyboard on
a sentence level.

Another way of approaching this area is to analyze the syntactic structures and use
the results to again reorder the hypotheses and find the most consistent ones. Since
parsing of sentences is a rather slow and complex process and due to error proneness
if the sentences are ungrammatical, it is not applicable to this domain. Instead, a
fast procedure that finds “working islands” within the sentence hypotheses is more
desirable. Supertagging and the related lightweight dependency analysis (Srinivas,
1997a) provide the means of applying a robust and fast shallow parse to a sentence.
So from a rank-ordered list of possible sentence hypotheses that are generated from
a code sequence typed with an ambiguous keyboard, supertagging and lightweight
dependency analysis ought to be able to pick the most promising ones. The adjust-
ment of the candidate lists according to this model should give a better accuracy of
the overall text entry system and thus speed up the sentence-wise typing of texts.
The syntactic information needed for the lightweight dependency analyzer (LDA) is
obtained from a lexicalized tree adjoining grammar (LTAG) where every lexical item
has a corresponding tree that codes its local dependencies within the context of a
sentence.

The basic goal of Chapter 4 is to introduce the theoretical background that is
needed for the final implementation of an n-best supertagger whose implementational
aspects are described in detail in Chapter 5. The n-best supertagger is based on a
supertagger developed for the German language (Bäcker, 2001; Bäcker, 2002). It
determines the top n supertag hypotheses for a coded sentence, i.e. a sentence that
is entered with an ambiguous keyboard. At this point, a supertag can be seen as an

3

1 Introduction

elementary unit that stands for a certain word and also specifies constraints in what
context this word may appear. The output of this modified supertagger is processed
with an LDA in order to retain only the most promising hypotheses. These are
used to adjust the frequency-ordered candidate lists such that more likely words are
boosted to the top of the list, resulting in decreased selection costs for the user.

Chapter 6 presents the results of applying the framework to a domain-specific
corpus. Since an LTAG is needed for the LDA, an already available corpus and
LTAG for the German language were chosen for the evaluation. The LTAG was
developed in (Bäcker, 2002) for a small corpus extracted from newsgroups that deals
with hardware problems (monitors and hard disks). Due to the limited time of this
work, it has not been possible to also evaluate larger corpora, e.g. parts of the British
National Corpus (BNC), because the language model is estimated on an annotated
corpus and annotating corpora with supertags, i.e. parsing them with a TAG parser
and selecting the correct parse trees, is a quite time-consuming job. Although the
n-best supertagger improves the accuracy of the overall system, i.e. more correct
words are ranked higher than with the baseline approach, most of the performance
comes from the statistical methods being used and not, as expected, from the LDA
step (which can be considered to be a rule-based approach).

The last chapter gives a summary of the achievements and also presents ideas
for further work. The first improvement, e.g., could be the use of larger corpora
for the evaluation in order to gain better language models. Additionally, possible
drawbacks, like e.g. the strong assumption that no errors are produced while typing
the sentence, are noted and further analyzed. Finally, the appendix gives some UML
class diagrams of the main components of the system and also lists all evaluation
graphs.

1.3 Organization

In Chapter 2, statistical language models, in particular Hidden Markov Models and
n-grams, are introduced together with discounting and smoothing techniques that
are used to reduce the problems that arise with sparse data. Chapter 3 gives an
introduction to the domain of augmentative and alternative communication and pre-
dictive text entry systems, as well as the presentation of a highly ambiguous keyboard
with only four keys. Partial parsing, especially supertagging and lightweight depen-
dency analysis, and search techniques for determining more than one good sentence
hypothesis are described in Chapter 4. The implementation of the overall system is
presented in Chapter 5, whereas the results obtained from a small evaluation corpus
are discussed in Chapter 6. Final comments are stated in Chapter 7. The Appendix
lists further evaluation graphs and UML class diagrams of the system’s components.

4

2 Statistical Language Modeling

When dealing with statistical language processing, Hidden Markov Models (HMMs,
see e.g. (Rabiner, 1989; Bahl et al., 1983)) often are the favorite modeling tool of
researchers, especially in the field of speech recognition. In the speech generation
process, the talker’s larynx and vocal tract produce a continuous speech signal in
form of an acoustic waveform realizing a message that has to be decoded by the
listener (for a general introduction to phonetics, see e.g. (Lieberman and Blumstein,
1988)). In speech recognition, this is achieved by extracting features from the speech
signal that allow a clear distinction between the different speech sounds. Often, the
signal is ambiguous when looking at a fixed time interval, i.e. different words can
produce the same signal. As an example, the expressions the sky and this guy almost
have the same speech signal but a totally different meaning (from (Jurafsky and
Martin, 2000)). This compares to the task of ambiguous typing in a similar manner.
Here, the user “codes” the message by typing the words of the sentence with the
ambiguous keyboard. In order to improve the performance of selecting the correct
word from the list of matching words, the computer can use already disambiguated
words as an information source that provides features of the current context within
the sentence. These features help to sort the candidate list such that according
to our language model, more probable words, i.e. words that are syntactically and
semantically more appropriate at that position, come up first.

In general, real-world signals are characterized by constructing signal models that
can be mathematically investigated and try to reflect the statistical properties of
the original source. Statistical signal processes are e.g. Gaussian, Poisson or Markov
processes. The same holds for written language. The sentences of a large corpus
can be used to determine a language model that represents the statistical properties
of that language, like e.g. the frequency of the word flower or the likelihood of the
phrase I like being followed by the word swimming. A language model therefore
assigns probabilities to words or sequences of words and can be used for prediction of
the next word for a given phrase or guide the search among the many hypotheses that
are generated when disambiguating code sequences on a sentence level (cf. Chapter 3).

In the following, Section 2.1 introduces discrete Markov processes and HMMs,
with emphasis on the Viterbi algorithm which determines the best state sequence
through an HMM given some observation sequence. In Section 2.2, n-grams are
presented together with discounting and back-off methods used in the framework of
the supertagger. Additionally, the notion of entropy is briefly given at the end of
this chapter.

5

2 Statistical Language Modeling

2.1 Markov models

In the following sections, probabilistic models are introduced that are used very often
in speech recognition. They are capable of adequately representing the statistical
properties of a language. Markov models1 have been used by Andrei A. Markov at
the beginning of the 20th century to model the letter sequences of works in Russian
literature (from (Manning and Schütze, 2000)). So they actually have a linguistic
background but can nevertheless be used as a general tool in other research areas
that deal with statistical models. The formal notation of the following sections is
based on the one used in (Rabiner, 1989) and (Manning and Schütze, 2000).

2.1.1 Discrete Markov processes

A discrete Markov process is a system that can be in one of N distinct states
{S1, . . . , SN} at any discrete time instant t = 1, 2, . . . , T . The current state at time
t is denoted by qt and the process of changing from one state Si to another state Sj

is associated with a conditional probability

aij = P(qt = Sj |qt−1 = Si), 1 ≤ i, j ≤ N (2.1)

which is called a state transition probability. Here, the condition “qt−1 = Si” can be
understood as the context where the new event occurs in state qt. The set of all state
transition probabilities forms a matrix

A = {aij} =

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

with the constraints

0 ≤ aij ≤ 1, ∀i, j and
N∑

j=1

aij = 1, ∀i.

The discrete Markov process can be easily rewritten in terms of a finite state automa-
ton (cf. (Charniak, 1993)) whose arcs are labeled with the probabilities from matrix
A. Equation 2.1 is a direct consequence of what is known as the Markov properties:

• Limited horizon:
The events that happened before a time instant t − 1 are not relevant to the
current state (memory-less process).

P(qt = Si|q1, q2, . . . , qt−1) = P(qt = Si|qt−1) (2.2)
1also Markov chains or Markov processes

6

2.1 Markov models

(a) (b)

S1 S2

S3

0.4

0.8

0.3
0.2

0.3

a12

a21

a22

a31

a13

a33

S1 S2

S3

a32

a23

a11

1.0

Figure 2.1: (a) A simple generic Markov model with 3 states. (b) The Markov model
exemplified with annotated probabilities.

• Time invariant:
The behavior of the Markov model is stationary over time, i.e. one can not
conclude the time instant from observation of the states.

P(qt = Si|qt−1) = P(qt′ = Si|qt′−1), t′ = t+ ∆t (2.3)

A simple Markov model is shown in Figure 2.1. Usually, transitions with zero
probabilities, i.e. where aij = 0, are left out and the corresponding arcs are not
shown in the state diagram. Since we know what state we currently are in at any
time instant, the output of the Markov model can be regarded as a visible sequence
of states. The probability of this output sequence O = (q1, q2, . . . , qt) is

P(O|λ) = P(q1, q2, . . . , qt|λ)
= P(q1)P(q2|q1)P(q3|q1, q2) · · ·P(qt|q1, q2, . . . , qt−1)
= P(q1)P(q2|q1)P(q3|q2) · · ·P(qt|qt−1)

= πq1

t−1∏
i=1

aqiqi+1 (2.4)

with λ = (A,Π) being the Markov model consisting of matrices A and Π, the latter
denoting the initial state probabilities

πi = P(q1 = Si) 1 ≤ i ≤ N. (2.5)

Similar to the sum of the state transition probabilities of any state, the constraint∑N
i=1 πi = 1 holds.

7

2 Statistical Language Modeling

2.1.2 Hidden Markov Models

As we have seen in the previous section, each state of a discrete Markov model corre-
sponds to an observable event. If this event is not visible, the model is called a Hidden
Markov Model (HMM), i.e. the observation results in not knowing exactly what state
the model is in. This behavior can be described through a doubly embedded stochas-
tic process. On the one hand, the state transition probabilities are the same as in the
discrete Markov model, and on the other hand, another stochastic process exists that
defines the probabilities of the final observation sequence depending of what state
it was generated in. As a more intuitive example, consider an experiment where
differently colored balls are pulled out of several urns behind a curtain, i.e. it is not
known out of which urn a ball was chosen (example from (Rabiner, 1989)). The first
stochastic process is given by the transition probabilities between the states that are
associated with the urns. The second stochastic process characterizes the final out-
come, i.e. it holds the probabilities that define the likelihood of the color being drawn
from the urn at the current state. The probabilities of this second stochastic process
are called observation symbol or symbol emission probabilities and are denoted by

bj(k) = P(vk emitted at time t|qt = Sj) 1 ≤ j ≤ N, 1 ≤ k ≤M, (2.6)

where vk ∈ V = {v1, . . . , vM} is the observed symbol out of a set V of possible
observation symbols. The probability distribution in Equation 2.6 can again be
summarized in terms of a matrix

B = {bj(k)} =

b1(1) b1(2) · · · b1(M)
b2(1) b2(2) · · · b2(M)

...
...

. . .
...

bN (1) bN (2) · · · bN (M)

where the columns contain the probabilities of a single observation symbol for all
states and the rows hold the probabilities for all observation symbols that are emitted
in a single state. Table 2.1 shows the summary of all elements of a Hidden Markov
Model λ = (A,B,Π).

So let’s enhance the example presented in Figure 2.1 (b) with an output probability
distribution for two possible observation symbols V = {b, w} representing the color
(black or white) of the balls introduced in the example above. The states S1, S2

and S3 correspond to three urns which are filled with black and white balls. The
observation symbol probabilities are shown in Figure 2.2 (b). Given this model and
an observation sequence O = (b, b, w, b, w,w), several basic questions can be asked,
namely what is the probability of this observation sequence, what states does the
HMM pass through most likely and how does one come up with an optimized model
λ that best explains the observation sequence?

8

2.1 Markov models

(a) (b)

0.6

0.8

0.2

0.5

0.5

0.4
S1 S2

S3

0.4

0.8

0.3
0.2

0.3

a12

a21

a22

a13

S1 S2

S3

a23

a11

1.0
v2

v1

vM

b1(2)
a31

b1(M)
a32

b2(1)

vM

v2

v1b2(2)

v1

v2

vM

b3(2)

a33

b2(M)
. . .

. . .

b3(M)

w
w

bw

bb

b1(1)

. . .

b3(1)

Figure 2.2: (a) A generic 3-state Hidden Markov Model with M possible output sym-
bols. (b) The HMM representing the urns and balls example. It is as-
sumed that each state is equally likely to be the starting state, i.e. πi = 1

3
for i ∈ {1, 2, 3}.

More formally, what follows are the three fundamental problems that emerge in
the field of HMMs (cf. (Rabiner, 1989)):

1. Given a model λ = (A,B,Π) and an observation sequence O = (o1, o2, . . . , oT),
how is P(O|λ) computed efficiently?

2. Given a model λ and an observation sequence O, how can the optimal state
sequence Q = (q1, q2, . . . , qT) be obtained that best explains O, i.e. that maxi-
mizes P(Q|O, λ)?

3. Given an observation sequence O, how can the model parameters of λ =
(A,B,Π) be adjusted such that they maximize P(O|λ)?

Efficient solutions exist to all three problems and are described more detailed in
(Rabiner, 1989) and (Manning and Schütze, 2000). All algorithms make extensive
use of a technique called dynamic programming (see e.g. in (Cormen et al., 1990))
that is necessary in order to reduce the amount of calculations and is often applied

Set of N states S = {S1, S2, . . . , SN}
Set of M output symbols V = {v1, v2, . . . , vM}
Initial state probabilities Π = {πi} 1 ≤ i ≤ N
State transition probabilities A = {aij} 1 ≤ i, j ≤ N
Observation symbol probabilities B = {bj(k)} 1 ≤ j ≤ N, 1 ≤ k ≤M

Table 2.1: The elements of an HMM λ = (A,B,Π).

9

2 Statistical Language Modeling

to optimization problems. The general trick is to speed up the computation by stor-
ing previous results that solve smaller instances of the same problem. All problems
to which dynamic programming can be applied must satisfy a decomposition prop-
erty : an optimal solution to the problem decomposes into an optimal solution to a
smaller instance of the same problem. Sometimes, this is also called the principle of
optimality. The dynamic programming framework consists of four steps:

1. Characterizing the recursive structure of an optimal solution.

2. Deriving a recurrence for the value of an optimal solution by using the charac-
terization from step 1.

3. Computing the solution value from the recurrence bottom-up, tabulating in-
termediate solution values.

4. Recovering an optimal solution from the table of values.

Solution to problem 1 (forward procedure)

Problem 1 of the basic HMM problems can be solved by applying the forward proce-
dure of the forward-backward algorithm (Baum, 1972). In order to compute P(O|λ)
efficiently, the probabilities of partial observation sequences until a certain time t
that end in state i are stored in a forward variable αt(i) = P(o1, o2, . . . , ot, qt = Si|λ).
The stored values for the probabilities at time t−1 can then be used to calculate the
probabilities at the next time frame t inductively by

αt(j) =
[N∑

i=1

αt−1(i)aij

]
bj(ot) 2 ≤ t ≤ T, 1 ≤ j ≤ N, (2.7)

whereas for t = 1, α1(j) = πjbj(o1) is used. The fact that previous α-values are
summed over all states originates from the observation that P(O|λ) is the sum of the
joint probabilities over all possible state sequences, i.e.

P(O|λ) =
∑
all Q

P(O|Q,λ)P(Q|λ). (2.8)

The dynamic programming approach reduces the complexity of the calculation from
O(2TNT) to O(N2T) (T is the length of the observation sequence, N is the number
of HMM states). The final probability is computed as P(O|λ) =

∑N
i=1 αT (i). For a

detailed derivation, see (Rabiner, 1989).

10

2.1 Markov models

Solution to problem 2 (Viterbi algorithm)

The second fundamental problem is the question of finding the optimal state se-
quence of the HMM for an observation sequence O = o1, o2, . . . , oT . The solution to
this problem depends on the way we define the term “optimal”. One could consider
to maximize the probability for all states at each time frame 1, 2, . . . , T individually,
resulting in a maximization of the expected number of correct states. But this ap-
proach results in an invalid state sequence if there are state transitions with zero
probability, i.e. where aij = 0. In order to avoid this, the optimality criterion could
be extended to pairs (qt, qt+1) or triples (qt, qt+1, qt+2) of states. However, the crite-
rion most commonly used is to find the single best state sequence Q = q1, q2, . . . , qT
such that P(Q|O, λ) is maximized. Again, the application of the dynamic program-
ming principle allows for a computationally feasible solution. The procedure was first
presented in (Viterbi, 1967) and is therefore called the Viterbi algorithm. In order
to derive the recursive structure of the problem (step 1 of the dynamic programming
framework), it has to be shown how an optimal solution ends. For the last time
frame T , it ends in the best state Sm that maximizes the probability of the optimal
state sequence computed so far, or more formally

P(Q,O|λ) = max
q1,q2,...,qT

P(q1, q2, . . . , qT = Sm, O|λ). (2.9)

This can be computed more efficiently if intermediate highest probabilities along a
single path at time t that end in state Si are stored in a special variable (or table) δ,
which is defined as

δt(i) = max
q1,q2,...,qt−1

P(q1, q2, . . . , qt−1, qt = Si, o1, o2, . . . , ot|λ). (2.10)

Using Equation 2.10, we can derive a recurrence for the problem (cf. step 2) which
accounts for the first t output symbols of the observation sequence O:

δt(j) = max
1≤i≤N

[
δt−1(i)aij

]
bj(ot). (2.11)

This equation differs from Equation 2.7 only in the point that it uses maximization
instead of a summing criterion. Both procedures use a lattice or trellis structure
for the computations.2 Figure 2.3 shows a generic trellis for HMMs and the trellis
structure for the example presented in Figure 2.2 (b).

The δ-values that have been computed so far only yield the highest probability p∗ =
max1≤i≤N δT (i) for the best state sequence ending in state q∗T = argmax1≤i≤N δT (i).
In order to retrieve the actual states of the whole optimal path, another table is

2In fact, all solutions to problems using the dynamic programming framework implement this sort
of trellis.

11

2 Statistical Language Modeling

4

4

1

2

3

1 2 3

1 2 3 4 5 6

3

2

1

best path for
O = (b, b, w, b, w, w)

N

Observation t

a23 b2(o3)

HMM state i

HMM state i

Observation t

Figure 2.3: The trellis (or lattice) used in the Viterbi calculation of the δ-values. The
upper structure shows a generic trellis for N states and the first four time
frames of the observation sequence, whereas the lower one shows the trellis
of the urns and balls HMM from Figure 2.2 (b) with annotated examples
where to find the state transition and observation symbol probabilities.
The best path for O = (b, b, w, b, w,w) is highlighted.

12

2.1 Markov models

needed that stores the arguments which maximize Equation 2.11. This is achieved
through the variable

ψt(j) = argmax
1≤i≤N

[
δt−1(i)aij

]
. (2.12)

Step 3 of the dynamic programming framework is applied by computing the δ- and
ψ-values iteratively for all time frames t = 2, 3, . . . , T after an initialization of the
variables with δ1(i) = πibi(o1) and ψ1(i) = 0 for all states i = 1, 2, . . . , N . Finally,
step 4 recovers the optimal state sequence Q∗ = (q∗1, q

∗
2, . . . , q

∗
T) from the ψ-table by

backtracking:
q∗t = ψt+1(q∗t+1) t = T − 1, T − 2, . . . , 1. (2.13)

As mentioned above, this algorithm finds the optimal sequence of urns for an observa-
tion of drawn balls (cf. the example HMM in Fig. 2.2 (b)). For O = (b, b, w, b, w,w),
it returns the best path Q∗ = (S3, S1, S2, S1, S2, S1). The algorithm is summarized
in Figure 2.4.

Solution to problem 3 (forward-backward algorithm)

The solution to problem 3 of HMMs is the most difficult one. It estimates the model
parameters A, B and Π by maximization of the observation’s probability P(O|λ)
through

argmax
λ

P(Otr|λ). (2.14)

The technique used for this task is known as the Baum-Welch method or forward-
backward algorithm (Baum, 1972) and reestimates the model parameters iteratively3

because an analytical solution of deriving optimal model parameters has not been
found so far. The parameters for λ = (A,B,Π) are usually estimated on some
training data Otr which may reflect properties of the actual observation sequence
O. The idea is that by creating a revised model of λ that fits best the observations
contained in Otr, it should also return higher probabilities for O. This is achieved by
increasing the probabilities of the state transitions and symbol emissions that happen
to be used most in the HMM. Note that the Baum-Welch method only “tweaks” the
probabilities in A, B and Π. The architecture of the HMM is not altered. The
algorithm is usually run until a convergence criterion is met and therefore only finds
locally optimal models, depending on the (possibly randomly chosen) initial values
of λ. Since the model parameters of the HMM used in this thesis can be directly
estimated on the annotated training corpus, the application of this reestimation
method is not needed and a more detailed presentation is left out. For a deeper
introduction, see (Rabiner, 1989).

3Actually, this procedure is a special case of the Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977).

13

2 Statistical Language Modeling

1. Initialization:

δ1(i) = πibi(o1) 1 ≤ i ≤ N

ψ1(i) = 0 1 ≤ i ≤ N

2. Recursion:

δt(j) = max
1≤i≤N

[
δt−1(i)aij

]
bj(ot) 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = argmax
1≤i≤N

[
δt−1(i)aij

]
2 ≤ t ≤ T, 1 ≤ j ≤ N

3. Termination:

p∗ = max
1≤i≤N

[
δT (i)

]
q∗T = argmax

1≤i≤N

[
δT (i)

]
4. Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1) t = T − 1, T − 2, . . . , 1

Figure 2.4: The Viterbi algorithm for finding the optimal state sequence of an HMM
λ = (A,B,Π) for an observation sequence O = o1, o2, . . . , oT (from (Ra-
biner, 1989)).

14

2.2 N-gram models

2.2 N-gram models

The relative word frequency that is going to be used in Section 3.4 to order the
candidates of the ambiguous keyboard is a very simple model of the language. If
the dictionary is based on m word tokens and n word types of a corpus, the distinct
words wi are ordered according to the probability

P(wi) =
C(wi)∑n

j=1C(wj)
=
C(wi)
m

1 ≤ i ≤ n, (2.15)

where C(wi) denotes the frequency of word wi. It does not take into account what
context the words actually appear in. If the user typed the and the next word has the
same code, it does not make much sense to predict another the at the first position
of the match list. It is better to offer nouns or adjectives at first place. So instead
of using the probability of a single word for determining its rank in the match list,
one can use the probability of n-grams for this task. When dealing with n-grams,
the probability of the current word is based on the history h of n− 1 words, or more
formally

P(wn|h) = P(wn|w1w2 · · ·wn−1). (2.16)

For the already known case of a single word, n = 1 and we also speak of unigram
probabilities which ignore the context entirely. For larger values (n = 2, 3, 4), the n-
grams are referred to as bigrams, trigrams and four-grams, respectively. It is obvious
that the larger the value of n gets, the less predictive power the model provides
since it is very unlikely that the sentence on which the history is based on will occur
multiple times (sparseness of data, cf. (Manning and Schütze, 2000)). Therefore,
one has to group the history into several equivalence classes based on the Markov
assumption presented in Equation 2.2, i.e. taking into account only the last few
words. For n-grams, the history of length n− 1 is a Markov model of order n− 1.

The most simple estimator that can be used for computing the probabilities of
n-grams is maximum likelihood estimation (MLE). Let N denote the overall number
of n-grams available for training4 and C(w1 · · ·wn) be the frequency of a specific
n-gram consisting of the word sequence w1 · · ·wn. The maximum likelihood estimate
is defined by

PMLE(w1 · · ·wn) =
C(w1 · · ·wn)

N
(2.17)

for the likelihood of the word sequence w1 · · ·wn and

PMLE(wn|w1 · · ·wn−1) =
C(w1 · · ·wn)
C(w1 · · ·wn−1)

(2.18)

4If we add n − 1 empty symbols, so called pseudo categories (e.g. ∅), at the beginning, the first
n-gram actually starts with the first word of the training data and therefore N is the overall
number of words in the text.

15

2 Statistical Language Modeling

for the likelihood of the word wn given the history of previous words w1 · · ·wn−1. The
former equation is used to estimate the probability of n-grams, whereas the latter
provides a way of finding the most likely word for prediction. As mentioned above,
sparseness of data does not make this approach suitable for long n-grams because
many word sequences will not appear in the training data and end up with a zero
probability. For the case of the Viterbi algorithm presented in Section 2.1.2, this
means that an unknown n-gram propagates the zero probability until the end of the
observation sequence. Since the probabilities along the trellis path are multiplied,
the whole sequence finally has a probability of zero. As reported by (Bahl et al.,
1983), training on a 1.5 million corpus resulted in 23% of the test data trigrams
being unknown. One way of decreasing this percentage is to increase the size of the
training corpus. Nevertheless, it is not possible to handle this problem entirely since
there will always be instances of very rare events that are not covered by the training
data.

A common way of improving the maximum likelihood estimation is to add a small
positive value to the frequency counts C(w1 · · ·wn) such that the numerator of Equa-
tion 2.17 cannot be zero any more. If the n-grams are examined under the viewpoint
of a random variable X that can take different values xi, the maximum likelihood
estimation can be restated as

P(X = xi) =
vi∑V
i=1 vi

, (2.19)

where vi = |xi| is the relative frequency of event xi and V is the overall number
of equivalence classes being considered, i.e. V is the number of different n-grams
encountered in the training data. In order to prevent the zero probability problem,
a small value λ is added to vi:

P(X = xi) =
vi + λ∑V

i=1(vi + λ)
=

vi + λ∑V
i=1 vi + V λ

. (2.20)

For the common value of λ = 1
2 , this equation is also known as expected likelihood

estimation (ELE) or Jeffrey-Perks law. In terms of Equation 2.17, it can be written
as

PELE(w1 · · ·wn) =
C(w1 · · ·wn) + λ

N + V λ
. (2.21)

The use of n-grams as a language model has been thoroughly investigated in the
past. With the development of faster computer technology and the creation of huge
corpora, it has been made possible to process larger and larger amounts of data in
less time. Actually, statistical approaches that utilize very large corpora have formed
a separate research domain (see e.g. (Armstrong et al., 1999)). Powerful language
modeling tools are freely available and can be easily used to experiment with corpora,

16

2.2 N-gram models

like e.g. the CMU-Cambridge Statistical Language Modeling Toolkit5 (Clarkson and
Rosenfeld, 1997) or the srilm toolkit6 (Stolcke, 2002).

In addition to ELE, one usually uses smoothing or discounting techniques which
lower the probability of common events in order to increase the probability of rare
events, i.e. a part of the probability mass is reserved for events that were previously
unseen. The discounting techniques implemented by the supertagger used for this
work (Good-Turing discounting) and other techniques that fall back to n-grams for
smaller values of n (Katz back-off) are presented in the following sections.

2.2.1 Discounting

As already noted, a fundamental problem when dealing with statistical techniques
for language processing is sparseness of data. It is very likely that the test corpus
contains trigrams that have not been encountered in the training data before. These
trigrams end up with a zero probability (when using MLE) or a very low probability
(with ELE), thus resulting in a wrong estimate for a whole sequence which is not
desirable.7 Therefore, discounting techniques are often applied. The basic idea is
to lower the counts of frequent events and preserve some of the overall probability
mass for the unseen trigrams that have a zero frequency. The MLE approach used in
Equations 2.17 and 2.18 estimates the probabilities of words by using their relative
frequencies. The same equations hold for other types of linguistic units, such as POS
tags or supertags (cf. Sections 4.1 and 4.3). In the following formulas, the ti’s refer
to supertags because of their direct relation to the actual implementation within the
supertagger.8

One of the discounting strategies that is used quite often is Good-Turing discount-
ing (Good, 1953). The smoothed version of Equation 4.7 on page 40 (which denotes
the probability of a supertag trigram, cf. also Equation 2.18 with n = 3) is

P̃(ti|ti−2ti−1) =
C∗(ti−2ti−1ti)
C(ti−2ti−1)

, (2.22)

where C∗(ti−2ti−1ti) (or abbreviated c∗) denotes the discounted frequency of the
supertag triple ti−2ti−1ti. In general, let Nc be the number of N -grams that occur c
times. This value is referred to as the frequency of frequency c (also known as count-
counts) and it is used by the Good-Turing estimate for unseen events as follows:

5http://mi.eng.cam.ac.uk/~prc14/toolkit.html
6http://www.speech.sri.com/projects/srilm/
7If we look at the MLE formulas, the whole sequence results in a zero probability because of the

multiplication. By using logprobs (cf. Section 4.3.2), this effect is avoidable since the expressions
are now summed and zero probabilities do not “break up” the whole sequence any more. Still,
the overall estimates are distorted.

8At this point, one could still consider the ti’s to stand for words wi if the familiarity with supertags
is not fully established yet.

17

http://mi.eng.cam.ac.uk/~prc14/toolkit.html
http://www.speech.sri.com/projects/srilm/

2 Statistical Language Modeling

the smoothed count c∗ for an N -gram that never occurred (c = 0) is obtained by
dividing the number of N -grams that occurred once (N1) by the number of N -grams
that never occurred (N0). The same holds for N -grams that have been seen only
one time. Their discounted frequency is based on those N -grams which occurred two
times and so on. So, the Good-Turing estimate that gives a discounted frequency c∗

is calculated by

c∗ = (c+ 1)
Nc+1

Nc
. (2.23)

Usually, large counts (e.g. c > 5) are considered to be reliable. Therefore, a threshold
k is introduced and the smoothed value is set to the original relative frequency
c∗ = c for c > k. With this approach, it is necessary to renormalize the discounting
estimates. The final equation for Good-Turing discounting with threshold k is (from
(Jurafsky and Martin, 2000)):

c∗ =
(c+ 1)Nc+1

Nc
− c

(k+1)Nk+1

N1

1− (k+1)Nk+1

N1

for 1 ≤ c ≤ k. (2.24)

2.2.2 Back-off

So far, the Good-Turing discounting strategy helps us to avoid the zero probability
problem for unknown n-grams. Another strategy that is commonly used is so-called
back-off. The idea behind this is to rely on lower order (N − 1)-grams if the counts
for the N -grams come out to be zero. The chain can be continued progressively
down to unigrams if necessary. For the case of trigrams, the back-off formula that
was introduced by (Katz, 1987) looks as follows:

PKBO(ti|ti−2ti−1) =

P̃(ti|ti−2ti−1) for C(ti−2ti−1ti) > 0
α1P̃(ti|ti−1) for C(ti−2ti−1ti) = 0 and C(ti−1ti) > 0
α2P̃(ti) otherwise.

(2.25)
The probabilities are the discounted versions of the relative frequencies (cf. Equa-
tion 2.22). In fact, backing-off a language model always requires discounting. This is
due to the additional probability mass that would be added with each back-off to a
lower model if the initial (undiscounted) probability was zero. Therefore, the sum of
all probabilities for a supertag ti given the two previous supertags ti−2 and ti−1 would
be greater than 1, but the constraint

∑
j,k P(ti|tjtk) = 1 must hold. The amount of

probability mass that is actually distributed from a higher order to a lower order N -
gram is represented by the normalization factors α1 (from trigrams to bigrams) and
α2 (from bigrams to unigrams). They are computed by summing all discounted N -
gram probabilities that start with the same context and subtracting the value from 1.

18

2.2 N-gram models

After that, a normalization step (the denominators in Equations 2.26 and 2.27) is
applied which ensures that the lower order model only gets the correct fraction of
the overall higher order model. The α-values are computed by:

α1 =
1−

∑
ti:C(ti−2ti−1ti)>0 P̃(ti|ti−2ti−1)

1−
∑

ti:C(ti−2ti−1ti)>0 P̃(ti|ti−1)
(2.26)

α2 =
1−

∑
ti:C(ti−1ti)>0 P̃(ti|ti−1)

1−
∑

ti:C(ti−1ti)>0 P̃(ti)
. (2.27)

A more detailed derivation that also generalizes on N -grams (by introducing a func-
tion α(tn−1

n−N+1)) is given in (Jurafsky and Martin, 2000). There exist many other
discounting and back-off methods. A comprehensive overview with in-depth mathe-
matical derivations can be found in (Ney et al., 1997; Ney, 1999).

2.2.3 Entropy

In statistical language modeling, entropy and the related term perplexity are usually
used to determine the quality of the language model. The term entropy was defined
by Claude Shannon who “invented” the field of information theory in the 1940s.
Entropy is measured in bits and expresses the amount of information in a random
variable X by

H(X) = −
∑
x∈X

p(x) log2 p(x), (2.28)

where X denotes the alphabet and p(x) = P(X = x) is the probability mass function
(pmf) for all x ∈ X (from (Manning and Schütze, 2000)). For example, if each letter
of the English alphabet9 was equally likely then its entropy would be

−
27∑
i=1

1
27

log2

1
27

= log2 27 ≈ 4.76,

which means that each character can be coded with 4.76 bits. If we determine the
letter frequencies of a large text collection, e.g. extracted from the English dictionary
of the celex lexical database (Baayen et al., 1995), then the entropy drops down to
approx. 4.17, i.e. entropy decreases with increasing order of the model.

In this context, entropy can also be used to measure the ability of some n-gram
model to predict words given a history of already typed words. Since we do not know
the real pmf p(x) that underlies a natural language L in terms of word probabilities,
the common way is to compute the cross entropy that uses another pmfm(x) which is

9We only consider lower-case letters “a–z” and the space character “ ”.

19

2 Statistical Language Modeling

estimated on large corpora consisting of n word tokens (written as x1n = x1x2 · · ·xn):

H(L,m) = − lim
n→∞

1
n

∑
x1n

p(x1n) log2m(x1n). (2.29)

Still, this term cannot be computed because of the unknown pmf p(·). If the addi-
tional assumption is made that the language is ergodic, i.e. that the sample length is
long enough (or in other words: the sample represents the language sufficiently well),
Equation 2.29 can be written as

H(L,m) = − 1
n

log2m(x1n) (2.30)

for sufficiently large n. The perplexity of a language model is closely related to its
entropy and is simply given by

PP (X,m) = 2H(X,m) = m(x1n)
1
n . (2.31)

Obviously, the real entropy of a language is unknown but we can try to derive upper
bounds for the cross entropy by utilizing more and more complex language models.
In (Brown et al., 1992), a language model based on trigrams is reported to reach an
entropy of 1.75 bits per character when trained on approx. 583 million words. Other
entropy values, as they are e.g. encountered in the domain of text compression, are
reported in (Church and Mercer, 1993), together with the upper bound of 1.25 bits
derived by Shannon as a result of experiments dealing with humans that guessed the
next letter of a text. This clearly shows that humans easily outperform state-of-the-
art language models.

In this study, the evaluation is not based on entropy since the approach that will
be presented in Chapter 5 is hybrid in a sense that it makes use of statistical and
rule-based techniques to adjust the candidate lists and therefore does not provide
actual probabilities of the words. The evaluation measures are motivated more prag-
matically and will be introduced in Section 6.2.

20

3 Text Entry with Ambiguous Keyboards

Communication aids play an important role for people that are not able to express
themselves directly through speech or writing. The loss of these abilities can have sev-
eral reasons, e.g. spinal cord injury, cerebral vascular accident (stroke), Lou Gehrig’s
disease or cerebral palsy. According to (Darragh and Witten, 1992), physically im-
paired persons can be grouped into those who are incapable of speech, those who
lack the physical ability to write and those who fall into both of these groups. The
latter category is the most frequent one since a disability that impairs speech usu-
ally also affects other parts of the body by diminishing their strength and dexterity,
resulting in a very restricted ability to move. So “expressive” communication aids
such as ambiguous keyboards have to be developed to provide the users access to
communicative means.

The structure of this chapter is as follows. Section 3.1 gives a short introduction
to the field of AAC and describes possible methods that exist for selecting keys on
virtual keyboards, i.e. on-screen keyboards that present some kind of mapping of
letters to keys that can be selected by the impaired user through physical switches.
Section 3.2 presents some predictive text entry systems that offer word completions
to the user, whereby the emphasis is laid on processing techniques using statistical
language models. An alternative approach to text entry is to utilize ambiguous
keyboards which are introduced in Section 3.3. In particular, a system is described
that allows for entering the whole sentence ambiguously rather than disambiguating
every word after it has been typed. Section 3.4 focuses on a prototype of a highly
ambiguous keyboard (using only three letter keys and one command key) which is
being developed at the University of Koblenz-Landau. The pilot user is Kathrin, a
16-year old girl with cerebral palsy who nevertheless attends a regular high school.
Her experience with the software (and its predecessors) partly inspired the work on
this thesis.

3.1 Augmentative and Alternative Communication

The area of Augmentative and Alternative Communication (AAC) is the research field
concerned with assisted communication for people with speech impairment (Newell
et al., 1998). The goals hereof depend on the primary field where the communication
aid is going to be used. For writing long texts it is essential to reduce the effort of
typing as much as possible, whereas for direct conversational communication, e.g.

21

3 Text Entry with Ambiguous Keyboards

greeting someone or making a request, the intended expression has to be issued as
fast as possible. In this connection, the voice output is synthesized by a text-to-
speech component (see e.g. (Venkatagiri and Ramabadran, 1995)). So the task is to
develop a text entry device that has both these properties and thus improves the non-
speaker’s communicative skills. A possible scenario is to mount this kind of device on
a wheelchair and thus provide the disabled person the flexibility and communicative
mobility needed for everyday situations, e.g. going shopping or meeting friends. The
social closeness to other people is an important factor against isolation because of
the absence of communicative means.

Therefore, there have been many approaches to this domain and numerous text
entry devices exist nowadays. The range goes from manual systems (such as letter
or picture boards)1 to high-tech dedicated voice output systems.2 The employment
of specialized hardware solutions is not only considerably expensive but also makes
adjustments to the special needs of an individual hard to put into practice. More
flexibility is achieved with software solutions that run on any computing device. The
use of mobile devices such as ordinary or ruggedized laptops, handhelds or even
mobile phones has become available to the broad masses due to sinking costs and
increasing computing power. The separation of the text entry system (software) and
the actual physical input methods (hardware) is reasonable since every user will have
different, specifically adapted switches, keys and/or other devices such as joysticks,
head- or eye-trackers (see e.g. (Tech Connections, 2002)), that she or he is able to
operate. The use of the text entry program is achieved by mapping the input signals
(e.g. by pressing a special switch in the headrest of a wheelchair) to general keyboard
or mouse actions understood by the software. Special interfaces that transform any
physical signal into a keypress of an ordinary keyboard exist for this purpose.

The rate at which speech impaired people can communicate with the help of AAC
systems is directly correlated with the speed at which they can type. In (Darragh
and Witten, 1992), several rates are compared with each other. An able-bodied non-
professional typist usually achieves rates between 15–25 words per minute (wpm)
with an ordinary keyboard, spoken conversation is even as high as 150–200 wpm. In
contrast to these values, a disabled person using a single-switch scan3 of a virtual
keyboard achieves the unacceptable rate of only a few words per minute. The rates
reach from 1–5 wpm, but can even drop down below 1 wpm. It is argued that 3 wpm is
the absolute minimum that is tolerable for interactive conversation. Unfortunately,
everything below 9 wpm promotes the impatience of the receiver and hinders the
overall communicative fluency. So one of the basic goals of AAC can be seen as

1see e.g. Crestwood Communication Aids at http://www.communicationaids.com/
2see e.g. Prentke Romich Company at http://www.prentrom.com/ or Words+ at http://www.

words-plus.com/
3Scanning denotes the process of stepping through a series of options that are activated by the user

when the desired item is reached.

22

http://www.communicationaids.com/
http://www.prentrom.com/
http://www.words-plus.com/
http://www.words-plus.com/

3.1 Augmentative and Alternative Communication

how to increase the rates at which words are typed. Another problem arises with
people who have language dysfunction (e.g. aphasia), i.e. they cannot access the
words that are necessary for their message. In this case, iconic codings can help
to use or comprehend words again (Beck and Fritz, 1998). Since the questions in
this study are mainly concerned about the rate enhancement for people with speech
impairment because of physical disabilities, this aspect is not further considered in
the following course.

Among other things, conversational communication also comprises initiating inter-
actions (“how are you”), requests (“could you please open the door”) or corrections
(“I meant the other one”). A possible way of entering such expressions fast is the
use of sentence compansion (see e.g. in (Copestake, 1997; McCoy et al., 1998)). So
from the input “open window”, the system would generate “could you please open
the window”. This cogeneration approach needs three knowledge sources, namely a
grammar and lexicon, statistical information about collocations, i.e. syntagmatically
related words,4 and a set of templates. A thinkable drawback for the user might be
that the expanded sentences seem monotonous after some time. In contrast, flex-
ibility and individuality are valuable features of direct and unrestricted text entry
systems. Thus, the motivation of typing on a sentence level is reasonable. The idea
is to make use of the syntactic relations that exist in the sentence the user wants to
express and use them to present more accurate candidate lists that allow for faster
selection by moving likely matches to the top.

Section 3.2 gives an overview on word completion and word prediction approaches
that try to speed up the typing process by presenting the user a list of words that
(partially) match the current input. For an introduction to other research fields
of augmentative communication systems, see e.g. (Fazly, 2002; Langer and Hickey,
1999; Copestake, 1996). In general, a good information source yield the official jour-
nals of the International Society for Augmentative and Alternative Communication
(ISAAC), namely AAC Augmentative and Alternative Communication, published by
B.C. Decker Inc.

3.1.1 Selection methods for augmentative devices

The selection of the keys is generally possible in two ways. Keys can be directly
activated by pressing the corresponding buttons or they can be scanned progressively
if the handicapped person has severe impairment. The activation of a highlighted
key is then performed with only one physical switch, e.g. triggered by movement of
the eyelid. The scanning process of a virtual keyboard can be either in a circular
manner, i.e. highlighting all items successively and starting all over when reaching the
last key, or by row-/column-wise scanning (see e.g. (Demasco and McCoy, 1992)).

4For a detailed definition of the term, see (Manning and Schütze, 2000).

23

3 Text Entry with Ambiguous Keyboards

The former method can be used when there are only a few keys, as is the case
for ambiguous keyboards (see e.g. (Kühn and Garbe, 2001)), whereas the latter
is preferred when there are many item sets available, e.g. a virtual keyboard with
each letter on a separate key or additional entries that activate macros or issue
commands to the operating system. In general, entering texts by scanning is more
time-consuming and fatiguing since the user needs much concentration to activate
the currently highlighted key at the right time (cf. (Horn and Jones, 1996)). If
two switches are available, the automatic scanning routine can be shifted to one of
the switches, i.e. one switch moves the selection to the next item or item set and
the other switch selects the current entry. The evaluation measures used in this
thesis are independent of the selection method (cf. Section 6.2). Therefore, a more
abstract evaluation criterion is obtained which allows for a general assessment of the
techniques presented in this study, regardless of how the user actually operates the
system.

A flexible program for creating arbitrary item sets that can trigger any functionality
provided by the graphical user interface is e.g. SAW (Switch Access to Windows) by
the ACE Centre Advisory Trust5 for Microsoft Windows operating systems. They
also provide a word prediction software called Prophet that can be integrated into
SAW. For UNIX and UNIX-like systems (such as Linux, FreeBSD and Solaris),
GNOME (GNU Network Object Model Environment)6 is a user-friendly graphical
desktop environment which has a configurable accessibility interface that enables the
operation of all GUI-specific actions via simple keystrokes, like moving or resizing
windows and switching the focus of applications or several virtual desktops, as well
as individually adjusting keyboard or mouse control parameters.

3.2 Word completion and prediction

The two terms, namely word completion and word prediction are most often used
synonymously although there is a small difference (Klund and Novak, 2001). The
former denotes a system that presents a list of words as soon as the user starts
typing a word. The possible candidates for completion all match the already entered
prefix of the word. The latter method predicts whole words after a word has been
completely entered or selected. Usually, word completion is used more frequently
but is also called word prediction which often leads to confusion. If the letters that
are typed are distinct from one another, i.e. they can be chosen unambiguously
by e.g. using a virtual keyboard with separate keys for all letters of the alphabet
and utilizing a scanning technique that first selects the rows and then the columns,
the words in the candidate lists actually are completions to the current word. If

5http://www.ace-centre.org.uk/
6http://www.gnome.org/

24

http://www.ace-centre.org.uk/
http://www.gnome.org/

3.2 Word completion and prediction

the input technique is ambiguous, e.g. by using reduced keyboards (which will be
outlined in Section 3.3), then it is also legitimate to call the process prediction since
the ambiguous codes now allow for much more word suggestions that often have
different prefixes. Since the task of arranging these candidates according to some
likelihood estimate is technically the same as for completion, we will use both terms
(completion and prediction) synonymously in the following. Furthermore, the process
of completion is also referred to as disambiguation of the user input.

3.2.1 Letter-wise approaches

A large collection of assistive text entry systems is available (see e.g. (Newell et al.,
1998)), partly commercially and partly developed as prototypes within research
projects. Most of these systems suggest possible word completions to the user as
typing progresses. A few programs do not provide a word-wise prediction but work
on a letter-wise prediction instead, such as LetterWise (MacKenzie et al., 2001) or
the Reactive Keyboard (Darragh and Witten, 1992). The former uses a four-gram
letter model, i.e. the current letter is predicted given the preceding three letters. The
probabilities are obtained from an a priori analysis of likely letter sequences of some
dictionary.

In the latter method, the prediction mechanism of the Reactive Keyboard actually
works on a variable-length context matching technique that fetches the predictions
from a “long-term” memory that is primed with large texts at the beginning of the
session. The variability of the match length (k-tuples) reaches from predicting single
letters over words even to short phrases. If a higher-order model fails to match the
current context, the system falls back to lower-order models. The whole process is
adaptive, i.e. while the user is entering new text, rarely used tuples are discarded
in order to make way for new ones that are created from the current context. The
frequency count of recurring tuples is increased until a limit is reached. This limit
depends on the size of the variable that is used for storing the frequency counts. It
is argued that smaller sizes of 6–8 bits, i.e. counts up to 256, perform much better
than standard 32-bit variables. All frequency counts are halved as a result of the
“overflow” and tuples that end in a zero frequency are marked for deletion to allow
the storing of new models. This behavior can be interpreted as a simple “forgetting”
algorithm which is necessary if the system has to be able to “learn” new predictions
from the currently entered text. The higher the number of bits of the counting
variables, the longer it takes the system to forget low-frequent entries and adapt
to new user input. The variable-length models are stored in a tree structure that
has the property of finding partial matches between the context and the model very
efficiently and being quite economic in memory usage since lower-order models are
contained in the higher-order ones. The Reactive Keyboard core is integrated in an
editor and is available for many machine platforms. For further details, see (Darragh
and Witten, 1992).

25

3 Text Entry with Ambiguous Keyboards

3.2.2 Word-wise approaches

The next level of prediction is the word-wise approach. Instead of suggesting likely
characters, the system offers possible completions to the entered key sequence or
even predicts additional words after a word has been typed and selected. Usually,
these predictors utilize a statistical language model that implies the probabilities of
words given the history of already typed words. These likelihoods are determined, i.e.
trained, on large corpora that are considered to reflect a language as close as possible.
The more comprehensive the training corpus, the more accurate the language model
(cf. rule of large numbers, e.g. (Feller, 1968)). Obviously, statistical language models
can never be perfectly “balanced”. There will always be situations where unlikely or
no suggestions are presented to the user because this kind of context never occurred
before. This is also known as the sparse data problem (see e.g. in (Charniak, 1993;
Manning and Schütze, 2000)). Additionally, there are situations where certain word
suggestions depend on a syntactic, semantic or even pragmatic analysis of the context.
This kind of knowledge cannot be “coded” into a simple statistical language model
that only relies on counts of word n-gram occurrences. Interestingly, this simple
approach often yields very good results and it is a challenging task to improve the
performance of a system significantly by utilizing more complex methods. In (Fazly
and Hirst, 2003) e.g., using additional part-of-speech information (cf. Section 4.1)
only yields a very small improvement on the keystroke saving rate but is much slower
when compared to the use of plain word n-grams.

Some recent frameworks for word completion are described in (Copestake, 1997;
Matiasek et al., 2002) (based on word n-grams with additional part-of-speech in-
formation) and (Tanaka-Ishii et al., 2002) (based on an adaptive language model
utilizing PPM (prediction by partial match) and using a reduced keyboard, cf. Sec-
tion 3.3). The latter approach actually originates from the information theory domain
and deals with the problem of improving the compression rates of arithmetic cod-
ing. PPM (Cleary and Witten, 1984; Witten et al., 1987) lowers the entropy of a
language model by maintaining a list of already seen contexts and its corresponding
successors. For a character-based approach, the possible contexts of the string fork,
e.g., are the empty context, f, o, r, k, fo, or, rk, for, ork and fork. For each of these
contexts, a separate list of characters that appeared after the context is stored as
well as their frequencies. The PPM model can then assign probabilities to subsequent
characters, thus resulting in the ability to predict the most likely continuation of a
current context. The same approach can be used with words instead of characters.
In (Tanaka-Ishii et al., 2002), PPM is used to interpolate n-gram counts from a small
user-specific corpus with unigram probabilities from a larger base dictionary. The
system is adaptive since selected words are instantly added to the user dictionary.
The result is a dynamic language model with increased cognitive load because words
often appear at different locations, so the user has to adjust to this fact every time
a word is entered repeatedly, possibly slowing down the selection process.

26

3.2 Word completion and prediction

The previously mentioned entropy is usually used to measure the “quality” of a
language model. Low entropy values denote a better model. In general, entropy can
be used to evaluate systems that are based on n-grams (cf. Section 2.2.3). More
formally, if the words we are predicting are expressed as a random variable, entropy
stands for the average length (in bits) of an indicator that transmits an outcome
of that variable. In the word prediction domain, we are interested in computing
the likelihood of a word suggestion given a history of already typed words. If the
existence of a sufficiently large corpus for determining a language model is presumed,
it is obvious that a prediction scheme based on the previous three or four words
will yield better results than just considering a single preceding word by decreasing
the size of the suggestion lists. This size of the “search space” is exactly what is
expressed by perplexity, a notion that is closely related to entropy. If we assume
that a suggestion list has 8 entries, e.g., the position of the target word could be
coded with a 3-bit indicator, whereas if it has only 2 entries, one bit is sufficient.
So entropy and perplexity can be seen as a matter of how surprised we will be with
some candidate list for a word that is currently typed. In this context, surprise rises
with increasing suggestion list length.7

Although most word completion systems rely on statistical language models, an
approach that is entirely based on grammatical and semantic rules is the kombe
project (Guenthner et al., 1993). The prototypes utilize grammars and lexicons that
capture conceptual and contextual knowledge for fragments of German and French.
The syntactic rules allow for valid word predictions in terms of grammatical cor-
rectness, whereas the conceptual knowledge component favors words that constitute
a likely continuation of a sentence typed so far. The user can choose one of three
modes to determine what components are activated. In full mode, where all modules
are available, the first word is chosen from a list of syntactically possible sentence
beginnings which imposes constraints on the following continuation. The restricted
mode disables the conceptual model and bases the predictions only on grammatical
rules. In free mode, the user can enter each word freely without syntactic restrictions.
If a word is unknown to the system, it has to be entered letter by letter and classified
by the user with the help of a dialog-based lexical acquisition module. This step
takes some time but is necessary in order to link syntactic and conceptual features to
the word such that it can be used properly by the analysis mechanisms in upcoming
sentences. Unfortunately, due to funding problems, the system never reached the
stage of user trials.

7If our language model is perfect in a sense that it always predicts the correct word, i.e. its entropy
is 0, then we would actually be very surprised. This kind of astonishment is not meant by the
notion of the term “surprise”.

27

3 Text Entry with Ambiguous Keyboards

3.3 Ambiguous keyboards

The idea to use ambiguous keyboards8 goes back to the early 80s where a telephone
keypad layout (a modern representative is depicted in Figure 3.1)9 is used for data
entry (Witten, 1982). As already stated in the introduction, an ambiguous keyboard
maps several letters to a single key and thus reduces the number of physical switches
or keys needed for typing. Thereby, entered words need to be disambiguated since
more than one word can be encoded with that particular key sequence. For example,
if we take the English lexicon of the celex lexical database (Baayen et al., 1995)
and type the key sequence 2 2 7 3 7 with the keyboard from Figure 3.1,
then the result is a list with eleven candidates (sorted by frequency), namely “cases
cards acres bases cares caper capes bards baser bares barer”, that needs to be further
disambiguated for the intended word. Obviously, the less keys the reduced keyboard
has, the longer the lists with matching words grow. If we consider a highly reduced
keyboard containing only three letter keys (cf. the English mapping in Table 3.1
on page 34), typing the word cases, i.e. code 3 2 1 3 1 , already gives 28
candidates (“makes cases cabin cakes lakes caves haven gases . . . ”). Note that since
the letter mappings changed in these two examples, the words from the candidate
list of the 8-letter keyboard are not necessarily contained in the list of the 3-letter
keyboard.

Early methods involved direct disambiguation by tipping the key with the intended
letter multiple times, e.g. hitting the 2 button (in Fig. 3.1) three times for the letter
“c”. Obviously, determining a useful timing interval that defines when the letter is
finally accepted is quite problematic and user-specific. Alternative approaches need
one additional separator key that is used to manually terminate the current selection.
It is possible, e.g., to use the lowest row, i.e. the keys ∗ , and # , for this kind
of disambiguation. The letter combinations 2 ∗ , 2 and 2 # then stand
for an “a”, “b” and “c”, respectively.

The multi-tap method is commonly accepted when writing text messages via SMS
with todays mobile phones. Interestingly, (Witten, 1982) notes that, assuming a
dictionary of 24,500 words, only approx. 8% of the words are actually coded am-
biguously, i.e. where an additional disambiguation step is needed in order to select
the target word. So the majority of words can be typed by simply pressing the ap-
propriate letter buttons just once, thus increasing input rate significantly. The word
communication, e.g., is then obtained by tapping the key sequence 2 6 6 6
8 6 4 2 2 8 4 6 6 without further disambiguation. Meanwhile, this

interesting feature is used commercially in many modern mobile phones through the

8also called reduced or cluster keyboards
9The keypad layout in (Witten, 1982) contains only keys with a maximum of three letters, i.e. the

letters “q” and “z” are shifted to button 1 .

28

3.3 Ambiguous keyboards

abc2 def31

tuv8 wxyz9pqrs7

0

jkl5 mno6ghi4

#∗

Figure 3.1: The reduced keyboard of a modern cellular phone.

proprietary T9tm system which was developed by Tegic Communications (Kushler,
1998). It basically distributes the letters of an alphabet on seven or eight keys and
uses an additional unambiguous key serving as the separator between words (“space”).
On mobile phones, the letters are usually distributed in alphabetical order, but the
number of ambiguously encoded words can be reduced significantly if the reduced
keyboard is optimized for a specific dictionary. We will come back to this in Sec-
tion 3.4 where a highly reduced and optimized keyboard with only three letter keys
is presented.

3.3.1 Sentence-wise text entry

An approach that goes beyond a word-wise step-by-step disambiguation is reported
in (Rau and Skiena, 1996) which is the only reference we found to utilize a similar
approach as undertaken in this study. Instead of permanently changing between two
modes, i.e. a phase where a word is typed and a phase where it is disambiguated in
a list of current suggestions, the user can solely concentrate on the process of text
entry in a sentence-wise approach. In (Rau and Skiena, 1996), the words are typed
one after another with a telephone keypad (cf. Figure 3.1) and are delimited by an
overloaded space key. Similar to (Witten, 1982), the letters “q” and “z” are placed on
the ∗ key, which also holds the space delimiter “ ”. Only the end of a sentence is
marked unambiguously by pressing the # key. Four phases are used to determine
a disambiguated reading of the entered key sequence:

1. Recognizing blanks:
Because of overloading the ∗ key with“ ”, “q”and“z”, a window that captures

29

3 Text Entry with Ambiguous Keyboards

the three preceding and following keys is used to determine whether a space is
involved or not. The blank confidence is based on counts of how often a blank
occurred given the preceding and following key trigrams. The blank recognition
accuracy is stated to be 81.63% without making mistakes, i.e. falsely assigning
the blank to that position although it is the letter “q” or “z”. Higher blank
recognition rates are achieved by lowering the confidence threshold, but this
also results in more recognition errors.

2. Constructing word candidate sets:
The tokens that are obtained after the blank recognition are used to build
lists of matching candidates from a large dictionary containing approx. 50,000
words. Most of the words map to one unique key sequence but 16% are coded
ambiguously.

3. Handling unknown words:
If the token has no corresponding dictionary entry, an interpretation is con-
structed using various features such as partial dictionary matches, affix and
suffix analysis and transitional letter probabilities.

4. Sentence disambiguation:
A dynamic programming technique, namely the Viterbi algorithm (cf. Sec-
tion 2.1.2), is used to find the most likely sentence that matches the current
tokens. The features that guide the search are obtained from examining word
pairs in the Brown Corpus. Additional grammatical constraints are used to
tag the words with part-of-speech information (cf. Section 4.1) and thus help
eliminating unlikely or implausible candidates.

The results obtained by simulating the typing of various text samples with this
framework look very good. For various domains, the percentage of correct words
reaches from 92.86 to 97.67%. This is due to the relatively high number of keys and
low number of ambiguous words, respectively. The overall procedures seem to have a
distinctive potential that is sufficient to correctly resolve a large amount of ambiguous
words. An additional user-acceptance test was performed with 13 test persons that
had to type three sentences of increasing length with the ten-key telephone pad. One
of the main conclusions is that typing comfort decreases with increasing length of
the sentences. This result is reasonable since a long sequence of ambiguous codes
might confuse the user such that the current position in the intended sentence, i.e.
the message that is going to be expressed, might become blurry after some time of
typing, resulting in higher error rates (e.g. by word repetition or omission) or even
breaking off and restarting the text entry process.

Nevertheless, a sentence-wise ambiguous text entry system is also focused in this
study. The main difference to the system in (Rau and Skiena, 1996) is that the

30

3.3 Ambiguous keyboards

ambiguous keyboard used in our approach is highly reduced, containing only three
letter keys and one delimiter key that unambiguously indicates the end of a word. A
consequence of this is that the amount of ambiguous words, i.e. words that do not
have a unique coding, is much higher than with a keyboard using more letters.

3.3.2 Unknown words

As with all dictionary-based text entry methods, one of the biggest problems is
concerned with words not being in the dictionary. This is also known as out-of-
vocabulary rate (OOV). It is obvious that for any text entry method that relies on a
lexical database, the user will sooner or later get to know its limits. If an unknown
word is not within the candidate list, it has to be disambiguated letter by letter.
The obtained word is then stored in a special user dictionary. The question of how
to merge the words from the user dictionary into the suggestion lists of the general
model is discussed in (Harbusch et al., 2003). A simple linear interpolation of the
two dictionaries has a positive effect on the OOV rate with increasing user dictionary
size. This approach can also be used with domain- or topic-specific lexicons that
“prime” the overall language model of the system with expressions from a specific
field. The corpus used for an evaluation of the sentence-wise text entry framework
elaborated in this study can be considered to be domain-specific. The advantage
for a speech impaired user lies within additional speed-up. It is thinkable, e.g.,
to prime the general language model of the base dictionary with domain-specific
corpora for scenarios like shopping, different school subjects (history, biology, etc.)
and discussing politics or the like. The effect is that words which are likely to occur
in these situations are ranked higher than in the usual candidate lists of the base
dictionary.

For the unknown words, additional spelling modes have to be supplied by the
system such that the user can add them once to a personal dictionary. The easiest
possibility is to separately disambiguate letter by letter in alphabetic order. A better
approach is to use n-gram letter probabilities to present the user more likely letters
first, given the already disambiguated context (cf. (MacKenzie et al., 2001)). Espe-
cially in highly inflected languages as German, the amount of unknown words for a
communication aid with a limited lexicon is assumed to be much larger than for En-
glish. One could consider a method that composes new words from an unknown code
by taking existing words from the dictionary that partly match the code sequence
and try to “glue” them together to form compounds. In English, most compounds
are made up of separate words (e.g. bed linen), whereas in German, these words are
concatenated (Bettwäsche). One possibility is to type the words separately (Bett and
Wäsche) and concatenate them via a special command that has to be implemented
in the system and builds a compound from the two last words. Unfortunately, this
mode is disadvantageous for the user since she already has to suspect that a word

31

3 Text Entry with Ambiguous Keyboards

is not in the dictionary. This kind of planning activity might slow down the overall
text entry rate significantly (similar to the cognitive load of scanning the candidate
lists for the target word during word prediction). Therefore, it would be practicable
if the system determined a possible compound for the code of Bettwäsche by finding
the codes for Bett and Wäsche and presented all such suggestions to the user. If no
valid compound is generated, a fallback to a letter-wise disambiguation should be
possible.

3.4 The UKO-II communication aid

The systems presented so far (i.e. T9tm and (Rau and Skiena, 1996)) use an ambigu-
ous keyboard containing up to 10 keys with only three or four letters per key. The
advantage of such keyboards is the relatively low number of actual ambiguous words,
i.e. the biggest part of a dictionary is coded uniquely. Since users with impairment
are often capable of only operating a small number of physical switches, the use of
such keyboards is problematic. If all keys cannot be accessed directly then scan-
ning techniques have to be used (Lesher et al., 1998). Undoubtedly, text entry via
scanning is much slower and probably more frustrating than being able to directly
activate the keys. Therefore, a further reduction in the number of keys is appropri-
ate. The disadvantage of this step is a rise in ambiguity. Since the alphabet is now
distributed on even fewer keys, more words share the same coding, resulting in higher
selection costs. Assuming a reduced keyboard with three letter keys and the celex
database (cf. also Section 3.4.1), the candidate lists can grow as long as 50 entries
for English (key sequence 3 1 1 1 , cf. Tab. 3.1: look loss moon guns . . .) and
75 entries for German (1 2 2 2 3 : mußte Woche müsse wußte . . .), see also
(Harbusch et al., 2003).

The final realization of an assisting text entry system is very user-dependent. In our
approach, a communication aid using a highly reduced keyboard serves as a starting
point. The UKO-II system (Harbusch and Kühn, 2003b) is a configurable open
architecture that allows for variable keyboard layouts and utilizes a layered language
model. It is implemented in Emacs Lisp10 and currently runs within the XEmacs
text editor11 which has the advantage of being an extensible and fully customizable
display editor and Lisp interpreter. With additional modules (written in Emacs Lisp,
short Elisp), it provides nearly everything for everyday communicative needs, such
as e.g. an e-mail and newsgroup client, instant messaging and much more. If some
feature is missing, it can be easily implemented since many modules are open source
or free software.

10http://www.gnu.org/manual/emacs-lisp-intro/
11http://www.xemacs.org/

32

http://www.gnu.org/manual/emacs-lisp-intro/
http://www.xemacs.org/

3.4 The UKO-II communication aid

The predecessor of the UKO-II system was introduced in (Garbe, 2001) and dis-
tributed the letters on four keys with two additional command keys. Kathrin, the
pilot user suffering from cerebral palsy, had to utilize a circular scanning method to
operate the program with one physical key (one single switch in the headrest of her
wheelchair). The prototype was then further improved by Jörn Garbe and the next
version (called ERIC) enabled Kathrin to directly access three letter keys (with two
additional switches in the headrest) and one command key (with a special switch
mounted to her knee) (cf. (Garbe et al., 2001)). After a short time, she accustomed
herself to the new setting and could now determine the speed of text entry on her own
since she did not have to wait for the highlighting of the desired item set any more.
One disadvantage of this system was the fixed command hierarchy. The command
mode (which is entered by activating the command switch and allows for actions such
as delete last key, accept current match or speak last sentence) is “hard-coded” and
cannot be easily extended with own macros or additional commands. With the new
approach taken in the UKO-II framework, the user will be able to directly implement
the desired commands in Elisp in future versions. Since the language is interpreted,
the new functionality is instantly available and provides a flexible way of extending
the basic command set.

3.4.1 Keyboard layout

The current prototype uses the minimum of three keys for the letters and one addi-
tional key for entering a command mode that enables the user to issue commands to
the system, e.g. for deletion of the last keypress or denoting the end of a word. Going
below this value, i.e. distributing the letters on only two keys, would result in unfea-
sible selection costs. Strongly impaired users that can only operate 1–3 switches have
to rely on a scanning mode for the four-button keyboard (cf. (Harbusch and Kühn,
2003a)). The distribution of the letters on the keys is optimized for a specific lexicon.
For German and English, the dictionaries are based on the celex lexical database
(Baayen et al., 1995). A genetic algorithm (see e.g. (Goldberg, 1989)) optimizes the
layout by minimizing the length of the candidate lists and the number of scanning
steps if appropriate (Garbe, 2001; Kühn and Garbe, 2001). The current keyboard
layouts are depicted in Table 3.1.

Since the distribution seems to be arbitrary, one could consider that an alpha-
betic arrangement would result in more readability, but the gain in reduction of the
suggestion list length is significantly higher with an optimized layout (Garbe, 2001).
The effort for “learning” the keyboard layout is negligible. After a short training pe-
riod, the user should be able to operate the keyboard blindly. The German layout of
the keyboard is used for simulating the evaluation corpus that will be introduced in
Section 6.1. A direct selection of the keys is assumed with one additional key serving
as an unambiguous “space” that separates the words of a sentence. The evaluation

33

3 Text Entry with Ambiguous Keyboards

German
a g j c f h k b d e
l m q o s t u v i n

r w z ä x y ü ß p ö -

1 2 3

English
b j k a d f c e g

n o s v p q r h i l
w x u t - ’ m y z

1 2 3

Table 3.1: The keyboard layouts of the UKO-II prototype for German and English.
The additional command button is omitted.

results for the baseline that utilizes a simple frequency-based language model (which
is described in the following section) are presented in Section 6.2.

3.4.2 Frequency-based static language model

As mentioned above, the underlying lexicon is derived from the celex database (cf.
also Section 6.1.2) which provides frequencies of the words based on large corpora. So
far, the candidate lists of the prototype are vertically ordered according to this very
simple language model, i.e. the matching words are listed with decreasing frequency,
the most frequent word appears at the first place. Since Kathrin attends a regular
school and uses the ERIC communication aid in everyday life,12 her experiences can
be seen as a direct evaluation of the usability. The most interesting thing is that
the word completion was rarely used. The early version provided a prefix-based
completion of words that are currently typed. It turned out that the time needed
to glance at the possible word completions as typing advances and scan them for
the target word lessens the benefit of possible reduced motor requirements. The
prevailing mode of the pilot user was to simply enter the whole word in one go and
concentrate on the candidate list after that. In general, most of the evaluations
concerning word completion software take the keystroke saving rate (ksr) as one of
the main performance criteria (see e.g. (Higginbotham, 1992)). Keystroke savings are
measured by counting the number of keypresses needed for accomplishing a task (e.g.
writing a short text) with and without some features like word prediction enabled.
It may sound good if a system has a keystroke saving rate of 50%, but the statement
has no expressiveness about the actual time needed to enter the text.

It is elaborately shown in (Horstmann Koester and Levine, 1994)13 that word
prediction can slow down user performance significantly because of cognitive and
perceptual activities. These activities have to be considered when evaluating sys-
tems that offer word prediction. The evaluation is based on trials with 14 subjects,
of which eight were able-bodied and six had spinal cord injuries. The able-bodied
persons had to use mouthstick typing to access the keyboard, whereas the ones
12The UKO-II system is still an early prototype.
13cf. also (Horstmann Koester and Levine, 1996)

34

3.5 Summary

with spinal cord injuries relied on their usual input methods (mouthstick or hand
splint typing). After a training phase where the users could accommodate to the
two available interfaces, namely a “Letters-only” mode (letter-by-letter spelling) and
a “Letters+WP” mode (single letter entry with additional six-word prediction list),
the testing phase comprised seven sessions of typing 14 sentences in both modes.
All system data was logged in real-time, e.g. the selected items with the correspond-
ing time at which they were selected. The evaluation of the material supports the
hypothesis that the increased cognitive load of searching the candidates in the sugges-
tion list has a negative effect on the overall performance. For the impaired users, the
text generation rate was always significantly higher in the “letters-only mode” (ap-
prox. 100–125 characters per minute). When compared to the word prediction mode
(only approx. 60–80 chars/min), this results in a decrease of the rate by 40% when
word prediction is used. For further details, see (Horstmann Koester and Levine,
1994). Although unambiguous keyboards were used for this evaluation, the results
also hold for ambiguous ones since the word predictions do not depend on the type
of keyboard. There are much more candidates when using ambiguous keyboards but
the suggestion lists are usually of limited length (5–10 entries). Still, if the user has
a severe disability, the reduction of motor requirements (which is directly correlated
with a high keystroke saving rate) might be one of the primary goals.

3.5 Summary

So far, the field of AAC was introduced and an overview on ambiguous keyboards and
existing word prediction approaches was given. In our case, the pilot user of the UKO-
II communication device is able to operate the three switches with her head quite
fast, and thus, a sentence-wise text entry mode is considered for further examination.
It is important to be able to show communicative initiative in conversations, which
means that the intended message has to be expressed as fast as possible. As was
already argued, glancing over possible candidates generated by some word prediction
module while typing progresses is not always feasible. Therefore, a sentence-wise
approach where the user concentrates on the message and makes adjustments to the
final candidate lists afterwards is considered in this study. So the primary task is to
examine possible means that result in minimal final selection costs of the target words.
In the following chapter, techniques are presented that, in addition to the statistical
language modeling given in Chapter 2, allow for a partial parse of sentences14 (cf.
(Abney, 1991)). The basic idea is to determine a more detailed syntactic analysis
of a sentence. Simple chunking techniques try to find only the noun phrases of a
sentence, e.g. (Church, 1988), whereas more complex ones provide as much syntactic
description as possible (Hindle, 1994).

14also called shallow parsing or chunking

35

3 Text Entry with Ambiguous Keyboards

Chapter 4 introduces part-of-speech tagging and the related supertagging which
provides the necessary concept towards a shallow parsing technique. In the context
of this study, those sentence hypotheses that have a maximum syntactic consistency
are determined with the help of a lightweight dependency analysis (Srinivas, 1997a)
and used to reorder the suggestion lists such that more likely candidates appear at
the top, thus reducing overall selection costs. Since the level of ambiguity with the
four-button ambiguous keyboard is very high, i.e. the candidate lists usually have
more than one entry, we also need a way of finding more than one good hypothesis.
This is generally achieved by using search techniques which are also discussed in the
next chapter. The final system is presented in Chapter 5.

36

4 Partial Parsing and Search Techniques

This chapter describes the theoretical background needed for improving the results
of the ambiguous keyboard with the use of an n-best supertagger. Supertagging
(Srinivas and Joshi, 1999) uses the Lexicalized Tree Adjoining Grammar formalism
(LTAG) and is comparable to part-of-speech tagging. Instead of parts of speech
being annotated to the words of a sentence, supertagging uses so-called supertags
that represent an elementary tree structure with some lexical anchor. The advantage
of this is the ability to find dependencies between these supertags on a phrase or even
sentence level, thus resulting in a partial parse of the sentence by likely identifying its
chunks. This information is obtained by a so-called lightweight dependency analysis
(Srinivas, 2000). With the methods presented in Chapter 2, a supertagger can find
the most likely supertag sequence for a sentence via the Viterbi algorithm. Since we
deal with ambiguous codings that each expand to a list of matching words, a single
best hypothesis probably will not be enough to improve the system significantly. This
claim motivates the employment of n-best techniques that are able to find more than
one good hypothesis.

Section 4.1 introduces part-of-speech (POS) tagging and the basic methods how to
estimate probabilities of POS-tag sequences given a sentence on the basis of trigrams.
Section 4.2 gives an overview on the TAG formalism and Section 4.3 describes the
related supertagging framework. In particular, the supertagger by (Bäcker, 2002)
is presented in detail since it is used as a basis for the n-best supertagger from
Chapter 5. Section 4.4 sketches alternative shallow parsing techniques. Various
search techniques from the field of Artificial Intelligence and n-best approaches from
the speech recognition area are described in Section 4.5.

4.1 Part-of-Speech Tagging

One main goal of Natural Language Processing (NLP) is to find ways for representing,
parsing and therefore understanding the structures that underlie natural languages
(see e.g. (Allen, 1995; Jurafsky and Martin, 2000)). One possible approach is to build
grammars that reflect regularities of a specific language. Usually, coming up with
an elaborate grammar takes a lot of time and is a rather complicated task. Often,
one is interested in simpler models because they are easier to understand, implement
and reconstruct. One such model is part-of-speech tagging, or simply tagging. Parts

37

4 Partial Parsing and Search Techniques

of speech (POS) are the labels for words that are used for differentiating their mor-
phosyntactic function within the sentence, e.g. partitioning different words into their
classes like nouns, verbs or adjectives. Now, tagging is the process of labeling each
word in a sentence with an appropriate part of speech tag. Interestingly, annotating
each word with the likeliest POS already results in an accuracy of approx. 90% be-
cause more than half of the words are not ambiguous in most corpora (Allen, 1995).
Since it is impossible to always know the correct tag for all words in any sentence
(which would require an infinitely large training corpus), we can try to find the most
likely interpretation within a fixed scope using the techniques presented in Chapter 2
by using n-grams (cf. Section 4.1.2). A comprehensive introduction on the field of
syntactic word-class tagging is given in (van Halteren, 1999).

4.1.1 History of taggers

The first taggers appeared in the late 1950s and were mostly based on linguistic
approaches, i.e. hand-written disambiguation rules. Interestingly, (Joshi and Hopely,
1996) report one of the pioneering taggers that were implemented within a parser
by cascading finite-state automata. The basic idea behind taggers was to reduce the
number of possible hypotheses a parser has to check in order to find a valid syntactic
parse tree of a sentence. With this kind of filter for the candidates of each word, the
speed of the parser can be improved significantly. One possible drawback emerges if
the tagger also discards candidates that actually belong to the solution. If the parser
solely relies on the output of the tagger in that case, it cannot find the correct parse
any more. Early taggers that used linguistic rules rarely assigned more than 80% of
the words a correct tag. The taggit tagger (Greene and Rubin, 1971) used about
3,300 rules of the form W X ? Y Z → A (called context frame rules), where “?”
symbolizes an ambiguous word and W X and Y Z represent the tags of the words to
the left and right context, respectively. In general, A specifies the tag that is assigned
to the ambiguous word in the middle if the context matches and A is in the lexicon of
possible tags for that word. The tag A could also appear negated on the right-hand
side, as e.g. in nns ? → not vbz (which simply states that a plural noun is never
followed by a verb in third person singular form). taggit used the Brown tag set
containing 77 tags and was designed to help annotate the Brown Corpus (Francis
and Kučera, 1964), one of the first extensive text collections comprising 15 genres of
written American English with a total size of over one million word tokens (500 text
samples with about 2,000 words each). It is reported in (Leech, 1997) that it reached
an accuracy of 77% on the Brown Corpus.

A giant leap in word tagging was made with the rise of data-driven methods in the
late 1970s. By “borrowing” the advances made in speech recognition with HMMs,
the taggers could be used on large corpora and automatically improve their accuracy
by expectation maximization (cf. Section 2.1.2). After these n-gram HMM taggers

38

4.1 Part-of-Speech Tagging

reached the limit of what seemed to be feasible (an accuracy of approx. 97%), new
approaches emerged in the early 90s and rule-based taggers became popular again.
The big difference compared to early rule-based taggers was that they were now data-
driven, i.e. they learned the rule sets automatically on a large corpus. Especially
Brill’s tagger (Brill, 1992) aroused the interest of many researchers. Modern POS
taggers are mostly hybrid system, using the “best of both worlds”.

4.1.2 Probabilistic data-driven tagging

Although good results can be achieved with hand-written disambiguation rules, the
work put into the development of consistent rules that also stay maintainable is rather
time-consuming. The breakthrough of statistically driven methods came with the
development of annotated corpora. Actually, the first data-driven tagger, a system
called claws (Constituent-Likelihood Automatic Word Tagging System) (Garside,
1987), was used to help annotate the Lancaster-Oslo/Bergen (lob) Corpus (Johans-
son, 1986). The first version of claws was based on bigram Markov models and
achieved an accuracy of 96–97%. This accuracy turned out to be the upper bound of
what is feasible with the data-driven approach. Generally, improving the accuracy
beyond 97% is a very difficult problem. In fact, (Marcus et al., 1993) note that even
human annotators only agreed on 96–97% of the tags assigned for the Penn Treebank
sentences of the Brown Corpus.

As mentioned above, data-driven taggers annotate the words of a sentence with a
POS tag sequence “learned” from a large training corpus by maximizing the prob-
ability of each word given a tag and given preceding tags of the previous context.
The most common approach is to use Hidden Markov Models in order to determine
the most likely tags for the words. The output symbols of the HMM are the words
wi of the sentence, whereas the states correspond to the different tags ti. One big
advantage of HMMs is that they can be automatically trained with the Baum-Welch
algorithm. Let T = t1t2 · · · tN be a sequence of part-of-speech tags for the sentence
W = w1w2 · · ·wN . The most probable tag sequence T̂ is defined by

T̂ = argmaxT P(T |W). (4.1)

According to Bayes’ law,

P(T |W) =
P(T)P(W |T)

P(W)
, (4.2)

whereof the denominator P(W) can be left out since it is the same for all tag sequences
and the task is to maximize the expression. Thus, Equation 4.1 can be restated as

T̂ = argmaxT P(T)P(W |T). (4.3)

39

4 Partial Parsing and Search Techniques

The probability of the tag sequence, P(T) = P(t1t2 · · · tN), can be expressed through
the chain rule (cf. Equation 2.4) as P(t1)P(t2|t1)P(t3|t1t2) · · ·P(tN |t1t2 · · · tN−1). If
we consider only a fixed word frame (cf. the limited horizon Markov assumption)
and assuming pseudo-tags at the beginning of the sentence, the probability can be
approximated by

P(T) ≈
N∏

i=1

P(ti|ti−n+1 · · · ti−2ti−1), (4.4)

where n is the size of the window, i.e. the value for the n-gram being used. In
order to compute the probability P(W |T) = P(w1w2 · · ·wN |t1t2 · · · tN) efficiently,
the additional assumption is made that all words wi are independent of each other.
This results in another approximation, namely

P(W |T) ≈
N∏

i=1

P(wi|ti). (4.5)

The most favorite model in terms of both computational efficiency and achieved
accuracy used in POS tagging has turned out to be based on trigrams (see e.g.
(Brants, 2000; Thede and Harper, 1999)). A solution to the task of finding the best
tag sequence T̂ in Equation 4.3 using a trigram model can finally be found through
the following equation:1

T̂ = argmaxT

N∏
i=1

P(ti|ti−2ti−1)P(wi|ti). (4.6)

The term P(ti|ti−2ti−1) is also known as the contextual probability, whereas P(wi|ti)
is called the word emit probability. As presented in Section 2.2, one can use relative
frequencies and MLE to determine these probabilities,

P(ti|ti−2ti−1) =
C(ti−2ti−1ti)
C(ti−2ti−1)

and P(wi|ti) =
C(wi, ti)
C(ti)

, (4.7)

and apply smoothing or back-off techniques in order to prevent the zero probability
problem. The values returned by C(ti−2ti−1ti), C(ti−2ti−1) and C(ti) denote the
counts of the POS trigrams, bigrams and unigrams, respectively, whereas C(wi, ti)
returns the frequency of word wi that is tagged with the part-of-speech ti. For the
supertagger used in this thesis, a detailed overview on these techniques was given in
Sections 2.2.1 and 2.2.2. Additional properties are discussed in Section 4.3.2.

1Again, pseudo-tags are used at the beginning of the sentence (for ti with i < 1).

40

4.1 Part-of-Speech Tagging

4.1.3 Rule-based data-driven tagging

The above paragraphs focused on the stochastic approach to part-of-speech taggers.
When it was realized that probabilistic HMM taggers reached the boundary of what
is possible, rule-based approaches gained popularity once more. A tagger that was
particularly attracting the interest of researchers was that of (Brill, 1992). It also
works on a training corpus but instead of deriving the probability distribution of
n-grams via stochastic models, it automatically acquires rules that specify how to
change tags of already tagged words based on the current context. For this purpose,
the tagger firstly assigns to each word the most likely tag which is estimated from
a large annotated corpus by using unigrams, i.e. no contextual information. After
this initial run, the tagger acquires patches that specify simple tag change rules as
follows: it applies the initial tagger to a separate patch corpus and gathers tagging
error triples (tw, tc, n) which indicate that n words are wrongly tagged as tw instead
of the correct tc. These triples are used to determine the best template from a
prespecified set of rule templates of the form “change a tag from X to Y if some
condition C is true” that reduces the error rate most, i.e. where n turns out to be
smallest. The rule that yields the best improvement is applied permanently to the
patch corpus and the patch acquisition process continues. The interesting thing to
note is that despite most rules being very simple, the overall relation of the rules is
quite complex because the ith rule depends on the corpus state after having applied
all i− 1 patches. Brill trained his tagger with 90% of the tagged Brown Corpus and
generated patches on 5% of the remaining data. The rest (5%) was used for testing.
Some of the first patches this procedure finds are e.g. “to → in, if next tag is at”,
“nn → vb, if previous tag is to” or “to → in, if next word is capitalized”.2 The
error rate of the initial tagger based on the unigram tags of the training set is 7.9%
and drops down to 5.1% after applying 71 patches.

Later improvements (Brill, 1994; Brill, 1995) of the transformation-based error-
driven approach are reported to even outperform taggers based on HMMs. One of
the advantages of the rule-based tagger when compared to the probabilistic approach
is the size of the trained model in terms of memory consumption. A few hundred
rules are far easier to store and handle than the large probability matrices of the
HMM λ = (A,B,Π). The space complexity of A, B and Π is in O(N2), O(NM) and
O(N), respectively. Here, N is the number of possible tags (the number of states)
and M is the size of the vocabulary (the number of output symbols, cf. Sections 2.1.1
and 2.1.2). If we consider the use of a trigram HMM tagger, the possible states are
coded by pairs of tags, so N has to be squared. This results in an overall space
complexity of O(N4 + N2M). Modern programming languages provide the data
type double which can hold a 64-bit precision floating point number (e.g. (Arnold
and Gosling, 1997)). If we assume a tagset containing 80 tags (the Brown Corpus

2to = infinitive marker to, in = preposition, at = article, nn = singular noun, vb = verb

41

4 Partial Parsing and Search Techniques

distinguishes 87 tags) and a vocabulary of 20,000 words, the storage needed for the
HMM matrices is approx. 1,289 MBytes. Fortunately, many tag pairs do not occur
in natural languages, so the memory requirements are not as huge as presented here.
It is shown in Section 4.3.2 how to reduce the storing space for the matrices by using
an associative memory technique, so-called hash tables.

Modern hybrid taggers try to combine the best of both probabilistic and rule-
based approaches (Garside and Smith, 1997; Tapanainen and Voutilainen, 1994).
The reached accuracy is between 96 to 98 per cent. There also exist new approaches
to the task. In (Nietzio, 2002), Support Vector Machines (SVMs) are used for tagging.
The advantage lies in the ability to constitute more complex linguistic objects than is
the case for rule-based or statistical systems. SVMs fall into the class of kernel-based
algorithms (Cristianini and Shawe-Taylor, 2000) and are used to represent word-tag-
sequences as arbitrary feature vectors. The evaluation on a small training corpus
consisting of 500–2,000 sentences resulted in an accuracy of 96.1–98.4% for known
words, whereas if unknown words are encountered, values of only 91.9–93.9% are
reached.

4.2 Tree Adjoining Grammars

When speaking of NLP in general, one is basically interested in parsing and under-
standing language. In order to achieve this task, we have to come up with rules
that reflect the syntactic regularities of a specific language such that, together with
a lexicon where the valid words are stored, these rules make up a grammar for this
language. By now, research in Computational Linguistics and Linguistics in general
has produced many different grammar formalisms, each with certain strengths and
weaknesses (e.g. GPSG (Gazdar et al., 1985), HPSG (Pollard and Sag, 1994), LFG
(Kaplan and Bresnan, 1982)). At this point, there still is no formalism that spans the
complex rules with all their exceptions perfectly well. And as long as mankind is not
even sure how it actually is able to understand and speak natural languages so well,
any grammar formalism will fail on sometimes the simplest sentence constructions
sooner or later.

Basically, the distinction between two basic grammar paradigms, namely string-
rewriting grammar formalisms and tree-rewriting formalisms, can be made. The for-
mer is represented by e.g. Definite-Clause Grammars (DCGs, see e.g. in (Covington,
1994)) where context-free phrase structure rules as in S → NP VP or NP → John
describe how to derive non-terminal or terminal symbols from previous non-terminals
(thus substituting, i.e. rewriting, strings with other strings). Tree Adjoining Gram-
mars (Joshi and Schabes, 1997) fall into the latter class. Here, one deals with prim-
itive elements that are called elementary trees which can be divided into

• initial trees that define basic phrase structure trees of simple sentences (without
recursive behavior) and

42

4.2 Tree Adjoining Grammars

• auxiliary trees representing recursive structures.

The nodes of elementary trees can be characterized as follows:

• interior nodes are labeled by non-terminal symbols,

• frontier nodes are labeled by terminal or non-terminal symbols,

• non-terminal symbols on the frontier of initial trees are marked for substitu-
tion,3

• non-terminal symbols on the frontier of auxiliary trees are marked for substi-
tution except for one foot node4 which has the same label as the root node.

The elementary trees are combined by two operations, namely substitution and
adjunction, resulting in a derived tree. In Figure 4.1, the node Z on the frontier of
the tree γ1 is marked with a down arrow and thus can be substituted by an initial
tree whose root has the same label (α1). Any adjunction on a node marked for
substitution is strictly forbidden. When adjunction is applied (cf. Figure 4.2), the
root node of the adjoining auxiliary tree (here Y in β1) replaces the non-substitution
node of the sub-tree5 which is detached and moved to the corresponding foot node of
the adjoining tree. The derived trees being generated by these operations are shown
on the right of the figures, respectively.

A summary on the formal properties of TAGs and the language class they belong
to (i.e. tree-adjoining languages, TAL) are given in (Joshi and Schabes, 1997). These
properties also hold for lexicalized TAGs which are presented in the following section.

4.2.1 Lexicalized Tree Adjoining Grammars (LTAG)

So far, we have introduced the basic TAG formalism with the two elementary tree
types and the two composition operations that are used to generate more complex
tree structures by substitution and adjunction. Since the elementary trees are struc-
tured objects and therefore have the advantage to relate to what is called the strong
generative capacity,6 TAGs are more relevant to linguistic descriptions than CFGs.
(Schabes et al., 1988) show how to enhance context-free grammars by the process
of lexicalization and the operation of adjoining in order to extend their domain of
locality and generally simplify the task of a parser. The result is formally equivalent
to lexicalized TAGs (Schabes et al., 1988).

Lexicalization allows us to associate each elementary tree with a lexical item called
the anchor. In LTAGs, every elementary tree has such a lexical anchor. It is also

3annotated with a down arrow (↓)
4annotated with an asterisk (∗)
5The overall target (γ2 in Figure 4.2) can be any tree: initial, auxiliary or derived.
6in contrast to weak generative capacity as encountered with sets of strings, e.g. in CFGs

43

4 Partial Parsing and Search Techniques

W

Z

ZZ↓

W

γ1

α1

Figure 4.1: The substitution operation: the initial tree α1 is inserted into a substitu-
tion node of the elementary tree γ1.

Y

Y

γ2

β1

X

Y

Y

X

Y∗

Figure 4.2: The adjunction operation: the auxiliary tree β1 is adjoined on the domi-
nating node of the sub-tree in γ2.

44

4.2 Tree Adjoining Grammars

VP VP

V

saw

V

saw

S S

NP↓ NP↓

NP↓ S∗

Figure 4.3: Two lexicalized elementary trees for the verb saw.

possible that there is more than one elementary structure associated with a lexical
item, as e.g. for the case of verbs with different subcategorization frames. The ele-
mentary structures in Figure 4.3 allow e.g. for sentences like Mary saw John or John
saw that Mary left.

The important key properties of LTAGs are summarized in (XTAG Research
Group, 2001). The extended domain of locality (EDL) and adjoining as described
above directly allow for factoring of recursion from the domain of dependencies
(FRD). Therefore, all dependencies in LTAGs are local and are specified by the set
of initial and auxiliary trees. One part of the EDL property requires that for every
environment a lexical item might appear in, the grammar must have an elementary
structure for this item. The consequence of this property is that the information of a
dependency structure is contained in derivation structures of LTAGs. We will come
back to this in Section 4.3.1 where an algorithm is presented that is able to find these
dependencies in linear time, thus providing an efficient shallow parse of the sentence.
Otherwise, traditional parsing of a lexicalized TAG can be achieved in polynomial
time (O(n6), (Joshi and Schabes, 1997)). The language class tree-adjoining gram-
mars belong to is mildly context-sensitive which places them in between context-free
and context-sensitive languages: CFL ⊂ TAL ⊂ CSL. Another advantage of LTAGs
in general is that they can handle long distance dependencies (cf. Section 4.2.2).

A development tool based on the LTAG formalism that comprises a morphological
analyzer, a tagger, a parser and graphical interfaces for easy access to a lexicalized
tree adjoining grammar for the English language is presented in (Schabes et al., 1993;
Doran et al., 1994).

4.2.2 LTAG example

The following section will give a small excerpt of a lexicalized tree adjoining gram-
mar in order to exemplify the properties of LTAGs as described in the previous
paragraphs.

The sentence that is examined contains an example for a long distance dependency:

45

4 Partial Parsing and Search Techniques

who does Bill think Harry likes (from (XTAG Research Group, 2001)). This is a
typical example for the problem class of wh-particles that emerge in relative clauses
and interrogative sentences. Here, the nominal phrase that comes after Harry likes
has moved to the front and is substituted by the interrogative who. In other grammar
paradigms, the resulting gap has to be explicitly modeled by features or meta rules
(cf. the slash feature in GPSG (Gazdar et al., 1985) and controller/controllee pairs
in LFG (Kaplan and Bresnan, 1982)). In LTAG, the long distance dependencies are
localized such that all and only the dependent elements are present within the same
structure. Thus, the wh-constituent of the nominal phrase complement is present
within the same elementary tree. In Figure 4.4, the initial tree α2 reflects this fact.
The process of adjoining and substitution is delineated in Figure 4.5. The initial trees
α3, α4 and α5 are merged into the corresponding nodes marked for substitution. The
auxiliary tree β1 is then adjoined to the main tree α2. Finally, β2 is adjoined to β1.
The result is the derived tree of the sentence who does Bill think Harry likes. We
will come back to this example in Section 4.3.1 where the lightweight dependency
analyzer, a procedure that directly determines the fillers for the substitution and
adjunction nodes from the complement requirements coded in the elementary trees
without parsing the whole sentence, is introduced.

4.3 Supertagging

In previous sections, the lexicalized tree adjoining grammar formalism was presented.
The elementary structures, i.e. the initial and auxiliary trees, hold all dependent ele-
ments within the same structure, thus imposing constraints on the lexical anchors in
a local context. Basically, supertagging (Joshi and Srinivas, 1994; Srinivas and Joshi,
1999) is very similar to part-of-speech tagging which was introduced in Section 4.1.
Instead of POS tags, richer descriptions, namely the elementary structures of LT-
AGs, are annotated to the words of a sentence. For this purpose, they are called
supertags in order to distinguish them from ordinary POS tags. The result is an
“almost parse” because of the dependencies coded within the supertags. Usually, a
lexical item can have many supertags, depending on the various contexts it appears
in, and therefore the local ambiguity is larger than with the case of POS tags. An
LTAG parser for this scenario can be very slow because of the large number of su-
pertags, i.e. elementary trees, that have to be examined during a parse. Once again,
we can apply n-gram models on a supertag basis in order to filter out incompatible
descriptions and thus improve the performance of the parser. In (Srinivas and Joshi,
1999), a trigram supertagger with smoothing and back-off is reported that achieves
an accuracy of 92.2% when trained on 1,000,000 words. The equation for finding the
best supertag sequence for a sentence is the same as presented in Equation 4.6 on
page 40, with the only difference that the variables ti refer to supertags instead of

46

4.3 Supertagging

V

V

NP↓

S∗ S∗

S∗

NP↓

NP↓

NP↓ NP↓

NP{wh}↓

α1: α3: α5:

β1: β3:β2:

α2: α4:

VP

likes

S

V

NP

N

who

NP

N

Bill

VP

think

S

V

S

VP

likes

does

S

S

VP

NPV

likes ε

S NP

N

Harry

Figure 4.4: The LTAG example for the sentence who does Bill think Harry likes
(XTAG Research Group, 2001). The missing nominal phrase in α2 is
localized within the same structure.

V

NP↓

S∗

S∗

NP{wh}↓

NP↓

α2:
α3:

α5:

β1:

β2:

α4:

S

VP

NPV

likes ε

S
NP

N

who

NP

N

Bill

VP

think

S

V

does

S

NP

N

Harry

Figure 4.5: The derived structure for the sentence who does Bill think Harry likes.
Solid arrows stand for substitution, dashed arrows denote the adjunction
operation.

47

4 Partial Parsing and Search Techniques

It//PRP//A_NXG single//JJ//B_An must//MD//B_Vvx
is//VBZ//B_Vvx man//NN//A_NXN be//VB//B_Vvx
a//DT//B_Dnx in//IN//B_nxPnx in//IN//A_nx0PNP
truth//NN//A_nx0N1 possession//NN//A_NXN want//VBP//A_nx0V
universally//RB//B_vxARB of//IN//B_nxPnx of//IN//B_vxPnx
acknowledged//VBD//A_nx0V a//DT//B_Dnx a//DT//B_Dnx
,//,//B_PUvxpu good//JJ//B_An wife.//NN//A_NXN
that//IN//B_COMPs fortune//NN//A_NXN ...EOS...//...EOS...
a//DT//B_Dnx ,//,//A_PU ...EOS...//...EOS...

Table 4.1: The sentence “It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife” analyzed with a
trigram supertagger. The entries are of the form wi//tagi//supertagi.

simple POS tags.
The XTAG research group at the University of Pennsylvania7 provides a freely

available supertagger. As an example of the output of such a supertagger, we consider
the first sentence of the novel Pride and Prejudice by Jane Austen. The output is
shown in Table 4.1 in form of triples. The first item corresponds to the word, the
second to its POS tag and the third item is the supertag identifier. For a list of all
supertags used by the supertagger, see (Srinivas, 1997a), Appendix A.

4.3.1 Lightweight Dependency Analysis

The simple supertagging approach based on n-grams helps to reduce the possible
number of supertags for each word of a sentence and hence facilitates the task of
the parser. But there is another aspect to the dependencies coded in the elementary
structures. We can use them to actually derive a shallow parse of the sentence in
linear time. The procedure is presented in (Srinivas, 1997a; Srinivas, 2000) and is
called lightweight dependency analysis. The concept is comparable to the chunking
technique of (Abney, 1991). The lightweight dependency analyzer (LDA) finds the
arguments for the encoded dependency requirements. As mentioned in Section 4.2,
there exist two types of “slots” that can be filled. On the one hand, nodes marked
for substitution have to be filled by the complements of the lexical anchor, whereas
on the other, the foot nodes (i.e. nodes marked for adjunction) take words that are
being modified by the supertag. In the supertagging terminology, one distinguishes a
derived tree from a derivation tree. The derived tree is used for showing the phrase
structure of the parsed sentence and the derivation tree embodies the dependency
links obtained from the LDA. Both trees for the sentence who does Bill think Harry
likes from Section 4.2.2 are shown in Figures 4.6 and 4.7. The parent nodes of

7see http://www.cis.upenn.edu/~xtag/

48

http://www.cis.upenn.edu/~xtag/

4.3 Supertagging

NP

N

who

V

does NP

N

Bill

V

think

S

S

VP

S

VPNP

N

Harry

V NP

likes

S

ε

Figure 4.6: The derived tree for the sentence who does Bill think Harry likes.

the derivation tree can be interpreted as the head words, i.e. the lexical anchors, of
the supertags (cf. Fig. 4.4) and their children are the complements and modifiers,
accordingly.

The algorithm of the lightweight dependency analyzer is given in Figure 4.8. It
computes the dependency links for the n words of a given sentence in linear time.
In order to achieve this, it first takes the modifier supertags, i.e. the ones that are
adjoined to a node, and computes the dependency links for them. Every node is
associated with polarity values that reflect the directions of its arguments. For ex-
ample, the tree β1 in Figure 4.4 takes an NP (complement) to the left and an S
(modifier) to the right of the anchor think, which is noted with a plus or minus sign
in front of the node, respectively. In this case, the node requirements of β1 can be
coded as “−NP• +S∗”, where the bullet “•” symbolizes a complement relation and
the asterisk “∗” a modifier relation. After having computed all dependencies for the
modifier supertags of the sentence, the second step works on the remaining supertags
(the substitution nodes) in order to obtain the links for their complements similar to
the procedure in the first step. For the example, i.e. the sentence dealing with long
distance extraction, the LDA result is summarized in Table 4.2. The notation of “•”
and “∗” was introduced in (Srinivas, 1997a) and is also used by the supertagger that
is freely available from the XTAG research group.

49

4 Partial Parsing and Search Techniques

does[β2]Bill[α5]

Harry[α4]think[β1]who[α3]

likes[α2]

Figure 4.7: The derivation tree that is computed by the LDA for the sentence from
Figure 4.6. Dashed lines are adjunction operations, solid lines denote
substitution.

Step 1: For each modifier supertag s in the sentence

◦ compute the dependencies for s

◦ mark the words serving as complements as unavailable for step 2

Step 2: For the non-modifier supertags s in the sentence

◦ compute the dependencies for s

Compute dependencies for si of wi: For each external node dij in si do

◦ connect word wi to the nearest word wk to the left or right of wi depending
on the direction of dij , such that label(dij) ∈ internal nodes(sk) skipping
over marked supertags, if any.

Figure 4.8: The two-pass LDA algorithm (from (Srinivas, 2000)).

50

4.3 Supertagging

Pos Word Supertag Requirements Step 1 Step 2 Dependencies
0 who α3 ∅ – – –
1 does β2 +S∗ 3∗ – 3∗
2 Bill α5 ∅ – – –
3 think β1 −NP• +S∗ 2• 5∗ – 2• 5∗
4 Harry α4 ∅ – – –
5 likes α2 −NP• −NP• – 0• 4• 0• 4•

Table 4.2: The summary of the LDA on the sentence who does Bill think Harry likes.
The last column shows the final dependency links found by the procedure.
The signs “+” and “−” indicate whether the dependencies are located to
the right or left of the lexical anchor, whereas “•” and “∗” denote the type
of the relation, namely complement or modifier, respectively.

The lightweight dependency analyzer presented in this section is an efficient means
of determining the dependency links of the supertags that are annotated to the words
of a sentence. For a sentence length of n, the LDA’s runtime is linear, i.e. O(n). It
is a robust procedure and thus can be used to produce even partial linkages that
span only a fraction of the sentence. If there are wrongly annotated supertags, an
LTAG parser fails to parse the whole sentence. But the LDA is able to find “working
islands” within the sentence without failing, thus resulting in a partial parse.

4.3.2 Bäcker’s Supertagger

The supertagger for the German language was firstly introduced in (Bäcker, 2001).
The initial version was based on bigrams and used only simple smoothing (add-
one smoothing, see e.g. in (Jurafsky and Martin, 2000)). It achieved an accuracy
of 65.5%. In (Bäcker, 2002), this supertagger was enhanced with a language model
based on trigrams instead of bigrams and also implemented Good-Turing discounting
and Katz’s back-off (similar to the English supertagger in (Srinivas and Joshi, 1999)),
resulting in a better accuracy of 78.3% (see also (Bäcker and Harbusch, 2002)). It
is used as a starting point for the n-best supertagger developed in this thesis. As
described in Section 4.1.2, the probabilities of the supertag sequences are estimated
by several independence assumptions, resulting in

P(t1t2 · · · tN) ≈
N∏

i=1

P(ti|ti−2ti−1)P(wi|ti) (4.8)

with pseudo supertags at the beginning of the sentence, i.e. for tj with j < 1. One
of the problems when thinking of an implementation is the limited precision of com-
puters. For longer sentences, the probabilities of Equation 4.8 are multiplied and

51

4 Partial Parsing and Search Techniques

the product gets smaller and smaller. Since many probabilities have a value p � 1,
the resulting value cannot be expressed correctly since it tends to converge to zero
very fast. One trick to prevent this numerical underflow is to use logarithms of the
probabilities and sum the values instead of multiplying them. This is also known
under the name of logprob or log likelihood (cf. (Manning and Schütze, 2000)). So
wherever probabilities are multiplied in formulas, the implementation actually sums
the logprobs in order to prevent numerical underflow.

The supertagger implements a second-order Hidden Markov Model (i.e. the proba-
bilities are based on supertag trigrams) and estimates the parameters directly on the
training set, which is a collection of sentences where the words are annotated with
the corresponding supertags (cf. Section 6.1). The basic estimation technique is ELE
and the final values are smoothed by discounting and back-off as presented in Sec-
tions 2.2.1 and 2.2.2. The implementation is very efficient in terms of both memory
consumption and runtime. In the POS tagging (and also supertagging) framework,
the states of a second-order HMM are pairs of tags 〈ti−1, ti〉 (or in this case su-
pertags) (see e.g. in (Abney, 1997)).8 This allows for writing P(〈ti−1, ti〉|〈ti−2, ti−1〉)
for the probability P(ti|ti−2ti−1) (which relates to the state transition probabilities
of matrix A) and P(wi|〈ti−1, ti〉) for the probability P(wi|ti) (which relates to the
observation symbol probabilities of matrix B). These modifications can be used for
a direct implementation of the Viterbi algorithm presented in Section 2.1.2. The out-
put symbols correspond to words that are tagged with supertags ti and are emitted
in the states 〈 , ti〉. The pseudo category ∅ at the beginning of a sentence is used to
allow for the states 〈∅, ti〉 for the first time frame (i.e. first word).

In addition to Good-Turing discounting and Katz’s back-off, another back-off that
is implemented in the supertagger is the handling of unknown words after (Weischedel
et al., 1993). If an unknown word is encountered, the probability P(wi|ti) in Equa-
tion 4.8 is zero. An intuitive way to estimate this probability is to consider the
distribution of categories on large corpora. It is more likely that unknown words are
nouns or verbs than e.g. particles. For general taggers, another characteristic that
can be examined is the spelling of the word. The prefix and suffix of an unknown
word might be a good indicator for its tag or supertag. Common word endings of
German nouns are e.g. -heit and -keit, whereas adjectives often end in -lich or -bar.
Bäcker’s supertagger uses the following back-off formula to handle unknown words:

P(wi|ti) =

{
PMLE(wi|ti) if C(wi, ti) > 0
N1(ti)
C(ti)

· P(features|ti) otherwise.
(4.9)

The term N1(ti)
C(ti)

estimates the likelihood of the unknown word by counting the words
that occurred in the training corpus exactly one time with supertag ti and dividing

8If we considered bigrams (i.e. a first-order HMM), the states would be single tags.

52

4.3 Supertagging

it by the total count of ti.9 The second term, P(features|ti), looks at the affixes of
wi and uses the probabilities of words already encountered during training with the
same pre- and suffixes, such that they were annotated with supertag ti.

The memory requirements for the matrices A and B of the HMM are minimized by
storing the probabilities associatively with so-called hash tables (cf. (Knuth, 1998)).
This technique enables us to associate the states (i.e. supertag pairs) with the cor-
responding logprobs and retrieve the values very efficiently. The HMM parameters
are calculated in the training phase where expected likelihood estimation with Good-
Turing discounting and Katz’s back-off is applied to the annotated sentences. It is
obvious that only states with a non-zero probability need to be stored. Unnecessary
states are thus discarded which saves additional space. It is important to note that
the memory requirements of the HMM with N2 × N2 for matrix A (N being the
number of supertags) and M ×N2 for matrix B (M being the number of words) are
still in O(N4 +N2M) (N has to be squared since we consider pairs of supertags for
states, cf. also Section 4.1.3). But this worst case usually never happens since most
of the word/supertag combinations do not occur in natural languages.

The supertagger is modeled in a way that allows for easy extension. An overview
in form of an UML class diagram is given in Appendix A, Figure A.1 on page 102.
The training of the HMM is realized by the class TrigramSuperTaggingTrainer. It
reads the sentences of a corpus and adds the smoothed trigram, bigram and unigram
estimates (the latter ones for back-off) to an instance of the class TrigramDataManager
which manages all probabilities of the language model. This data manager is also
used within the class TrigramSuperTagger which implements the Viterbi algorithm
and thus finds the most likely supertag sequence for a sentence according to the
language model stored in the data manager. The class SuperTaggingEvaluator takes
all sentences of a test corpus and applies the trigram supertagger to each. It also
gathers some statistics and prints them out after having processed a sentence. The
other classes are of abstract nature or denote interfaces. They allow for extension of
the framework with other language models that are not based on HMMs or that use
e.g. four-grams instead of trigrams.

These classes serve as a starting point for the extended supertagger developed for
this thesis. One modification is the handling of ambiguous codings, adding a keyboard
specific lexicon that is used for disambiguation and implementing several evaluation
modules. The other complex extension is an n-best approach that will be presented
in Section 5.1. This step is necessary because it is not sufficient to only look at the
best supertag sequence of the Viterbi algorithm and base the improvements to the
candidate lists solely on this hypothesis. We need at least several good hypotheses

9It is quite common to treat hapax legomena, i.e. words that occur only once, as if they never
occurred. This is a key concept, as formulated in (Jurafsky and Martin, 2000): “use the count of
things you’ve seen once to help estimate the count of things you’ve never seen”.

53

4 Partial Parsing and Search Techniques

to improve the results significantly. An overview on traditional search techniques
is described in Section 4.5. But first, additional shallow parsing methods beside
supertagging are discussed in the next section.

4.4 Other shallow parsing techniques

So far, supertagging has been presented as a possible means to partially parse a sen-
tence and thus gain knowledge about the syntactical structures to a certain extent
without having to derive a full parse tree. Other existing approaches to this domain
are e.g. the chunking parser in (Abney, 1991) and a partial parser called Fidditch by
(Hindle, 1994). The basic goal of partial parsing is to overcome the disadvantages
of traditional parsing techniques which often utilize huge grammars with thousands
of rules that try to reflect as many language-specific patterns of correct word order-
ings as possible, thus making them rather slow and error-prone for ill-formed input
(e.g. for partly ungrammatical input from an automatic speech recognition system).
Therefore, the development of robust and efficient parsing alternatives is a desirable
task. In principle-based parsing (Berwick, 1991), the numerous rules of traditional
grammars are covered by much smaller sets of fundamental principles that can act
as filters (used to rule out possible structures) or generators (allowing for new struc-
tures). The combination of these principles by a deductive inference procedure results
in new constructions that are not explicitly coded in the principle set (e.g. passive
structures as in Mary was kissed by John).

The following two sections give a short overview on alternative approaches in the
area of partial parsing. The decision to use supertagging for the task of sentence-
wise ambiguous text entry was motivated more pragmatically. First, TAGs provide a
concise formalism that is easily grasped but nevertheless has a high descriptive power.
Second, the employment of lightweight dependency analysis yields an efficient means
to derive partial analyses of text in linear time. Last but not least, the existing
supertagger was a good starting point for further improvements, like e.g. the n-best
approach (cf. Section 5.1).

4.4.1 Chunking

A more psycholinguistically motivated approach to partial parsing is chunking (Ab-
ney, 1991) which clusters the words of a sentence according to so-called major heads.
These major heads can be basically seen as the content words and form the core of
a chunk. For example, in the bald man was sitting on his suitcase the words man,
sitting and suitcase are the major heads (from (Abney, 1991)). The chunking parser
is split into two modules, namely the chunker and the attacher. The former renders
a stream of words into a stream of chunks, e.g. “[the bald man][was sitting][on his

54

4.4 Other shallow parsing techniques

suitcase]”, whereas the latter takes the chunks and attaches them to each other re-
sulting in a complete parse tree. The chunker is a nondeterministic LR parser (see
e.g. (Aho et al., 1986)) and has to cope with two problems:

• the endings of chunks might not be deterministic, i.e. it has to deal with ambi-
guities concerning different chunk lengths and

• ambiguities arise for words that can have more than one category, e.g. time
which can be a noun or verb.

The chunker uses best-first search (cf. Section 4.5.2) to find the most promising task
(a tuple comprising the current configuration, a next action and a score) for a set
of possible actions. The score is determined by several heuristics that estimate the
likelihood of a particular action leading to the overall best parse. Since the syntactic
attachment ambiguities are dealt with in the attacher, the chunker itself is quite
efficient and uses a simple context-free grammar with 17 basic rules10 that is able
to produce most of the chunks that arise in English texts. The basic task of the
attacher is to resolve attachment ambiguities. It is based on the same machinery as
the chunker, but utilizes additional heuristics and also incorporates subcategorization
frames which define a list of slots that can be filled by arguments the heads of each
chunk can take. This relates to the approach of the lightweight dependency analysis
which also tries to satisfy the dependency requirements of each supertag. In (Srinivas,
1997b), supertagging and LDA are used for text chunking and reach a precision and
recall of 91.8% and 93% for noun chunking and 91.4% and 86.5% for verb chunking,
respectively.11

4.4.2 Deterministic partial parsers

In (Hindle, 1994), it is stated that a parser for unrestricted text should fulfill the
following requirements:

• ignore ungrammaticality, i.e. always provide a syntactic analysis for any input,

• return a partial analysis when a complete analysis cannot be achieved,

• give only one single analysis for each text input, i.e. deterministically arrive at
a partial analysis (which is then probably underspecified),

• process text reasonably fast and

• represent the linguistic information obtained by the parser in a declarative form
such that it can be reused by other systems or improved versions of the parser
for further analysis.

10More rules are actually covered by regular expressions within the right-hand sides of some rules.
11For a definition of the terms precision and recall, see e.g. (Manning and Schütze, 2000).

55

4 Partial Parsing and Search Techniques

These constraints are primarily dealt with in the system Fidditch (Hindle, 1994)
which is a deterministic parser and thus implicitly covers several of the above re-
quirements. After a lexical analysis step (word tokenization and retrieval of lexical
features from the lexicon), the system first applies part-of-speech disambiguation to
the text either by an own internal rule-based POS tagger or by using the program
described in (Church, 1988). After the preprocessing, Fidditch incrementally builds
a syntactic analysis for the word sequence. The different parser states are managed
by nodes on a stack. An additional buffer holds already completed nodes which can
be bound, i.e. attached, to nodes on the stack resulting in partial descriptions span-
ning more than one word. If some nodes cannot be further processed or if there are
ambiguities, they are left unattached. Thus, vagueness and ambiguity are encoded
through “underspecification”.

Another partial parsing technique is based on finite state automata (FSA) (see e.g.
(Roche and Schabes, 1997)) which can efficiently parse regular expressions. Since
simple regular expressions are not sufficient to represent more complex phrases, cas-
caded FSA are used to cover recursive phenomena to some extent. The fastus
system (Hobbs et al., 1997), e.g., is divided into five levels of processing: recognition
of complex words, basic phrases, complex phrases, domain events and merging struc-
tures. So the system starts with small chunks in the beginning and groups them into
larger units with each next level. fastus is primarily used in the area of informa-
tion retrieval (see e.g. (Sparck Jones and Willett, 1997)) from natural-language texts
where this kind of “simple” processing (when compared to traditional approaches
that tried full parsing and in-depth semantic analysis) shows fruitful results.

4.5 Search methods

In the field of classic Artificial Intelligence, one often deals with finding ways to
solve general problems. This can reach from small toy problems like e.g. the 8-puzzle
or playing Tic-Tac-Toe to real-world problems including more complex tasks such
as route finding, VLSI layout or assembly sequencing (Russell and Norvig, 1995).
Usually, this is achieved by systematically searching through the state space of the
problem. The definitions and properties of the search methods presented in this
section are based on (Russell and Norvig, 1995), an excellent introduction to this
field.

A problem, in the most general sense, can be defined as a 4-tuple consisting of

• an initial state where the search starts,

• a set of operators that define what state is reached after carrying out an action,

• a goal test that determines whether the current state description is a solution
to the problem and

56

4.5 Search methods

• a path cost function that assigns costs to the partial paths and is often used to
guide the search towards a solution.

The state space can be modeled in terms of graph theory. A graph G = (V,E)
consists of a set of vertices V = {v1, v2, . . . , vn} denoting states of the problem and
a set E = {eij}, 1 ≤ i, j ≤ n that holds all edges that each connect two vertices
(vi, vj) ∈ V 2. A path from vertex vi to vj is a list of vertices vi, vk1 , . . . , vkm , vj that
are successively connected by edges eik1 , ek1k2 , . . . , ekmj . If the graph contains no
cycles, we call it a tree.12 When speaking of trees, the vertices are often called nodes.
In this thesis, the graph representing the trellis structure used in the forward Viterbi
step (cf. Section 2.1.2) is a tree, i.e. it contains no cycles. At any position in the
sentence, there are no edges back to previous words.

The state space of a problem can be examined through its representation as a
graph. There are various algorithms that are capable of looking at all vertices of a
graph in order to find a solution, i.e. find a vertex where the goal test introduced in
the problem definition above is positive. As two main search paradigms, one can dis-
tinguish uninformed from informed search methods. While the former systematically
expands all nodes in a fixed order, the latter uses path cost functions and heuristics
to guide the search towards the goal.

4.5.1 Uninformed search

The basic approach of tree searching algorithms is to successively generate new sets
of states by expanding the current state. This expansion of nodes builds up a search
tree. The general search algorithms differ in the way which nodes are expanded next.
Figure 4.9 shows the two main approaches, namely expanding the deepest node first
(depth-first search) and expanding all nodes at depth d before expanding the nodes
at depth d+ 1 (breadth-first search). In this example, the branching factor b, i.e. the
number of possible successors for a node, is of fixed length 3, whereas the solution is
expected at depth d = 2 (the root node is considered to be at depth 0).

There are four criteria that play an important role when dealing with search strate-
gies:

• completeness: does the search strategy find a solution if there is one?

• optimality: is the solution found by the search strategy also the best solution
to the problem?

• time complexity: how long does it take to find a solution?

• space complexity: how much memory does the search need?
12Even if the graph contains cycles, we can transform it to a sub-graph that contains no cycles which

is called a spanning tree. It has the same number of vertices but only as much edges as to make
up a proper tree.

57

4 Partial Parsing and Search Techniques

1

2 6 10

3 4 5 7 8 9 11 12 13 5 6 7 8 9 10 11 13

432

1

12

(a) (b)

Figure 4.9: (a) Depth-first search. (b) Breadth-first search. The numbers show the
order in which the nodes are visited.

The complexity measures are expressible in terms of the branching factor b and the
depth of the solution d or the maximum depth m of the tree. In general, time com-
plexities of search algorithms are always exponential. The upper bound for breadth-
first search is O(bd) because if one has to look at all nodes, the maximum number
of expansions is 1 + b + b2 + · · · + bd in the worst case. For depth-first, the time
complexity is O(bm). One pitfall of depth-first search is that it is not guaranteed
to find a solution, i.e. it is not complete. The fact that the deepest node is always
expanded next results in getting stuck if the search descends an infinite path with no
solution in it. This also leads to depth-first being not optimal. Consider the left tree
in Figure 4.9. If the nodes labeled with 5 and 6 are solutions, depth-first will find the
lower-quality solution first. In contrast, breadth-first is both optimal and complete.
But it also has a big disadvantage when compared to depth-first, namely its memory
requirements. In breadth-first, we have to keep all nodes on the current frontier in
memory. In this case, the maximum number of nodes is in O(bd), resulting in ex-
ponential memory usage which can be quite a bigger problem than the exponential
running time. On the other hand, depth-first only needs to store O(bm) nodes at a
time.

There exists a search strategy that combines the moderate memory usage of depth-
first with the optimality and completeness criteria of breadth-first called iterative
deepening. It iteratively applies depth-first searches with an increasing maximum
depth dm. So all possible depths 0, 1, 2, . . . are tried until a solution is found. As
mentioned above, the algorithms for depth-first and breadth-first search differ only in
which nodes are expanded next. The queuing function of the former search method
enqueues nodes at the front whereas the latter search strategy enqueues nodes at the
end.13 A detailed overview on these and additional search strategies can be found in
(Russell and Norvig, 1995).

13These operations can be easily implemented through the use of a stack and a queue, respectively
(see e.g. (Knuth, 1997)).

58

4.5 Search methods

A

G

F

E

C
B

D

2
2

56
3

1 4

1

Figure 4.10: The city map example. Annotated numbers are the distances between
the cities. The starting point is city A, the goal is city D.

4.5.2 Informed search

The search strategies presented in the previous section do not take into account
problem-specific knowledge. Uninformed search techniques end up in a systematic
exploration of the search space. In most cases, this can be very inefficient. Usually,
the different states can be associated with certain costs for their expansion. Or to
put it another way, we can define an evaluation function f(n) which determines the
utility of expanding a given node n. With this knowledge, it is possible to guide the
search towards a solution much faster.

Best-first search

The most intuitive way of optimizing uninformed search methods is to order the nodes
in the queue according to the value of an evaluation function. Nodes with low costs,
i.e. where the evaluation function returns a high utility, are moved to the front of
the queue thus minimizing the total path cost. So, the best node is always expanded
next. Consider the example of traveling from one city to another (cf. Fig. 4.10).
The value of the path cost function g(n) denotes the accumulated distance between
the starting city and the current city n that one traveled to so far. This strategy is
usually called best-first search since the node with overall smallest cost appears to
be the best choice at the moment. Although this strategy is optimal and complete,
it tends to expand many unnecessary nodes that are not part of the optimal path
thus making it very inefficient. The nodes that are expanded in the example are
A0,B

A
1 ,E

A
3 ,C

B
5 ,G

B
7 ,G

E
5 ,F

C
10,F

G
7 ,F

G
9 ,D

F
9 , where XY

n means that n is the total path cost
of node X whose parent is node Y (cf. also Fig. 4.11 (a)). It is assumed here that
an additional check prevents parent nodes being expanded from a child node which
would result in even worse behavior.

59

4 Partial Parsing and Search Techniques

city A B C D E F G
h(n) 5 3 4 0 3 1 2

Table 4.3: The straight-line distances for the city example.

Greedy search

If a different strategy is chosen to reach the goal, one might be able to expand less
nodes than with the simple best-first search. For this purpose, the strategy takes
into account the estimated path cost from the current to the goal node. So instead of
keeping track of the summed path cost so far, a different evaluation function called a
heuristic h(n) is used to estimate the cost from the state at node n to reach the goal.
This search strategy is called greedy search because it always tries to jump towards
the goal in biggest possible steps. It is also similar to depth-first search since it follows
down a path and only backs up when it hits a dead end. Unfortunately, greedy search
is neither optimal nor complete. Nevertheless, one characteristic is that it finds good-
quality solutions very fast,14 although they often are not the optimal ones. Both time
and space complexity has a worst-case upper bound in O(bm). For the example from
Fig. 4.10, the heuristic is assumed to be the straight-line distance of the cities to the
goal which is shown in Table 4.3. With this heuristic, the search expands the following
nodes: A0,B

A
3 ,E

A
3 ,G

B
2 ,C

B
4 ,F

G
1 ,D

F
0 . Now, the node costs represent the corresponding

distances to the goal and not the cumulative path cost, so as the search progresses,
the values are not added. As can be seen, greedy search generates less nodes than
best-first but it does not find the optimal solution, which is the trip from A over E,
G, F to D. Greedy search “chooses” the alternative path via city B instead of E.

A* search

So far, the two approaches best-first and greedy search have been introduced. The
former strategy minimizes the path cost so far and is optimal and complete but
tends to expand many nodes thus making the search very inefficient, whereas the
latter minimizes the estimated path cost to the goal but is neither optimal nor com-
plete. Intuitively, the combination of these two evaluation functions should result
in a strategy that merges the advantages of both approaches, namely the optimality
and completeness of best-first and the efficiency of greedy search. Fortunately, this
is achieved by simply summing the two evaluation functions:

f(n) = g(n) + h(n). (4.10)

14depending on the quality of the heuristic

60

4.5 Search methods

FF F

E

G

B

C G

D

F

EB

G C

D

FF

E

G

B

C G

D

A A A(a)

8

7

5

31

75

10 9

1

2 3

4 5

6

7

8 9

10

1 1

2 3

4 5

6

7

2 3

4 5 6

7 8

9

1

0

42

3 3

(b)

8

8

7

64

98

11

(c)

Figure 4.11: The search trees for the city map example: (a) Best-first search. (b)
Greedy search. (c) A* search. The values of the corresponding evalu-
ation functions are annotated at the edges, italic numbers denote the
order in which the nodes are expanded.

One important criterion of the heuristic is that it is not allowed to overestimate the
cost towards the goal state, i.e. it is admissible. Along with the property that the
total path cost never decreases, one can prove that this strategy yields an optimal and
complete approach. The use of the best-first strategy together with the evaluation
function in Equation 4.10 is known as A* search (Nilsson, 1998).

A* search is used throughout a large variety of applications and is the standard
search algorithm for problems in the area of Artificial Intelligence. Nevertheless, it
is only as good as the heuristic h. In fact, it can be shown that an exponential
growth of node expansions will occur if the error in the heuristic grows faster than
the logarithm of the real path cost. Unfortunately, this is the usual case with most
practical heuristics. So again, we have to live with a drawback of possibly running
out of memory. For the given example, A* search only expands one node less than the
best-first approach. This is probably due to the (rather arbitrary constructed) values
of the heuristic. But for larger problems, the heuristic is essential to a fast process
of locating the optimal solution. In the city map example, A* search produces the
following nodes: A0,B

A
4 ,E

A
6 ,C

B
8 ,G

B
9 ,G

E
7 ,F

G
8 ,F

C
11,D

F
8 . The overall search trees of the

three approaches presented in this section are delineated in Figure 4.11.

4.5.3 N-best search

The Viterbi algorithm presented in Section 2.1.2 is capable of finding the best state
sequence very fast. If the task is enhanced to find other optimal state sequences, or
more generally the n best ones, the Viterbi algorithm is not sufficient. One approach
is to use general informed search techniques as presented in the previous section. One

61

4 Partial Parsing and Search Techniques

problem with greedy and A* search for the particular case of finding best supertag
sequences is the definition of a good heuristic. Since it is not known what final
probability will be assigned to the overall sequence, it is hard to determine a working
heuristic. But we can take advantage of the probabilities obtained in the Viterbi
step. If a small modification is applied to the forward Viterbi search, namely that all
instead of the best predecessor states are stored for every state of the HMM, these
values can be used as a heuristic when searching in reverse order, i.e. starting at the
end of the sentence and successively searching towards the beginning. The advantage
of this kind of “heuristic” is that it provides the optimal values, thus maximizing the
efficiency of the search process.

There are several n-best algorithms, especially in the domain of speech recognition
(see e.g. (Schwartz et al., 1996)). The task of speech recognition requires ways of
finding more than one good hypothesis for an utterance since the speech signal is
usually noisy or the sentence is phonetically ambiguous. The noise corrupts the
feature vectors and results in not recognizing the sentence correctly. In order to
improve recognition accuracy, the search for the best hypothesis is divided into more
than one step. The n-best search paradigm (Chow and Schwartz, 1989) uses different
knowledge sources (KS) which are applied successively to sort out bad hypotheses.
The first KS generates a list of n best sentence hypotheses out of the speech input.
This ordered sentence list is passed to other KSs which reorder the list according to
more complex properties of natural language, as e.g. analysis of syntax, semantics,
discourse and pragmatics. The KSs are ordered such that the KS with lesser cost
but more constraint comes first, resulting in a fast way of filtering or rescoring the
hypotheses. KSs that cost most are applied last when the list of sentence hypotheses
has shrunk to only a few top choices.

The task of finding n-best sentence hypotheses when typing with ambiguous key-
boards, as presented in Section 3.3.1, is not as complex as in speech recognition. Here,
we assume that the word boundaries are known to the system. In speech recogni-
tion, hypotheses for different words may span over different time frames, like e.g. in
chart switch vs. charts which where the first word is slightly longer in the latter case.
Therefore, the search state space is much larger because the recognition system has
to identify the word boundaries as well. For example, consider the sentence “eight
sheep can each eat cheaply” (from (Laver, 1994)). For the speech recognizer, this
looks something like “eItSi:pk@ni:tSi:ttSi:plI”. In particular, the difficulty lies within
the task to distinguish the spelling sequences “–ght sh–”, “–ch” and “–t ch–” which
all produce the same sound “tS”. In ambiguous typing, we “only” have to determine
the most likely word among a list of candidates for a given code sequence. As was
mentioned in Section 3.4, these lists can grow up to 75 entries. So especially for long
sentences, the search space can be very large.

A comparison of n-best algorithms (traceback-based, exact sentence-dependent
and word-dependent n-best algorithm) is given in (Schwartz et al., 1996). The first

62

4.5 Search methods

one (traceback-based n-best)15 is an algorithm that finds only an approximate list of
the n best sentences. It consists of a forward step similar to a Viterbi search where
the only difference lies in the information stored in the backpointer lists. Viterbi
stores only the best predecessor for each frame and state. In the traceback-based
algorithm, a list of predecessor states together with their scores is stored. For each
state, the score and a backpointer of the best hypothesis is passed forward for future
scoring. A simple recursive search is applied at the end of the sentence which gathers
all sentences with a score above some threshold below the best theory. The advantage
of this procedure is that it is only slightly slower than the Viterbi search (which equals
1-best). Unfortunately, it is prone to underestimate or completely miss high scoring
hypotheses.

The exact n-best algorithm (Chow and Schwartz, 1989) finds the top n sentence
hypotheses but it suffers from being very inefficient for large values of n. It computes
the probabilities of word sequences rather than state sequences.16 The algorithm
keeps separate records for theories, i.e. paths through the word lattice, with different
word sequence histories. If more than one theory with the same history crosses the
same state and time frame, the probabilities are added. Only a specified maximum
number m of theories whose probabilities are within a threshold of the most likely
word sequence’s probability is kept for each state and the rest is pruned due to
computational issues.

The word-dependent n-best algorithm (Schwartz and Austin, 1991) is a compro-
mise between the traceback-based and exact (sentence-dependent) algorithm. The
idea is that the best starting time of a word only depends on the previous word and
probably not on any word before that. Therefore, the local theories are not based
on the whole preceding sequence, they only consider the previous word. Again, a
threshold m specifies how many different preceding word probabilities are stored. At
the end of the sentence, a recursive traceback is applied that retrieves the list of best
sentences. Although the word-dependent algorithm is not optimal, its performance
in terms of speed is better than that of the exact search and it tends to find better
solutions than the traceback-based algorithm because it does not prune away word
sequences that could turn out to be correct.

The basic features of the n-best search that is used in this thesis to find the top
n supertag sequences of a coded sentence are presented in (Soong and Huang, 1991)
for the task of speech recognition. A more worked out version of this algorithm can
also be found in (Purnhagen, 1994). The next chapter gives a detailed description of
this n-best tree-trellis search and the necessary steps to incorporate the codes of the
ambiguous keyboard into the overall framework of the n-best supertagger.

15In (Schwartz and Austin, 1991), it is called lattice n-best.
16In speech recognition, the states of the HMM usually correspond to sub-word units like triphones,

diphones or even phonemes.

63

4 Partial Parsing and Search Techniques

64

5 N-best Supertagger for Ambiguous
Typing

This chapter gives a detailed overview on the n-best supertagger and its implemen-
tational aspects. So far, the theoretical background has been introduced in the
previous chapter. In the following sections and based on the supertagger devel-
oped in (Bäcker, 2002), the modifications that are necessary for handling ambiguous
codes will be presented. The primary goal of this study is to examine whether a
supertagging-based approach to ambiguous typing on a sentence level is promising.
The overall architecture of the system therefore consists of various components that
take plain sentences and simulate the user by typing the words with a given ambigu-
ous keyboard, build supertag hypotheses of ambiguous code sequences, generate the
candidate lists according to the n-best framework and finally compute all statistics
which are summarized in Chapter 6.

The basic idea is to use a better language model than the simple model based on
unigram frequencies that was presented in Chapter 3. The sequence of supertags
for a given corpus is modeled with a trigram Hidden Markov Model (HMM) and its
parameters are estimated from an annotated training corpus. Usually, a dynamic
programming technique (i.e. the Viterbi algorithm) finds the best supertag sequence
of a sentence for the given HMM efficiently. Here, in addition to this forward-trellis
step, a backward-tree search is applied in order to find the n most promising supertag
sequences which are used to adjust the candidate lists and move likely matches to
the top. In a second step, a lightweight dependency analysis (Srinivas, 1997a) on the
list of supertag hypotheses found by the n-best search is used to determine likely
chunks of the sentence. This method is applied in order to discard hypotheses that
have syntactic inconsistencies. The information that is provided by the surviving
hypotheses is used for additional final adjustments of the candidate lists.

In the following, Section 5.1 describes the two-pass n-best approach to supertag-
ging. In a forward run, a modified Viterbi search determines the locally optimal
scores of supertag sequences. A backward A* search then gathers the n best hy-
potheses from the end of the trellis to the front by using the stored results from the
Viterbi step. The necessary modifications for integrating the n-best approach into the
ambiguous framework, i.e. the handling of ambiguity and how promising hypotheses
are kept for the final adjustment of the candidate lists, are given in Section 5.2.

65

5 N-best Supertagger for Ambiguous Typing

5.1 N-best tree-trellis algorithm

The n-best tree-trellis algorithm basically combines the Viterbi trellis search from
Section 2.1.2 and the A* tree search presented in Section 4.5.2. The terminology
is based on the one for Markov models from Section 2.1 and the algorithm itself
is presented in a way that it can be directly applied to any HMM. So it is actu-
ally independent of the target domain. For example, if we speak of output symbols
being emitted at some time frame in the following, the corresponding term in the
supertagging framework would be the words at some position in the sentence. As
will be shown, the Viterbi algorithm has to be modified slightly such that the tab-
ulated results of the dynamic programming technique yield additional information
for finding n best state sequences instead of the single best one. For this task, the
backpointer variable ψ from Equation 2.12 is enhanced to hold a rank-ordered list of
predecessor states from the previous time frame. The list is sorted according to the
score stored in the δ-table. Figure 5.1 summarizes the modified Viterbi algorithm
based on its initial version in Figure 2.4 on page 14. The only change is Equation 5.6
where another dimension is added to the variable ψ in order to store all predecessors
of the current state. This allows for finding all paths through the HMM sorted ac-
cording to their score when using an optimal and complete search strategy. Since we
are only interested in n best paths, the storage can be limited to n best predecessors.1

The values for j, k and i in the expression ψt(j, k) = i stand for the current state j
which has state i as predecessor with rank k, i.e. the states are sorted according to
their score φt(j, i) in descending order. Equation 5.7 defines the rank-ordered states
for the last time frame T . This ordering is needed for the initialization of the back-
ward tree search. We can still retrieve the best state sequence as with the normal
Viterbi algorithm by simply using the states in ψt(j, 1), since the best predecessors
have rank k = 1 (cf. Equation 5.10).

The n-best tree-trellis search is divided into two phases. First, steps 1 and 2 (ini-
tialization and recursion) of the modified Viterbi algorithm are applied in a forward
manner.2 The result is a trellis as delineated in Figure 2.3 on page 12. After that,
a time-reverse (backward) tree search is carried out which asynchronously gathers
all best hypotheses with the A* technique. One interesting thing to note in this
approach is that the heuristic h of the A* search is not an estimated but actually the
exact path cost since it utilizes the probabilities stored in the δ-table. Thus, besides
the optimality of A* (i.e. its guarantee to find the best solution), the runtime of the
algorithm is minimized, too. The complete path cost f of a node is obtained by merg-
ing the forward and backward partial path cost, denoted by h and g, respectively.
This relation is shown in Figure 5.2.

1So, the algorithm in Fig. 5.1 can be used for an exhaustive search that finds all hypotheses but
the actual implementation uses only n best predecessors.

2Step 3 in Figure 5.1 is only applied for a 1-best search where the A* backward search is superfluous.

66

5.1 N-best tree-trellis algorithm

1. Initialization:

δ1(i) = πibi(o1) 1 ≤ i ≤ N (5.1)
ψ1(j, k) = 0 1 ≤ j, k ≤ N (5.2)
φ1(j, 0) = −∞ 1 ≤ j ≤ N (5.3)

2. Recursion:

δt(j) = max
1≤i≤N

[
δt−1(i)aij

]
bj(ot) 2 ≤ t ≤ T, 1 ≤ j ≤ N (5.4)

φt(j, i) = δt−1(i)aijbj(ot) 2 ≤ t ≤ T, 1 ≤ i, j ≤ N (5.5)
ψt(j, k) = i 1 ≤ i, j, k ≤ N, 2 ≤ t ≤ T,

s.t. ∀kl, km, il, im :
(
ψt(j, kl) = il ∧ ψt(j, km) = im

∧ φt(j, il) > φt(j, im)
∧ kl < km

)
(5.6)

ψ′T (k) = i 1 ≤ i, k ≤ N,

s.t. ∀kl, km, il, im :
(
ψ′T (kl) = il ∧ ψ′T (km) = im

∧ δT (il) > δT (im)
∧ kl < km

)
(5.7)

3. Termination and path (state sequence) backtracking:

p∗ = max
1≤i≤N

[
δT (i)

]
(5.8)

q∗T = argmax
1≤i≤N

[
δT (i)

]
(5.9)

q∗t = ψt+1(q∗t+1, 1) t = T − 1, T − 2, . . . , 1 (5.10)

Figure 5.1: The modified Viterbi algorithm for the forward trellis search (notation
from (Rabiner, 1989)).

67

5 N-best Supertagger for Ambiguous Typing

forward partial
path cost h (trellis)

backward partial
path cost g (tree)

time-backward

time-forward

t = T

t = 1

current state cost c

state N

state 1

Figure 5.2: Merging forward and backward partial paths during the tree-trellis search.
The total path cost is determined by the costs of the backward partial
path, current node and forward partial path cost, i.e. f = g + c+ h.

The overall backward tree search algorithm is given in Figure 5.3. The formal
notation is based on the one used in (Rabiner, 1989) for the Viterbi search in order
to maximize the level of abstraction, such that the algorithm itself and the data
structures it requires are independent of a specific programming language. Unlike
the presentation in (Soong and Huang, 1991), it is tried to minimize the use of
natural language for expressing the different steps of the algorithm. At first glance,
this decision may seem to make the algorithm rather difficult to read and understand.
Nevertheless, it is presented in a way that allows for a direct implementation. Since
the probabilities are multiplied during the search, the limitation of the representation
of floating point numbers on computer hardware causes a serious problem. For long
sequences, the computation of the probabilities will almost always end in numerical
underflow because the values get so small that they cannot be realized any more. A
common way of dealing with this problem is the use of logprob values (cf. (Manning
and Schütze, 2000)). Instead of multiplying the probabilities, the logarithm of each
probability is taken and the values are summed. This measure is also used in the
implementation of the n-best HMM supertagger. The backward tree search algorithm
is prefixed with line numbers and in the upcoming paragraphs, a detailed explanation
to all steps will be given. Comments within the algorithm are written in a C-like

It is only shown for the sake of completeness.

68

5.1 N-best tree-trellis algorithm

manner between “/*” and “*/”.
The algorithm uses a stack to manage the nodes of the search tree (cf. (Knuth,

1997)). Since the f -values are the exact path costs of the state sequences, it is
possible to limit the size of the stack to n and nevertheless have the certainty to find
the top n hypotheses. This approach guarantees a computationally feasible search in
terms of memory requirements. In general, nodes are inserted according to their cost
which is defined by the probability of the optimal state sequence passing through
that specific state. So the node with highest priority is always extracted next.3 This
is a property required by the best-first search framework. A node ν represents a state
of the HMM in the search tree and consists of seven elements:

• For each node, a rank-ordered list of predecessor states is stored in the variable
γ(ν, i), 1 ≤ i ≤ N . Basically, this is a means of associating the states from
the ψ-table of the modified forward Viterbi step with a specific node ν of the
search tree.

• The total path costs of the optimal state sequence passing through node ν and
having one of the predecessor states from the γ-table are stored in f(ν, i), 1 ≤
i ≤ N , and are used to sort the items of the stack such that the next best node
is always expanded first (cf. best-first search).

• Each node holds its backward partial path cost g, i.e. the actual cost of the
state sequence found so far.

• A special variable ι(ν) keeps track of the index of the next best predecessor
state not yet expanded.

• The time frame of the current node is stored in τ(ν).

• The state that the current node is associated with is given by ω(ν).

• Finally, the predecessor node4 of the current node ν is stored in ρ(ν). When
the search reaches a goal state, this information is used to backtrack through
all nodes on the path of this solution in order to build up the next best state
sequence.

3Therefore, the stack really shows more characteristics of a priority queue, but it is referred to as
a stack in (Soong and Huang, 1991).

4Do not confuse the two terms “predecessor state” and “predecessor node”. The former denotes a
state whose time frame is smaller than the time frame of the current state, whereas the latter
represents a node of the stack that has already been expanded in a previous step, i.e. whose time
frame lies in the future. This mix-up is basically due to the fact that the tree search is time-
backward while simultaneously using structures obtained in the time-forward trellis step. The
“predecessor state” ought really be called a “successor state” since it is expanded next, but this
would conflict with the terminology used in the Viterbi algorithm. Anyhow, you would probably
be confused either way.

69

5 N-best Supertagger for Ambiguous Typing

0: /* initialize stack σ with start node νstart */

1: γ(νstart, i) = ψ′
T (i) 1 ≤ i ≤ N

2: f(νstart, i) = δT (γ(νstart, i)) 1 ≤ i ≤ N
3: g(νstart) = 0
4: ι(νstart) = 1
5: τ(νstart) = T + 1
6: ω(νstart) = ∅
7: ρ(νstart) = null
8: insert(σ, νstart, f(νstart, ι(νstart)))
9: nfound = 0

10: H(i) = null 1 ≤ i ≤ n /* create empty hypotheses vector */

11: /* search iteratively for hypotheses */

12: while not empty(σ) do begin
13: νcurrent = extract-top(σ)
14: create new node νnext

15: s = γ(νcurrent, ι(νcurrent)) /* retrieve next best state for expansion */

16: τ(νnext) = τ(νcurrent)− 1
17: if ι(νcurrent) ≤ N then begin /* reinsert rest of νcurrent in stack */

18: ι(νcurrent) = ι(νcurrent) + 1
19: insert(σ, νcurrent, f(νcurrent, ι(νcurrent)))
20: end
21: if s is a goal state, i.e. τ(νnext) ≤ 1 then begin
22: /* obtain the hypothesis by backtracking through the stored pointers */

23: create new hypothesis H and add s to H
24: ν = ρ(νcurrent)
25: while ν 6= null do
26: add ω(ν) to H and set ν = ρ(ν)
27: nfound = nfound + 1
28: H(nfound) = H
29: if nfound ≥ n then /* found n best hypotheses */

30: return H
31: end else begin /* expand new successor node */

32: γ(νnext, i) = ψt(s, i) 1 ≤ i ≤ N
33: let j = ω(νcurrent), t = τ(νcurrent) and t′ = τ(νnext)
34: g(νnext) = g(νcurrent) + asjbj(ot)
35: f(νnext, i) = g(νnext) + φt′(s, γ(νnext, i)) 1 ≤ i ≤ N
36: ω(νnext) = s
37: ι(νnext) = 1
38: ρ(νnext) = νcurrent

39: insert(σ, νnext, f(νnext, ι(νnext)))
40: end
41: end
42: return H /* there are less than n hypotheses */

Figure 5.3: The backward A* tree search for finding the n best hypotheses.

70

5.1 N-best tree-trellis algorithm

Lines 1–10 in Figure 5.3 deal with the initialization of the data structures. All
states of the last time frame T are added to the predecessor list γ and are sorted
according to the probabilities stored in δT . The time frame of the starting node is
T +1 and ω(νstart) = ∅ denotes a pseudo-state which is added to the HMM since the
“predecessor” states of the last time frame of an HMM have no successor. This means
that in the graphical notation of an HMM, all final states need additional transitions
to a single ending state where the search starts. The total path cost at this point
is f = h, i.e. the backward path cost for νstart is zero and the heuristic is the score
obtained in the forward Viterbi step and stored in δT . The index of the next best
state is set to 1. Thus, the first state that is going to be expanded is the best state q∗T
found by the Viterbi algorithm. The rest of the initialization sets the backpointer to
null (since there are no predecessor nodes yet) and the counter nfound which keeps
track of how many hypotheses have been found so far to zero. An empty hypotheses
vector that will hold all hypotheses is created and the start node is put on the stack
with priority f(νstart, 1) = p∗.

Now, the iterative search process starts (lines 12–41). In each step, the currently
best node νcurrent with highest score is extracted from the stack σ. A new node
νnext is created which will hold the next best state expansion s, whose index is given
by ι(νcurrent), from the list of the predecessor states of νcurrent. In lines 17–20, the
current node is reinserted into the stack according to the score f(νcurrent, ι(νcurrent))
of the state which is coming after s, i.e. which is pointed to by ι(νcurrent) after having
increased it by one. The section in lines 21–30 handles the case if s, the state that
is going to be associated with the node νnext, is actually a goal node. This is the
case if the time frame of the next node has reached the beginning of the observation
sequence, i.e. τ(νnext) = 1. The hypothesis is obtained by backtracking through the
pointers stored in ρ. As soon as the search finds the n best hypotheses, it stops
and returns the results (line 30). The final expansion of the next node is shown in
lines 31–40. It gathers all predecessors of the best state expansion s. Then, the
backward partial path cost g and the total path costs f are computed from the
cached results of the previous nodes and the values stored in the forward trellis step.
First, the backward partial path cost of νnext is determined (line 35) by summing the
backward partial path cost of the previous node νcurrent and the current cost of the
expansion from node ω(νcurrent) to node s, the former denoting the state associated
with the previous node. The backpointer to νcurrent, the node where we come from,
is remembered by ρ(νnext) and the index variable ι is initialized to 1. Finally, the
new node is added to the stack according to its score of the next best expansion.

The search stops if σ is empty, i.e. it does not hold nodes for further expansion
any more, or if it finds the n best hypotheses. In the first case, there probably exist
less than n hypotheses which are returned in line 42. Note that the algorithm can be
easily changed from A* to greedy search by adjusting the line where the computation
of the total path score takes place. Instead of adding the backward partial path cost

71

5 N-best Supertagger for Ambiguous Typing

g to the heuristic h (which is represented by φt), only the latter is used for f . So
line 35 has to be changed as follows: f(νnext, i) = φt′(s, γ(νnext, i)). As stated in
Section 4.5.2, the resulting search is then neither optimal nor complete, but tends to
find good solutions very fast.

5.2 System’s components

In the previous section, the basic concepts that are going to be used in the overall
n-best HMM supertagger for the special domain of ambiguous typing have been
introduced. The starting point is the ambiguously coded word sequence typed with
a reduced keyboard as introduced in Chapter 3. The simple approach orders the
matching words of the candidate list for each code according to the words’ frequencies
that are obtained from a large corpus. The first step to improve this approach is
to use information from the context, i.e. base the disambiguation on n-grams as
described in Section 2.2. Since the sentence we want to type is “hidden” behind the
sequence of codes, it is suitable to use HMMs as the primary modeling paradigm.
The underlying statistical language model of the procedures in this thesis is a trigram
Hidden Markov Model. So for each code in the sentence, the disambiguation process
is based on the history of the last two items. The HMM that represents the language
model is directly trained on an annotated training corpus. The trained HMM is used
as a knowledge source while disambiguating the code sequences of the evaluation
material, i.e. the test sentences. Every code generates a list of words and every
word has several supertags associated with it. A general supertagger could be used
to find the most likely supertag sequence for the sentence and use this information
to reorder the candidate list such that the most likely words (which are the lexical
anchors of the supertags) appear at the top. Due to the ambiguous coding, the
number of supertags for a code (which corresponds to the supertags of all word
expansions of a code) is so large that the best supertag sequence is not sufficient
to improve the results significantly. Therefore, the supertagger is enhanced with
the n-best tree-trellis algorithm from Section 5.1 in order to produce more than one
hypothesis. At this point, the code sequence of each sentence is associated with a
list of the n best supertag sequences found by the supertagger. In a final step, a
lightweight dependency analysis is used as an additional knowledge source that once
again reorders the candidates. The supertag hypotheses that span a large portion
of the sentence and seem most “consistent” are moved to the top. The resulting
hypotheses list is used to rearrange the list of matching words accordingly, since each
supertag is associated with a lexical anchor.

The new components of the n-best supertagger are partly derived from exist-
ing classes and the connections between these classes are shown in Figure A.2 on
page 103. The interface NBestSuperTagger extends the inherited SuperTagger by the

72

5.2 System’s components

method tagNBest which applies the n-best tree-trellis algorithm to a sentence and
returns a vector that holds all hypotheses. The main class that performs the evalu-
ation of a test corpus is CodedNBestSuperTaggingEvaluator. It uses an instance of a
CodedNBestTrigramSuperTagger where the overall n-best tree-trellis search is finally
implemented. We will turn to this in Section 5.2.2. But first, the next section gives
a detailed description of how the ambiguous codings are added to the supertagging
framework that serves as a starting point.

5.2.1 Coping with ambiguity

The ability of coping with ambiguous codes is added in the class CodedTrigramData-
Manager which is a subclass of TrigramDataManager. The trigram data manager
processes all requests to the language model and has to be “primed” with the sym-
bol emission probabilities P(wi|ti) according to the current observation sequence
(i.e. the words of the sentence) and the associated supertags that are stored in the
trained language model. Instead, when typing with an ambiguous keyboard, the
final word sequence is not known and all words of the lexicon for a given code have
to be considered. The class CodedLexicon provides a keyboard specification and the
data structures that map the code sequences of the ambiguous keyboard to a list of
possible words matching that particular code. For the German keyboard layout (cf.
Section 3.4.1), the code“2133”, for example, has 27 matches (the first five being kann,
habe, Hand, fand and frei) which are sorted according to their frequency based on
the celex lexical database (cf. Section 6.1.2). The CodedTrigramDataManager takes
each of these words and primes the data manager with all possible supertags stored
in the trained model for that particular word. Every word usually has several su-
pertags, since the lexical items of an LTAG are almost always associated with several
elementary structures that encode the various local dependencies of each word. And
since every code expands to several matching words, the result is a set of supertag
sets that form a trellis (cf. detailed view in Figure 5.4). This trellis is the basis for
the tree-trellis search that finds the n best supertag hypotheses for a given sentence.
Figure 5.4 shows the different expansion steps for the sentence ich habe ein kleines
Problem (“I have a slight problem”).

After typing the words of a sentence with the ambiguous keyboard, the code se-
quence is expanded and the candidate list is obtained according to the celex lexicon.
After that, the possible supertags are looked up in the trained language model, i.e. all
supertags that occurred in the training corpus with its corresponding lexical anchor
are primed for the n-best tree-trellis search. The hypotheses that are returned by the
search are then used to reorder the candidate lists. The effect is that likely words of
the trained language model will move to the top of the match lists and improve the
overall accuracy of the system. An additional LDA on the hypotheses determines the
ones with maximum coverage and uses this information to make final adjustments

73

5 N-best Supertagger for Ambiguous Typing

detailed view

ich habe ein kleines Problem

kann:

habe:

die:

den:

bei:

ein:

bin:

kleines: Problem:

322 2133 333 2133332 3123131

candidate lists based
on CELEX lexical database

trellis for finding the N best
supertag hypotheses

supertag expansion based on
trained language model

ist:

ich:

ist:

ich:

kann:

habe:

frame

disambiguation

ambiguous keyboard

ich
Not
bot
ißt
Bus

habe
Hand
fand
frei
Sand

kleidet
Kleides
kreidet
trippet
triebet

näherer
näherem
emsiger
proprer
proprem

den
bei
ein

kann die

bin
nie

ist kleines Problem

sentence

ambiguous codings

...

...
...

αV

αnx0Vnx1

αnx1VV

αV

αVnx0nx1

αNXPRON

βDnx

αNXPRON

βDnx

αP

αPXPnx

βPnxv

βPnxvx

βvPnx

αNXN

βDnx

βNn

αnx0Va

αV

βAn αNXNαnx0Va

αnx0Vnx1

αV

αVnx0a

αVnx0nx1

αNXN

βS1nx0Vnx1

αnx0Va

αnx0Vnx1

αV

αVnx0a

αVnx0nx1

αNXN

βS1nx0Vnx1

αV

αnx0Vnx1

αnx1VV

αV

αVnx0nx1

t

...
...

...
...

...

...

...

...
...

...

Figure 5.4: Coping with ambiguous words: disambiguation of coded words and the
corresponding supertag expansion.

74

5.2 System’s components

to the match lists. These two phases could be merged to one but they are carried
out separately in order to measure how much impact each method has on the rank
accuracy. A detailed view on this issue is given in Section 5.2.3.

Now, coping with unknown words in ambiguous typing is a more complicated
problem. If the word is not in the dictionary, it has to be disambiguated letter by
letter for all the keys of the code (cf. Section 3.3.2). Since the primary goal was
not to simulate a specific keyboard but to evaluate whole sentences with the n-best
supertagging framework, the dictionary was patched by adding the unknown words
with a zero-frequency (cf. Section 6.1.2) and thus contained all words of the corpus.

5.2.2 Implementation of the tree-trellis search

The tree-trellis search is applied in the class CodedNBestTrigramSuperTagger. It
comprises two steps, namely the modified forward Viterbi algorithm (cf. Figure 5.1)
and the n-best backward tree search (cf. Figure 5.3). The stack is realized in the class
NBestStack which is shown in Figure A.3 on page 104. The nodes of the stack are
stored in a rank ordered list since the nodes with highest priority, i.e. the states of the
HMM with highest logprob, are always expanded next. As stated in Section 2.1.2,
the runtime of the forward Viterbi step is in O(N2T), where N is the number of
states and T is the length of the input sequence. The modification that stores all
predecessors instead of the best one increases the runtime slightly since it sorts the
predecessor lists according to the scores. The initial Viterbi algorithm has to look for
the maximum (best) predecessor, which is in O(n) for n items, whereas building the
whole rank-ordered predecessor list needs O(n log n) time. The backward tree search
is very efficient since it uses the optimal predecessor lists provided by the enhanced
Viterbi algorithm. These lists guarantee that the next node for expansion also is the
current overall best one. Since the search is limited to n best hypotheses, the main
iterative loop of the algorithm (cf. Figure 5.3) has a time complexity of O(n log nNT).
The loop itself has O(nNT) iterations and within the loop, all actions have constant
time except the insertion of nodes into the stack which needs O(log n) time.5 So
the runtime of the overall algorithm is exponential because of the A* search (N is
the branching factor, T is the depth of solution). Nevertheless, since the heuristic
is optimal and the performance of A* heavily relies on its heuristic, solutions are
found much faster in general. The larger drawback is the amount of memory needed.
Since we made the algorithm faster by pre-computing the predecessor lists during the
Viterbi step, it is clear that the gain in runtime is bought by “sacrificing” additional
memory. The initial Viterbi algorithm needs O(N2 +NM +NT) space for the state
transition probabilities, observation symbol probabilities and the backpointers for

5Since the nodes are already ordered according to their probability, we only have to find the correct
insertion point for a new node which can be found by binary search (see e.g. in (Gonnet and
Baeza-Yates, 1991)), thus O(log n) for n being the maximum stack size.

75

5 N-best Supertagger for Ambiguous Typing

Viterbi modified Viterbi backward A* search
time N2T (N log n)2T nNT

space N(N +M + T) N(N +M + nT) N2 +NM + nNT

Table 5.1: Worst-case space and time complexity of all components of the n-best
supertagger. N is the number of states (for S supertags, N = S2 because
we consider pairs of supertags as states in the trigram model), M is the
number of output symbols (words), T is the length of the input sequence
(sentence) and n is the maximum number of supertag hypotheses that are
determined.

each position in the trellis, respectively. With introducing the n-best predecessor
lists instead of the single best predecessor, the complexity of the last term increases
to O(nNT). But this worst-case is not likely to happen because only the relevant
states are considered, i.e. those with a non-zero probability. The memory usage of
the A* search only increases by a constant factor since it uses the data structures
from the modified Viterbi algorithm. The stack of the n-best search can be limited
to n nodes due to the optimality of the heuristic. So the overall space complexity
does not increase significantly when compared to the one of the modified Viterbi. All
time and space complexities are summarized in Table 5.1.

5.2.3 Adjusting the candidate lists

After the n-best tree-trellis search, the algorithm provides a list of supertag hy-
potheses. These sequences of supertags are the top n readings of the ambiguous
code sequence according to the trained language model. They serve as a basis to
rearrange the candidate lists obtained from the celex ordering. We will refer to
the basic approach of reordering the unigram-frequency candidate lists by using the
n best supertag hypotheses as match list boosting. So let H(i), 1 ≤ i ≤ n, hold
the n best hypotheses returned by the tree-trellis search (cf. Figure 5.3) and M(j),
1 ≤ j ≤ T , be the initial candidate list for the jth word of the sentence. Now, all
lexical anchors of the supertags of a single hypothesis are boosted to the top of the
match list in reverse order, i.e. starting with the last hypothesis n and ending with
the best hypothesis stored in H(1).6 The algorithm for adjusting the candidate lists
by boosting is given in Figure 5.5. It can be optimized if the list of all supertags for
a word position is reduced by discarding all duplicates and move only the highest
ranked occurrence to the top of the candidate list.

So far, the improvement in accuracy of the whole system is solely based on the

6Alternatively, one could take the hypotheses as they are, reduce multiple lexical anchors per word
position (frame) to one (since a word can have several supertags) and add the rest of the words
from the celex lexicon that are not yet covered by the list.

76

5.2 System’s components

0: i = n /* n is the last hypothesis */

1: while i > 0 do begin
2: H = H(i) /* retrieve current hypothesis */

3: j = 1
4: /* boost all supertags of H in the corresponding match list */

5: while j ≤ T do begin
6: boost(H(j),M(j))
7: j = j + 1
8: end
9: i = i− 1

10: end

Figure 5.5: The algorithm for match list boosting. H(i) holds the ith of the top n
supertag hypotheses, M(j) is the match list with the candidates that are
expanded from the jth code in the sentence of length T . H(j) denotes
the lexical anchor (word) of the current supertag that is moved to the
top in match list M(j). The words are boosted in reverse order such
that the best hypothesis is applied last, resulting in the overall best word
appearing at the first position.

trigram language model. Although the n-best supertag sequences have the highest
scores out of all possible hypotheses, this does not mean that all of these hypotheses
make perfect sense. And it is quite likely that some lower ranked hypothesis actually
has more correct lexical anchors when compared to the target sentence than the
overall best one. So it is not known exactly which of the n-best hypotheses gives the
best result if applied last. The effect is that a correct word that is boosted to the top
might be displaced by a wrong word that comes from a higher ranked hypothesis.
This is where a lightweight dependency analyzer (LDA) helps. After boosting all
hypotheses returned by the n-best search, the ones that pass an additional LDA
filter step are used again by the algorithm in Figure 5.5. Figure 5.6 shows this step
for the setting from Figure 5.4. Section 4.3.1 introduced the LDA and showed how
it can provide a shallow parse of a sentence. This information can be used to further
determine the quality of the hypotheses. The more “consistent” the shallow parse,
the more agreement it might have with the original sentence. By applying an LDA,
we also have to connect to the LTAG since it yields the necessary dependency slots
for each supertag. The components to accomplish this task originate from the work
done within the project integenine (Harbusch et al., 1998; Woch and Widmann,
1999; Harbusch and Woch, 2000) and have been enhanced for the initial supertagger
in (Bäcker, 2002). The class LightweightDependencyAnalysis connects to components

77

5 N-best Supertagger for Ambiguous Typing

N−Best Hypotheses: Score:

maximum
coverage

LD
A

ich
Not
bot
ißt
Bus

habe
Hand
fand
frei
Sand

kleidet
Kleides
kreidet
trippet
triebet

näherer
näherem
emsiger
proprer
proprem

den
bei
ein

kann die

bin
nie

ist kleines Problem

bo
os

tin
g

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αnx0Vnx1

αNXN

αnx0Vnx1

αNXN

αnx0Vnx1

αNXN

αV

αNXN

αNXN

αNXN

αnx0Va

αVnx0a

αV

αnx0Va

αV

αnx0Vnx1

αV

αnx0Vnx1

αV

αVnx0nx1

αV

αnx0Vnx1

αnx0Vnx1

αV

αVnx0nx1

αV

αVnx0nx1

αnx0Vnx1

αV

αV

αV

αV

αnx0Vnx1

αnx0Vnx1

βDnx

βDnx

αNXN

αNXN

βvPnx

βDnx

βDnx

βvPnx

βDnx

αP

βDnx

βPnxv

βDnx

αV

αNXPRON

αV

βDnx

βDnx

βDnx

βDnx

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

αNXN

-240.06063154421645

-240.38368902077767

-243.89617070437882

-244.12911205503033

-244.40697282629282

-246.6986704928599

-246.922667216602

-247.11626881520166

-247.3293388332044

-247.3614360472363

-247.6594103415739

-247.71859453097068

-247.84025957497477

-247.8574589280952

-248.16301458965847

-248.19436643686464

-248.53326733917402

-248.6975767283041

-248.77906034631118

-248.93993895577637

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

βAn

...
...

...
...

...

Figure 5.6: Boosting LDA matches with maximum coverage. In this (idealistic) case,
the lexical anchors of the second hypothesis, which is the overall correct
one, are boosted last, thus yielding that the right words of the target
sentence Ich habe ein kleines Problem are being moved to the first position
within the candidate lists.

78

5.2 System’s components

of the class STAGSchemaTag and XTAGTree which provide the required dependency
slots. The overall collaboration is shown in Figure A.4 on page 105. The result of the
LDA is an LDASentence which holds the necessary information needed to “measure
the quality” of the original hypothesis. Basically, it provides the codings introduced
in Section 4.8 (+, −, • and ∗). Two criteria are used to determine the usefulness of
an analyzed hypothesis:

• dependency coverage: only the hypotheses are boosted that have the maximum
number of covered elements, i.e. where as many of the dependency slots are
filled to the left or right as possible.

• top level supertags: only the hypotheses with a certain number of elements on
the uppermost level are considered for boosting. This value can be seen as the
number of “consistent islands” that has been found by the algorithm.

In Figure 5.6, the three marked hypotheses have a dependency coverage of 5, i.e. all
supertags have fulfilled dependency slots, whereas the other hypotheses have cover-
ages less than 5. The experiments with the test corpus have shown that a combination
of both criteria, namely boosting the hypotheses with maximum coverage and max-
imum top level, results in a continuous small improvement to the overall accuracy
of the system. The dependency coverage criterion has the largest impact on system
accuracy. The best hypotheses, i.e. those that match the target sentence as close as
possible, almost always have the highest dependency coverages. The number of top
level supertags knows to vary. Experiments were only conducted on minimum and
maximum criteria, but it seems that a medium number of top level supertags looks
more promising since a manual comparison of the hypotheses with the annotated
target sentence showed that most agreement lied within hypotheses with maximum
dependency coverage and a medium number of top level supertags. This observation
should be further investigated in future work. Appendix C lists the output of the
system when applied to the setting from Figures 5.4 and 5.6 when using the top 5
supertag hypotheses.

The next chapter gives a detailed overview on the LTAG and its lexicon, the
evaluation corpus and the results achieved with the n-best supertagger as presented
in the previous sections.

79

5 N-best Supertagger for Ambiguous Typing

80

6 Results and Discussion

For an evaluation of the techniques presented in the previous chapter, the ambiguous
typing of a sample text is simulated and processed with the n-best supertagger. As
performance criteria, the accuracy and the average rank of the correct word are
compared to the values obtained from the simple unigram-based approach that was
presented in Section 3.4.2. For this purpose, a lexicalized tree adjoining grammar
is needed because of the lightweight dependency analysis performed in the last step
of the n-best approach. The trigram HMM is directly trained on a corpus that is
annotated with supertags. For training and testing, the corpus developed in (Bäcker,
2002) is used. It contains sentences from German news group articles in the domain
of general support for hardware problems concerning monitors and hard disks. The
advantage of the LTAG which was also developed in (Bäcker, 2002) for that domain is
its computational efficiency. Since it is rather small, containing only 127 elementary
trees, this directly impacts on the size of the trained HMM and the runtime of
the LDA. Therefore, it was possible to run the n-best supertagger for up to 2,000
hypotheses in an acceptable amount of time. The basic idea behind this kind of
corpus is its domain-specificity. As mentioned in Section 3.3.2, the performance of
the ambiguous keyboard can be improved when combining the common dictionary
with a domain-specific or even topic-specific knowledge source.

Section 6.1 introduces the evaluation corpus and the lexicalized tree adjoining
grammar that are used within this work. The results obtained on the baseline, i.e.
when using the initial frequency-ordered celex candidates, are presented in Sec-
tion 6.2. Section 6.3 deals with the improved results from the n-best supertagger
when tested on the evaluation corpus. The last section discusses the results.

6.1 Evaluation corpus

The evaluation of the n-best supertagger is based on a collection of sentences that
were extracted from German news groups and discussion forums1 in the domain of
general support for computer hardware, especially dealing with monitor and hard
disk problems in this particular case. At first glance, this might be an inappropri-
ate domain for testing AAC techniques since the corpus was primarily developed for
an user-initiative dialog system (Harbusch et al., 2001). Nevertheless, some of the

1 de.comp.hardware.{misc|graphik|laufwerke.festplatten}, http://www.heise.de/foren

81

6 Results and Discussion

Topic-specific problem descriptions
Jetzt habe ich mit fdisk zwei Partitio-
nen eingerichtet.

Now I have created two partitions with
fdisk.

Meine neue Festplatte wird vom CMOS
Setup nicht automatisch erkannt.

My new hard drive is not being rec-
ognized automatically by the CMOS
setup.

Mein Monitor flackert plötzlich. My monitor flickers suddenly.
Wenn ich meine Boxen einschalte, flim-
mert mein Monitor.

If I turn on my speakers, the monitor
flickers.

General expressions
Was kann ich machen. What can I do.
Nichts hat geholfen. Nothing helped.
Ich habe ein Problem. I have a problem.
Klappt wunderbar. Works perfectly.

Table 6.1: Some example sentences of the corpus used for evaluation in this thesis.
It consists of topic-specific problem descriptions as well as general (i.e.
unspecific) expressions.

sentences represent colloquial expressions as they often arise in spontaneous com-
munication situations where the user of the ambiguous keyboard wants to express
simple ideas as fast as possible. The second advantage is the specific domain that is
dealt with (cf. Section 3.3.2). The exploration of different domains or topics is left
out due to the time expenditure that would be involved in parsing and annotating
other text corpora.

The corpus which is used in this thesis comprises 250 sentences with a total of
1,964 word tokens that mainly deal with monitor and hard disk problems. Table 6.1
shows some detailed problem descriptions as well as general expressions of the text
collection. The corpus is manually annotated with supertags from the lexicalized
tree adjoining grammar (cf. Section 6.1.1) that was developed in (Bäcker, 2002). For
example, each word of the sentence

das betaDnx
bild alphaNXN
meines betaDnx
monitors betanxN
flimmert alphanx0V
%%%END_OF_SENTENCE

has the corresponding supertag on the right that is obtained by parsing the sentence
with the XTAG parser. The corpus is divided into 90% for training (225 sentences)

82

6.1 Evaluation corpus

and 10% for testing (25 sentences). Initially, the text material consisted of separate
topic-specific sets for hard disks and monitors, respectively. Therefore, each topic is
divided separately and merged afterwards in order to guarantee that the sentences
of the two problem classes are equally distributed on the training and test set. This
prevents the possibility of primarily training on the hard disk domain while testing
on the monitor class or vice versa if a random division had been made. In addition,
a cross-validation test run on the whole corpus is applied. Since the test sets usually
comprise 10% of the available data (250 sentences), the cross-validation results in
10 distinct divisions of the training and test set, each containing 225 sentences for
training and 25 for testing. So, in every run, 1/10th of the data is held out for testing,
while the rest is used for training. This procedure is repeated until all possible blocks
of 25 sentences have been evaluated.

6.1.1 German LTAG

The lexicalized tree adjoining grammar presented in (Bäcker, 2002) was developed
for the special domain of a user help-desk in a dialog system. Therefore, it is not
representing a wide coverage grammar for the German language but, since it was
used to parse and annotate the evaluation corpus, its expressibility is sufficient for
this task. The grammar contains 127 elementary trees, divided into 58 initial and
69 auxiliary trees. In comparison, the English general purpose grammar developed
by (XTAG Research Group, 2001) has over 1,000 trees. A grammar of that size also
needs a larger training corpus in order to achieve reliable results when estimating
trigram probabilities based on supertags (sparseness of data). Since this would have
required a large amount of additional time, it was decided to use the already available
German KoHDaS-ST grammar for the evaluation. The lexicon contains 907 lexical
entries and covers the vocabulary from the evaluation corpus. The format of the
grammar is that of (Doran et al., 1994; XTAG Research Group, 2001) and can hence
be used with the available XTAG parser to annotate the words with the corresponding
supertags.

6.1.2 Lexicon

The primary lexicon for the ambiguous keyboard is the celex lexical database
(Baayen et al., 1995). It consists of separate lexicons for the Dutch, English and
German language. As basis, a modified version of the German lexicon is used. The
modification is due to the German spelling reform that was decided on in 1996 and
came into effect in 1998. In this new German orthography (IDS, 1996), changes
in rules for spelling, hyphenation, capitalization and punctuation have been made.
Therefore, the lexicon contains all new entries and additionally the old alternatives,
since the old orthography is valid until the end of 2005. The LTAG lexicon and the

83

6 Results and Discussion

total frequency of tokens/types 4,013,854/317,198
cumulative accuracy for rank ≤ 1, . . . , 5 in % 74.14/88.33/93.34/95.82/97.16

expectation/standard deviation of rank 1.59/1.60
total number of ambiguous codes 167,430

number of match lists with length = 1, . . . , 5 114,325/31,644/6,875/4,707/2,242
maximum match list length 64

expectation/standard deviation of list lengths 1.89/2.81

Table 6.2: The modified German lexicon used for building the candidate lists.

supertagger by (Bäcker, 2002) do not distinguish capitalized from non-capitalized
word forms. So the modified celex lexicon was adapted to this circumstance such
that all word types with capitals are written in lower case. If the word form with
lower case letter already exists, the frequencies are added in order to maintain the
overall frequency mass. In general, the lexical entries of the celex lexicon comprise
all derived and inflected word forms of the corpus that the frequency estimation is
based on. For the German part, the frequencies are obtained from the Mannheim
corpus (6 million words) provided by the IDS (Institute for German Language). A
problem with ambiguous keyboards is typing unknown words, i.e. words that are
not contained in the lexicon. Usually, an additional disambiguation step has to be
carried out. For all codes, the right letter has to be determined separately. Since the
main attention of this work is turned on the sentence-based evaluation of ambiguous
typing, the additional disambiguation step is not simulated and all unknown words
from the test set are added to the main lexicon with a zero frequency instead.2 In
addition, unknown words would be stored in a special user dictionary after being
disambiguated for the first time, so the cost of this step can be neglected.

Table 6.2 gives a summary on the modified German lexicon based on the celex
database and the LTAG lexicon. The statistics show the total number of word tokens
and types, i.e. the individual occurrences of all words and the distinguishable word
forms, respectively. The cumulative accuracy of a rank i denotes the percentage of
tokens that appear at ith or less position in the candidate list. So for the whole
lexicon, approx. 74% of all words appear at the first place of the match list and there
are less than 3% of words that appear after the 5th position. The high value for
rank 1 is due to the fact that over 68% of the candidate lists actually have only one
entry and the most frequent words appear at the top of the match lists.

If a closer look is taken on the distribution of ranks and their corresponding fre-
quencies, one notices that the distribution is not a normal (Gaussian) distribution,
but rather a hyperbolic distribution. This is due to the fact that the frequency f
of a word is inversely proportional to its rank r in the whole list of lexical entries if

2In celex, all word forms that do not occur in the Mannheim corpus have a frequency of zero.

84

6.1 Evaluation corpus

 1

 100

 10000

 1 100 10000

fr
eq

u
en

cy

rank

f = 300000/r
modified celex lexicon

Figure 6.1: Zipf’s law and the modified lexicon. The straight line is the graph from
Equation 6.1 for k = 300000, the dashed graph denotes the values from
the lexicon. The x- and y-axis (rank vs. frequency) use logarithmic scales.

they are sorted according to their frequency:

f ∝ 1
r

or ∃k : f · r = k. (6.1)

This is also known as Zipf’s law (see e.g. in (Manning and Schütze, 2000)). Therefore,
natural languages tend to have few words which are used most commonly, some mid-
frequent words and a large amount of words with low frequency. The consequence
of the latter point is that we often have to work with sparse data. For the modified
lexicon, the graph delineating this law is shown in Figure 6.1. Fortunately, the low-
frequent words are also the longer words in a language, or to put it another way: the
high-frequent words are usually very short.3 And the longer the word, the higher the
probability that its coding is unique and the candidate list therefore has only one
entry. For the modified German lexicon, the average word length of words with a
non-zero frequency is 5.9 characters, whereas the words with zero frequency have an
average length of 11.5 letters.

3consider the top ten words of the English celex database: the, a, of, and, to, in, that, it, I, is

85

6 Results and Discussion

6.2 Baseline results

The baseline results are achieved with the simple unigram approach mentioned in
Section 3.4.2. Here, the frequencies of the words that are stored in the lexicon
order the candidate list in descending order, i.e. with highest frequency first. As
evaluation criteria, the accuracy of rank r and the average match position is chosen.
More formally, let

fr(w|c) =
{

1 if w ∈ matches(c) and rank(w) = r
0 else

(6.2)

be a binary function that returns 1 if a disambiguated target word w correctly occurs
on the rth position of the candidate list of its code c, which is given by matches(c).
For a test corpus containing a total of N words, the accuracy of rank r for the given
corpus can be computed as

acc(r) =
∑

w fr(w|c)
N

. (6.3)

For a cumulative accuracy, i.e. where the target words appear within the first r ranks
of the candidate lists, the single accuracy values are summed:

cumacc(r) =
r∑

i=1

acc(i). (6.4)

The second evaluation measure is the average rank of words of the test corpus. It is
simply computed by

r̄ =
∑

w rank(w)
N

. (6.5)

Several runs are applied to the test data. The initial evaluation is based on the
training and test division that was used in (Bäcker, 2002) which will be further re-
ferred to as the reference test set. The supertagger that is introduced there is reported
to achieve an accuracy of 78.3%. In this case, the accuracy denotes the percentage
of correctly assigned supertags to the corresponding words, i.e. no ambiguous typing
takes place. The test set contains sentences from all topics, i.e. monitor and hard
disk problems as well as general expressions. If the original supertagger, which is
only based on the Viterbi forward search (i.e. 1-best), is applied to the ambiguously
typed corpus, the percentage of correct supertag to word assignments drops down
to 17.5%. This is due to the large amount of possible supertag hypotheses that are
expanded for every code. One possible way of improving the performance of the
supertagger is to examine more than one hypothesis, namely the n best hypotheses
in general (cf. Section 5.1).

86

6.3 N-best supertagging results

reference test set evaluation, r̄ = 3.02
r = 1 r = 2 r = 3 r = 4 r = 5

acc(r) in % 50.26 28.04 5.29 7.41 1.59
cumacc(r) in % 50.26 78.30 83.59 91.00 92.59
cross-validation, r̄ = 3.23

acc(r) in % 54.25 24.10 4.42 5.40 2.04
cumacc(r) in % 54.25 78.35 82.77 88.17 90.21

Table 6.3: The baseline results of ambiguously typing the corpus. The candidate
lists are solely based on the unigram frequencies from the modified Ger-
man lexicon. The results of the cross-validation represent the average of
10 runs.

The results for the baseline are shown in Table 6.3. As can be seen, the unigram
approach places approx. 50% of the target words on the first position of the candidate
lists. 92.6% of the words appear within the first 5 ranks. The rank expectation for
the reference test set is 3, i.e. the user has to scroll two times on average before
selecting the desired word. The values for the cross-validated results are similar.
The average accuracy for rank 1 is slightly higher, but nevertheless nearly 10% of
the words do not appear within the first 5 ranks which results in high selection costs.
The next section presents the evaluation of the test corpus when processed with the
n-best supertagger that was presented in the previous chapter.

6.3 N-best supertagging results

So far, the baseline results show that the simple approach based on unigrams places
approx. 50% of the words on the first position, so the disambiguation costs do not
accrue except for the selection step itself for half the words that are typed. On
average, the user’s target word can be found on the third position in the candidate list.
Intuitively, a better language model which uses trigrams instead of unigrams should
clearly yield an improvement. As with the baseline, the results presented in this
section mainly constitute two parts, namely testing the reference data and running
a cross-validated version that tests the randomized corpus in chunks of 25 sentences
such that all 10 possible combinations of training and test divisions are evaluated.
For the reference test set, the number of hypotheses during the evaluation reaches
from 1 to 2000, whereas for the cross-validation, the maximum number of hypotheses
was limited to 500 due to the time expenditure of the computation. Additionally,
an upper bound evaluation is reported in Section 6.3.2 that shows what accuracy
the n-best supertagger can achieve theoretically. Lastly (Sections 6.3.3 and 6.3.4), a
small evaluation is performed that compares the different kinds of informed search

87

6 Results and Discussion

baseline (a.1) (c.1) (d) baseline (cval) (b)

ac
cu

ra
cy

 in
 %

0
20

40
60

80
10

0

0
20

40
60

80
10

0

Figure 6.2: Graphical summary of the n-best supertagging results from Table 6.4.
The bars show the accuracy of rank r for the reference test set (4 bars
on the left) and the cross-validation (on the right). Each bar comprises
5 boxes, the lowest denoting acc(1), whereas the uppermost shows acc(5).

presented within the best-first framework (A* vs. greedy search) and an experimental
setting is reported which examines the use of a word-based trigram language model.

6.3.1 Reference test set and cross-validation

The overall results are given in Table 6.4 and Figure 6.2. The table is divided in
4 parts and summarizes the results obtained with the n-best supertagger and LDA.
The first part (a) shows the values computed for the reference test set. In (a.1), the
average is listed for the full evaluation runs with hypothesis sizes ranging from 1 to
2000, whereas (a.2) shows the same for the first 500 hypotheses (for comparison to
the cross-validated runs in (b)). When comparing the values to those in Table 6.3, a
significant improvement for the reference test set is visible. The cumulative accuracy
of rank 1 raises by approx. 12%, i.e. 62% of the target words are now placed on the top
of the candidate lists. For the other ranks, the improvement is not as big as for rank 1,
but there is still a significant increase. The average rank drops down to 2.16. The
overall best run of this evaluation session is given in (c.1). The maximum occurred
for the hypothesis size n = 592, i.e. the 592 best supertag sequence hypotheses for
the ambiguously coded sentences are used for adjusting the candidate lists. This
result also shows that the biggest variation takes place for rank 1. The changes in
cumulative accuracy for ranks ≥ 2 are very small for larger values of n. The smoothed

88

6.3 N-best supertagging results

reference test set evaluation (a)
average for n = 1, . . . , 2000, r̄ = 2.16 (a.1)

r = 1 r = 2 r = 3 r = 4 r = 5
acc(r) in % 62.13 22.89 1.72 8.42 0.54

cumacc(r) in % 62.13 85.02 86.74 95.16 95.70
average for n = 1, . . . , 500, r̄ = 2.19 (a.2)

acc(r) in % 61.54 23.05 2.02 8.29 0.58
cumacc(r) in % 61.54 84.59 86.61 94.90 95.48
cross-validation (b)
average for n = 1, . . . , 500 (10 runs), r̄ = 2.64

acc(r) in % 57.78 19.08 8.88 5.96 1.97
cumacc(r) in % 57.78 76.86 85.74 91.70 93.67
best results (c)
overall best for n = 592, r̄ = 2.11 (c.1)

acc(r) in % 66.67 18.52 1.59 8.47 0.53
cumacc(r) in % 66.67 85.19 86.78 95.25 95.78
best accuracy/time trade-off for n = 250, r̄ = 2.16 (c.2)

acc(r) in % 61.90 22.75 2.12 8.47 0.53
cumacc(r) in % 61.90 84.65 86.77 95.24 95.77
upper bound experiment (d)
average for n = 1, . . . , 2000, r̄ = 2.09

acc(r) in % 68.74 16.35 1.81 8.25 0.54
cumacc(r) in % 68.74 85.09 86.90 95.15 95.69

Table 6.4: The improved results of ambiguously typing the corpus. All candidate
lists except for the last part (upper bound experiment) are based on the
trigram n-best supertagger with lightweight dependency analysis. The
values of (a) represent the average of evaluating hypothesis sizes up to
2000 and 500 (the latter for comparison with the cross-validated results).
The second table (b) delineates the cross-validation runs for 1 ≤ n ≤ 500.
Additionally, the best single run and the optimal run in terms of accuracy
vs. time trade-off for the reference test set are given in (c). Lastly, the
results of the upper bound experiment are summarized in (d) (cf. 6.3.2).

89

6 Results and Discussion

graphs in Figure 6.3 give an overview on the differences between the n-best approach
and the baseline. Since the improvements with increasing size of the hypotheses lists
lie within a few percent only, the course of the graphs is not as visible as with a
more fine grained observation scale for the y-axis. Appendix B on pages 107ff lists
all separate graphs for the various test runs.

When comparing the results of the reference test set to the cross-validated runs,
the essential problem of the whole evaluation becomes clear. Due to the small size of
the corpus that is used for this evaluation (250 sentences/1,964 words), there is an
impeding influence of data sparseness. In fact, this behavior can be observed directly
in the second graph of Figure 6.3 which shows the results for the cross-validation.
The accuracy of rank 1 and 2 actually decreases with increasing values for n because
the higher the number of hypotheses that are taken into consideration, the higher
the overall number of unknown trigrams which are encountered in the hypotheses.
For rank = 2, the n-best approach even performs worse than the simple unigram
baseline for n > 25. Nevertheless, the total number of words placed within the first 5
ranks is still slightly higher than for the baseline. The overall improvement is not as
good as for the reference test set. As can be seen in Table 6.3, the average rank for
the cross-validated test set only decreases from 3.23 to 2.64. The graphs showing the
average ranks are given in Figures 6.4 (reference test set) and 6.5 (cross-validation).

As can be seen in all graphs, enhancing the search from 1-best (Viterbi) to n-
best has the largest effect for values of n < 50. After approx. 50 hypotheses, the
results do not improve significantly, although there is some minimal increase in overall
performance as can be seen in the more detailed graphs shown in Appendix B. In
general, a hypothesis size of n = 250 (cf. Table 6.4 (c.2)) shows good results since
the value for cumacc(5) does not increase any more for n ≥ 250 (cf. Figure B.5
on page 110) and the computation is faster than the best case which occurred for
n = 592. The evaluation of the reference test set needs approx. 3.37s, 10.58s and
21.62s for n = 1, 250 and 600, respectively.4 So for n = 250, this gives an average
of 423ms for a sentence. Even for n = 600, the computation lasts less than a second
per sentence, still resulting in an acceptable delay for the user after she would have
entered the last word. The adjustments of the match lists can therefore be performed
in real-time for smaller values of n.

6.3.2 Upper bound

Another method of evaluating the n-best supertagger is the possibility to look at the
target words of the sentences that are typed ambiguously and use only the hypothe-
ses that match closest for adjusting the candidate lists (cf. results in Table 6.4 (d)).
Clearly, this procedure is illegal for an objective evaluation since we are already look-

4running on an AMD Athlon XP 1600+ (1.4GHz)

90

6.3 N-best supertagging results

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

a
cc

u
ra

cy
in

%

hypotheses n

reference test set

BASE r = 1

STAG r = 1

BEST r = 1

¬LDA r = 1

BASE r = 2

STAG r = 2

BASE r = 3

STAG r = 3

BASE r = 4

STAG r = 4

BASE r = 5

STAG r = 5

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

a
cc

u
ra

cy
in

%

hypotheses n

cross-validation

Figure 6.3: The cumulative accuracy of the reference test set and the averaged
cross-validation (n-best supertagging results compared to the baseline).
Dashed lines (“BASE”) represent the cumulative accuracy of the baseline,
whereas solid lines (“STAG”) denote the improved results obtained with
the n-best supertagger.

91

6 Results and Discussion

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 100 200 300 400 500 600 700 800 900 1000

a
v
er

a
g
e

ra
n
k

r̄

hypotheses n

BASE
STAG

Figure 6.4: The average rank of the test run with the reference test set (n-best su-
pertagger compared to the baseline). The dashed line is r̄ for the baseline,
the solid line shows the results of the n-best approach.

2

2.2

2.4

2.6

2.8

3

3.2

3.4

50 100 150 200 250 300 350 400 450 500

a
v
er

a
g
e

ra
n
k

r̄

hypotheses n

BASE
STAG

Figure 6.5: The average rank of the cross-validation runs. For better comparison, the
scale of the y-axis is the same as for the graph in Figure 6.4.

92

6.3 N-best supertagging results

ing at the desired result we want to achieve, but nevertheless it gives an upper bound
of what accuracy the n-best supertagger can theoretically reach by just picking the
most promising hypotheses. The detailed evaluation graphs are given in Section B.1.
As can be seen, the accuracy between the two approaches differs only for lower ranks
(Figures B.1–B.3, while for higher ranks (Figures B.4 and B.5), the graphs are iden-
tical. This means that for the higher rank accuracy, the n-best supertagger already
performs in an optimal way for the reference test set and it actually cannot get any
better with this kind of training material. It is obvious that cumacc(5) will prob-
ably never reach 100%, i.e. all target words would appear within the top 5 ranks
and the cognitive load of the user would be reduced immensely because the search
via scrolling through the candidates no longer applies. The words that appear af-
ter the fifth position in the candidate lists (approx. 4.5% for the reference test set)
are probably again the result of the small corpus size. If a larger training corpus
had been available, it is very likely that the accuracy would be slightly higher since
more training samples of those words that appear after the fifth position would have
been encountered. A cumulative accuracy of 98–99% for rank 5 is very desirable and
should be the goal of further examination (see also Section 7.1).

6.3.3 A* versus greedy search

The comparison of the n-best supertagger when using A* or greedy search for the
evaluation is summarized in Figures B.7–B.12. As can be seen, the greedy approach
tends to find slightly better solutions in early stages of the search, i.e. for small values
of n. This behavior is visible in Figures B.10, B.11 and B.12. Nevertheless, the overall
performance of the A* search is better. An experiment for several hypothesis sizes
showed no significant differences between the two approaches in terms of execution
time. The greedy search was always slightly faster (approx. 2s for n = 1000), but
the gain was in the vicinity of only a few hundred milliseconds for smaller values of
n, thus being negligible.

6.3.4 Experiment with word trigrams

Finally, a small experiment was carried out that compares the n-best supertagger
to a language model that is based on word trigrams instead of unigrams. The idea
is the following: instead of having a training corpus where the words are annotated
with their corresponding supertags, it is annotated with the words themselves. So,
the supertags of the annotated sentence das Bild meines Monitors flimmert (“the
picture on my monitor flickers”) on the left of the following table, e.g., are replaced
by the target words (see right column):

93

6 Results and Discussion

das betaDnx
bild alphaNXN
meines betaDnx
monitors betanxN
flimmert alphanx0V
%%%END_OF_SENTENCE

=⇒

das das
bild bild
meines meines
monitors monitors
flimmert flimmert
%%%END_OF_SENTENCE

The resulting corpus can be instantly used with the implemented n-best supertagger
presented in Chapter 5 by skipping the LDA step that connects to the LTAG and its
lexicon. The result is a trigram language model based on words instead of supertags.
The graphs are shown in Figures B.13–B.18. The most interesting property of the
word trigram model is that it outperforms the supertagging based approach for rank
= 1 if the simple Viterbi search is used (1-best search). In fact, all results have their
maximum for n = 1. This indicates that a word-based trigram model tends to boost
only single entries that occur within the language model whereas the supertag-based
approach uses word-class information which results in boosting all words of a certain
class if it has been encountered in the training data, thus increasing the probability
of a whole set of words.

6.4 Discussion

This chapter presented the evaluation of the n-best supertagger that is based on
the theoretical background introduced in Chapters 2 and 4 and whose implementa-
tional details were described in Chapter 5. The domain-specific corpus is no typical
evaluation corpus for use in AAC systems. Nevertheless, it shows some features of
colloquial speech that emerge in everyday conversations since it contains sentences
from newsgroup postings, and the language in newsgroups and forums has often very
similar aspects of spoken language. The obtained results have to be seen with some
reservations, though. The overall system is an early prototype and can be further
improved. Due to the small corpus, the n-best supertagger uses only supertag infor-
mation without the lexical anchor (e.g. alphaNXN instead of alphaNXN//ich) within
the hypotheses of this evaluation in order to reduce the problem with data sparseness.
Bäcker’s supertagger showed good results for the corpus because of state-of-the-art
discounting and back-off methods. The accuracy of the system is high since the
words in the sentence are unambiguous and the Viterbi search can easily find the
best supertag annotation. In this approach, the level of ambiguity rises enormously.
The codes expand to words, and these words again expand to possible supertags. So,
in order to achieve reliable results through expressive language models, the training

94

6.4 Discussion

size has to be much larger than the available 225 sentences. Usually, statistical ap-
proaches use big corpora with millions of words or sentences, which was not the case
in this study. The poor quality of the hypotheses can also be observed when leaving
out the additional lightweight dependency analysis. The graph“¬LDA” in Figure 6.3
shows the evaluation based only on the match list boosting for hypotheses returned
by the n-best search. As can be seen, the accuracy decreases minimally for rank 1
(the difference is approx. 1%). This is due to default supertags that the back-off
mechanism chooses for unknown trigrams at the end of the back-off chain. At these
positions, the LDA cannot find consistent readings any more, and the maximum
dependency coverage criterion is not fulfilled.

Improving the Viterbi search (1-best) to an A* n-best search has a significant im-
pact on the results. Nonetheless, a better estimation of the trigram language model
on a larger corpus would certainly yield better results. One important goal is to get
the cumulative accuracy of rank 5 as high as possible. The famous article of (Miller,
1956) is widely accepted and argues that people have problems coping with “infor-
mation chunks” larger than 7± 2 units. Thus, the candidate lists in word prediction
usually contain 5 words. Larger values significantly increase the cognitive load by
scanning the lists and hence slow down the overall typing process. The evaluation in
this chapter shows that the basic approach presented in the course of this study has
the potential to improve a sentence-wise text entry for the communication aid UKO-
II. Clearly, the primary goal is to further increase the accuracy of rank 1 such that
as many words as possible come out at the top of the suggestion lists. Section 7.1
elaborates on possible areas of future investigations.

95

6 Results and Discussion

96

7 Conclusion

The main motivation of this study was to present the framework of a communication
aid that uses a highly reduced keyboard and allows for a sentence-wise text entry.
The argument against a system that solely relies on word prediction is supported
by the cognitive load of scanning the candidate lists after each new keypress for a
possible completion to the current word. In a sentence-wise approach, the user can
focus on the text entry and afterwards make the final adjustments of the candidate
lists by selecting the correct word. Ideally, the system finds the correct sentence
hypothesis and thus, the user has no additional selection costs beside one action that
accepts the top reading.

In Chapter 3, an introduction was given to the area of Augmentative and Al-
ternative Communication. The text entry framework for reduced keyboards was
presented as well as some existing approaches in the field of word completion. The
only sentence-wise approach known to us so far is the work of (Rau and Skiena,
1996). The results obtained in this study cannot compete with the ones presented
in the above citation. On the one hand, this is due to a much higher ambiguity of
the reduced keyboard in our case (we use only 3 letter keys instead of 9) and, on
the other, the small evaluation corpus has not the power to produce an expressive
language model based on trigrams. Nevertheless, the basic idea seems promising and
should be elaborated in further investigations. The theoretical background for the
n-best supertagger that is able to find the most promising supertag hypotheses of a
coded sentence was presented in Chapters 2 and 4. The main aspects are concerned
with the use of n-grams and Hidden Markov Models to find likely supertags for the
corresponding words and combine the Viterbi search with the A* search paradigm
from the field of Artificial Intelligence to yield the n best hypotheses. This list of
hypotheses is used to adjust the candidate lists such that likely interpretations of
the code sequence appear at the top. The process, which was named “match list
boosting”, was presented in Section 5.2. It was argued that an additional lightweight
dependency analysis filters the n-best lists to pick the hypotheses that have the best
dependency coverage for the supertags. This is equivalent to a shallow parse of the
sentence hypotheses and discards inconsistent readings. In the final evaluation, this
analysis only gave a very small improvement in terms of accuracy. In a separate
small experiment with a sentence containing no unknown trigrams (see Figure 5.6
and Appendix C), the performance was much better and the LDA significantly im-
proved the final result. The bad performance of the LDA can be tracked down to

97

7 Conclusion

low-quality supertag hypotheses. Due to the small size of the training corpus, many
trigrams were unknown in the test set, so the system backed off to default supertags
for the words that were not covered in the trained language model.

The evaluation showed an increase in the accuracy of rank 1 from 50% up to approx.
67% for the best run with n = 592 and resulted in a decrease of the average rank by
one position. For the test corpus, the words could be located on the second instead of
the third position within the suggestion lists on average. At this point, the obtained
results may not look so good to the one or another, but we think that for this size of
the training material the achievements are promising. A larger drawback is probably
the strong assumption of a perfect typist who makes no errors. The problems with
wrongly entered words, i.e. where an incorrect key was pressed or the user forgot a
letter, were not addressed in this study since an evaluation of these features needs
real user trials. It is obvious that these kind of errors are very frustrating if the basic
approach is a sentence-wise text entry since the error is not noticed at the end of a
word but rather at the end of the whole sentence. The other problem was already
noted in (Rau and Skiena, 1996). Typing comfort decreases with increasing length
of the sentences. The conclusion is that a sentence-wise approach will probably only
be feasible for shorter sentences, as they arise e.g. in conversational communication.
For writing longer texts, the use of traditional word completion might give better
results.

7.1 Future work

The list of future improvements is quite long. This study only introduced the ba-
sic concepts of a sentence-wise text entry system. Further evaluations should be
undertaken with much larger corpora. Since the current implementation works on
annotated corpora, a possible improvement would certainly be the application of
Baum-Welch reestimation to automatically annotate the evaluation corpus. The use
of a more general LTAG with an extended lexicon is needed for this task. An exten-
sive LTAG exists e.g. for the English language (XTAG Research Group, 2001). The
LTAG used in this work was tailored for the use with the domain-specific evaluation
corpus.

The notion of entropy and perplexity was shortly mentioned in Section 2.2.3 as
a measure for the quality of a language model. Since the overall framework of the
procedures is only partly based on statistical language models (the use of n-grams
and HMMs) and yields more of a hybrid approach for the candidate list orderings (cf.
match list boosting), a computation of the entropy is not possible due the lack of final
probability estimates of the words. If a more mathematical way of characterizing the
process of boosting entries is derived, the use of entropy could be considered as a
quality measure of the overall performance of the system.

98

7.1 Future work

The number of hypotheses in the n-best search, i.e. the parameter n, stayed con-
stant during a simulation run on the test corpus. However, experiments should be
carried out with various values of n, depending on the length of the sentence. For
long sentences, n should be considerably large, whereas for short sentences, the ac-
curacy might benefit more from a small number of hypotheses that are considered
for boosting. So further investigations are necessary to experiment with a dynamic
choice of the parameter n.

As already noted, one of the primary goals is to increase the cumulative accuracy
of rank 5 such that the user has not to scroll the list of suggestions up and down in
search of the target word. One possibility is to use topic- or user-specific lexicons to
“prime” the general dictionary (e.g. celex) by linear interpolation as presented in
(Harbusch et al., 2003). Beside lower OOV rates, the topic- and user-specific words
also appear at a higher rank in the candidate lists. As was shown in Section 6.3,
approx. 95.5% of the words appeared within the first five ranks. The use of a better
language model based on a larger training corpus might have a positive effect on this
percentage since the hypotheses will cover more words through the corresponding
supertags. But this value can also be increased if more words initially appear at
higher ranks, which is achieved by linear interpolation of the celex dictionary and
a corpus-specific dictionary that is based on the training data.

99

7 Conclusion

100

A UML class diagrams

This chapter presents the main UML class diagrams of the components reused from
(Bäcker, 2002) and newly modeled and implemented ones for the n-best supertagger
and the evaluation of the test corpus. The implementation is made in Java (see e.g.
(Arnold and Gosling, 1997)).

A.1 Package supertagging

Figure A.1 (page 102) shows the initial components of the supertagger from (Bäcker,
2002). The class TrigramSuperTaggingTrainer estimates the probabilities of the tri-
gram HMM directly on an annotated training corpus and is used in this thesis to
create the language model on the 225 sentences of the evaluation set.

A.2 Package supertagging.nbest

Figures A.2 and A.3 (pages 103–104) present the main components of the package
supertagging.nbest which implements the modifications to Bäcker’s supertagger.

A.3 Package LDA

Figure A.4 (page 105) is basically taken from (Bäcker, 2002) and shows the connec-
tion of the class CodedNBestSuperTaggingEvaluator to the Lightweight Dependency
Analyzer.

A.4 Package evaluate

Figure A.5 (page 105) shows the main classes for running the n-best supertagger.
NBestSuperTagger runs the evaluation of a test corpus on a trained model in various
modes and with variable hypothesis sizes.

[yonker@kazzbajjah ~]$ java evaluate.NBestSuperTagger
usage: java evaluate.NBestSuperTagger <trigram-model-file>
<tagged-corpus-file> [<N-best> <mode> <greedy>]

101

A UML class diagrams

SuperTagger

+initializeDataManager:void

SuperTaggingTrainer

+initializeDataManager:void
#addSentenceData:void
#computeProbabilities:void
#storeData:void

#addSentenceData:void
#computeProbabilities:void
#storeData:void

HMMSuperTaggingTrainer

TrigramDataManager

+getA:double
+getB:double
+getPi:double
+setTrigramProb:void
+setBigramProb:void
+setUnigramProb:void
+setEmitProb:void
+setBigramBackoff
+setPrefixProb
+setSuffixProb

+getNextRegularSentence:
 RegularSentence
+getNextSuperTaggedSentence:
 SuperTaggedSentence

<<interface>>
CorpusReaderInterfaceHMMSuperTagger

SuperTaggingEvaluator

+analyze:void
−protocolize:void
+evaluate:void

<<interface>>

+tag:SuperTaggedSentence

<<interface>>

+trainSuperTagger:void

−viterbiAlgorithm:Vector

TrigramSuperTagger TrigramSuperTaggingTrainer

<<abstract>>

+trainSuperTagger:void
+initializeDataManager:void

������

<<abstract>>

+tag:SuperTaggedSentence
−viterbiAlgorithm:Vector

������

������

������

Figure A.1: UML class diagram of the initial supertagger (from (Bäcker, 2002)).

102

A.4 Package evaluate

S
up

er
Ta

gg
er

N
B

es
tS

up
er

Ta
gg

er

S
up

er
Ta

gg
in

gE
va

lu
at

or
Tr

ig
ra

m
D

at
aM

an
ag

er

+e
va

lu
at

e:
vo

id
−p

ro
to

co
liz

e:
vo

id
+u

pd
at

eB
:v

oi
d

−i
ni

tia
liz

eS
up

er
ta

gM
at

ch
es

:v
oi

d

+g
et

C
od

e:
S

tri
ng

+g
et

:M
at

ch
Li

st

+a
dd

:v
oi

d

+s
iz

e:
in

t

+n
B

es
tS

ea
rc

h:
V

ec
to

r
+t

ag
N

B
es

t:V
ec

to
r

−p
ro

to
co

liz
e:

vo
id

+e
va

lu
at

e:
vo

id

+s
et

To
ta

lP
at

hS
co

re
:v

oi
d

+a
dd

:v
oi

d

+t
ag

N
B

es
t:V

ec
to

r
+t

ag
:S

up
er

Ta
gg

ed
S

en
te

nc
e

+p
us

h:
vo

id
+p

op
:N

B
es

tS
ta

ck
N

od
e

+e
m

pt
y:

bo
ol

ea
n

+p
ee

k:
N

B
es

tS
ta

ck
N

od
e

<<
in

te
rfa

ce
>>

+t
ag

N
B

es
t:V

ec
to

r
+g

et
S

up
er

ta
gM

at
ch

es
:M

at
ch

Li
st

+i
ni

tia
liz

eS
up

er
ta

gM
at

ch
es

:v
oi

d

<<
in

te
rfa

ce
>>

������ ������
��� ���

C
od

ed
S

up
er

Ta
gg

in
gE

va
lu

at
or

#t
he

C
od

ed
Le

xi
co

n:
C

od
ed

Le
xi

co
n

#t
he

S
up

er
Ta

gg
er

:N
B

es
tS

up
er

Ta
gg

er

C
od

ed
Tr

ig
ra

m
D

at
aM

an
ag

er

#t
he

C
od

ed
Le

xi
co

n:
C

od
ed

Le
xi

co
n

−s
up

er
ta

gM
at

ch
es

:H
as

hM
ap

[]

#u
pd

at
eB

Fa
llb

ac
k:

vo
id

−a
ss

ig
nB

D
ef

au
lts

:v
oi

d
+g

et
S

up
er

ta
gM

at
ch

es
:M

at
ch

Li
st

−c
le

ar
S

up
er

ta
gM

at
ch

es
:v

oi
d

−k
ey

bo
ar

d:
V

ec
to

r
−m

at
ch

es
:H

as
hM

ap

C
od

ed
Le

xi
co

n

��� ���

������ ������
C

od
ed

N
B

es
tT

rig
ra

m
S

up
er

Ta
gg

er

−n
B

es
t:i

nt

+b
ac

kw
ar

dT
re

eS
ea

rc
h:

V
ec

to
r

C
od

ed
N

B
es

tS
up

er
Ta

gg
in

gE
va

lu
at

or

−t
he

S
up

er
Ta

gg
er

:C
od

ed
N

B
es

tT
rig

ra
m

S
up

er
Ta

gg
er

+e
va

lu
at

eM
ul

tiR
un

s:
vo

id
−b

oo
st

H
yp

os
:v

oi
d

−t
he

S
up

er
Ta

gS
eq

ue
nc

e:
V

ec
to

r
−t

he
S

co
re

:d
ou

bl
e

+c
om

pu
te

To
ta

lP
at

hS
co

re
:v

oi
d

+g
et

To
ta

lP
at

hS
co

re
:v

oi
d

+g
et

D
ou

bl
eS

up
er

Ta
gK

ey
:S

tri
ng

+g
et

S
up

er
Ta

gK
ey

:S
tri

ng

H
yp

ot
he

si
s

+g
et

S
up

er
Ta

g:
S

up
er

Ta
g

+c
om

pa
re

:in
t

+d
ou

bl
eS

iz
e:

in
t

+s
in

gl
eS

iz
e:

in
t

+s
iz

e:
in

t

C
od

ed
Tr

ig
ra

m
S

up
er

Ta
gg

er

+v
ite

rb
iA

lg
or

ith
m

:V
ec

to
r

+g
et

S
up

er
ta

gM
at

ch
es

:M
at

ch
Li

st
+i

ni
tia

liz
eS

up
er

ta
gM

at
ch

es
:v

oi
d

#t
he

D
at

aM
an

ag
er

:C
od

ed
Tr

ig
ra

m
D

at
aM

an
ag

er

N
B

es
tS

ta
ck

−n
od

es
:R

an
kO

rd
er

ed
N

Li
st

+s
ea

rc
h:

in
t

	�	
�

������ ������

� ���

0.
.N

Figure A.2: UML class diagram of the n-best supertagger.

103

A UML class diagrams

+g
et

To
ta

lP
at

hS
co

re
:d

ou
bl

e
+g

et
A

sS
tri

ng
:S

tri
ng

+g
et

S
up

er
Ta

g:
S

tri
ng

+g
et

S
up

er
Ta

gs
:V

ec
to

r+a
dd

:v
oi

d

+s
et

Li
m

it:
vo

id
+g

et
Li

m
it:

in
t

+a
dd

:v
oi

d

+h
as

N
ex

tB
es

t:b
oo

le
an

+p
us

h:
vo

id
+p

op
:N

B
es

tS
ta

ck
N

od
e

+e
m

pt
y:

bo
ol

ea
n

+p
ee

k:
N

B
es

tS
ta

ck
N

od
e

P
re

de
ce

ss
or

Li
st

+g
et

To
ta

lP
at

hS
co

re
s:

V
ec

to
rR

an
kO

rd
er

ed
Li

st

#o
bj

ec
ts

:V
ec

to
r

#p
rio

rit
ie

s:
V

ec
to

r

+e
le

m
en

tA
t:O

bj
ec

t
+p

rio
rit

yA
t:d

ou
bl

e
+i

nd
ex

O
f:i

nt
+e

xt
ra

ct
Fi

rs
t:O

bj
ec

t
+g

et
S

up
er

Ta
g:

S
up

er
Ta

g
+s

iz
e:

in
t

+e
m

pt
y:

bo
ol

ea
n

#s
iz

e:
in

t

R
an

kO
rd

er
ed

N
Li

st

#l
im

it:
in

t

+i
nc

re
as

eB
es

tIn
de

x:
vo

id
+h

as
P

re
vi

ou
sN

od
e:

bo
ol

ea
n

+s
et

G
re

ed
yS

ea
rc

h:
vo

id
+s

et
A

S
ta

rS
ea

rc
h:

vo
id

pr
ed

ec
es

so
rD

at
a:

P
re

de
ce

ss
or

Li
st

ne
xt

B
es

tS
up

er
Ta

g:
S

tri
ng

ne
xt

B
es

tT
ot

al
P

at
hS

co
re

:d
ou

bl
e

ne
xt

B
es

tF
or

w
ar

dP
at

hS
co

re
:d

ou
bl

e
go

al
N

od
e:

bo
ol

ea
n

pr
ev

io
us

N
od

e:
N

B
es

tS
ta

ck
N

od
e

ba
ck

w
ar

dP
ar

tia
lP

at
hS

co
re

:d
ou

bl
e

id
:S

tri
ng

to
ta

lP
at

hS
co

re
:d

ou
bl

e
tim

eF
ra

m
e:

in
t

t:i
nt

N
B

es
tS

ta
ck

N
od

e

−s
ta

gI
d:

S
tri

ng
−s

ta
gT

ot
al

P
at

hS
co

re
:d

ou
bl

e
−p

re
de

ce
ss

or
S

up
er

Ta
gs

:V
ec

to
r

−p
re

de
ce

ss
or

Fo
rw

ar
dP

at
hS

co
re

s:
V

ec
to

r
−n

ex
tB

es
tIn

de
x:

in
t

−a
st

ar
Fl

ag
:b

oo
le

an

N
B

es
tS

ta
ck

−n
od

es
:R

an
kO

rd
er

ed
N

Li
st

+s
ea

rc
h:

in
t

��� ���

0.
.N

Figure A.3: UML class diagram of the n-best stack.

104

A.4 Package evaluate

: LDASentenceElement : Dependency : XTAGTree

: SuperTagGrammarConnector

: STAGSchemaTag

computeDependencies(LDASentenceElement, LDASentence)

classifySentenceElements(LDASentence)

(SuperTaggedSentence)
analyzeSentence

LDASentence

<<create>>

<<create>>

addO
utgoingD

ependency
(D

ependency)

getDependencySlots()

DependencySlots

S
TA

G
Tree

getTree(S
tring)getTree(TerminalToSuperTagMapping)

STAGTree

: LightweightDependencyAnalyzer

: CodedNBestSuperTaggingEvaluator

Figure A.4: UML collaboration diagram showing how the LDA connects to the
LTAG for additional analysis of supertag hypotheses from CodedNBest-
SuperTaggingEvaluator (mostly from (Bäcker, 2002)).

+printStats:void

+main:void
 usage:void

+main:void
 usage:void

−protocolize:void
+evaluate:void

−sentenceLength:int
−sentenceId:String
−rankSummedML:int
−rankSummedBL:int
−rankML:int[]
−rankBL:int[]
−rankCountML:int[]
−rankCountBL:int[]

+addStats:void
+getRankCount:int
+getRankSummed:int

id:String
length:int

Statistics NBestSupertaggerMultiRunsNBestSupertagger

CodedNBestSuperTaggingEvaluator

−theSuperTagger:CodedNBestTrigramSuperTagger

+evaluateMultiRuns:void
−boostHypos:void

������ ������

������

su
pe

rta
gg

in
g.

nb
es

t

Figure A.5: UML class diagram of the classes used for evaluation.

105

A UML class diagrams

106

B Evaluation graphs

This chapter gives a detailed overview on the graphs obtained from the evaluation
of the test corpus. The following labels are used throughout the thesis:

• BASE: baseline using unigrams for the language model (candidate lists sorted
by celex frequency)

• STAG: n-best trigram supertagging with lightweight dependency analysis

• BEST: upper bound experiment, boosting best hypotheses according to target
words

• GREEDY: same as STAG except using greedy search instead of A*

• TRIGRAM: lanugage model based on word trigrams

B.1 STAG vs. BEST

Figures B.1–B.6 (pages 108–110) present the detailed graphs for the n-best supertag-
ger compared to the upper bound and baseline.

B.2 STAG A* vs. greedy search

Figures B.7–B.12 (pages 111–113) present the detailed graphs for the n-best su-
pertagger (A* search) compared to a different search strategy (greedy search).

B.3 STAG vs. TRIGRAM

Figures B.13–B.18 (pages 114–116) present the detailed graphs for the n-best su-
pertagger compared to a language model based on word trigrams (instead of su-
pertags).

107

B Evaluation graphs

50

55

60

65

70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG
BEST

Figure B.1: STAG vs. upper bound, rank = 1.

78

80

82

84

86

0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG
BEST

Figure B.2: STAG vs. upper bound, rank ≤ 2.

108

B.3 STAG vs. TRIGRAM

82

83

84

85

86

87

88

89

0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG
BEST

Figure B.3: STAG vs. upper bound, rank ≤ 3.

90

91

92

93

94

95

96

97

0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG
BEST

Figure B.4: STAG vs. upper bound, rank ≤ 4.

109

B Evaluation graphs

90

91

92

93

94

95

96

97

0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG
BEST

Figure B.5: STAG vs. upper bound, rank ≤ 5.

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
v
er

a
g
e

ra
n
k

r̄

hypotheses n

BASE
STAG
BEST

Figure B.6: STAG vs. upper bound, average rank.

110

B.3 STAG vs. TRIGRAM

50

55

60

65

70

0 200 400 600 800 1000 1200 1400

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

GREEDY

Figure B.7: STAG A* vs. Greedy, rank = 1.

78

80

82

84

86

0 200 400 600 800 1000 1200 1400

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

GREEDY

Figure B.8: STAG A* vs. Greedy, rank ≤ 2.

111

B Evaluation graphs

82

83

84

85

86

87

88

89

0 200 400 600 800 1000 1200 1400

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

GREEDY

Figure B.9: STAG A* vs. Greedy, rank ≤ 3.

90

91

92

93

94

95

96

97

0 200 400 600 800 1000 1200 1400

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

GREEDY

Figure B.10: STAG A* vs. Greedy, rank ≤ 4.

112

B.3 STAG vs. TRIGRAM

90

91

92

93

94

95

96

97

0 200 400 600 800 1000 1200 1400

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

GREEDY

Figure B.11: STAG A* vs. Greedy, rank ≤ 5.

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 200 400 600 800 1000 1200 1400

a
v
er

a
g
e

ra
n
k

r̄

hypotheses n

BASE
STAG

GREEDY

Figure B.12: STAG vs. Greedy, average rank.

113

B Evaluation graphs

50

55

60

65

70

0 100 200 300 400 500 600 700 800 900 1000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

TRIGRAM

Figure B.13: STAG vs. word trigrams, rank = 1.

78

80

82

84

86

0 100 200 300 400 500 600 700 800 900 1000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

TRIGRAM

Figure B.14: STAG vs. word trigrams, rank ≤ 2.

114

B.3 STAG vs. TRIGRAM

82

83

84

85

86

87

88

89

0 100 200 300 400 500 600 700 800 900 1000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

TRIGRAM

Figure B.15: STAG vs. word trigrams, rank ≤ 3.

90

91

92

93

94

95

96

97

0 100 200 300 400 500 600 700 800 900 1000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

TRIGRAM

Figure B.16: STAG vs. word trigrams, rank ≤ 4.

115

B Evaluation graphs

90

91

92

93

94

95

96

97

0 100 200 300 400 500 600 700 800 900 1000

a
cc

u
ra

cy
in

%

hypotheses n

BASE
STAG

TRIGRAM

Figure B.17: STAG vs. word trigrams, rank ≤ 5.

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0 100 200 300 400 500 600 700 800 900 1000

a
v
er

a
g
e

ra
n
k

r̄

hypotheses n

BASE
STAG

TRIGRAM

Figure B.18: STAG vs. word trigrams, average rank.

116

C Test run

[yonker@kazzbajjah Testing]$ java evaluate.NBestSuperTagger train

ich-habe-ein-kleines-problem.tagged 5 LDA

Reading coded lexicon ’train.codlex’... done.

3 keys: < agjlmqrwzä> < cfhkostuvxyüß> < bdeinpö>

460 entries in hash map.

Running N-best version (N = 5)

Reading supertagger model... done.

Loading XTAG...

Using: XTAG German grammar for KoHDaS

Load template <KoHDaS-grammar/templates.lex>

Load syntax <KoHDaS-grammar/syntax/syntax-coded.flat>

Load tree files from <KoHDaS-grammar/grammar/Tnx0V.trees><Tnx0Vnx1.trees><Tnx0Vpnx1.trees>

<Tnx0VPnx1.trees><Tnx0Vnx1nx2.trees><Tnx0Vpl.trees><Tnx0Vplnx1.trees><Tnx0Vplnx1nx2.trees>

<Tnx0Vs1.trees><Tnx0Va.trees><Trest.trees><lex_STAG.trees><determiners.trees>

<advs-adjs.trees><modifiers.trees><prepositions.trees><conjunctions.trees><neg.trees>

Running n-best supertagger in mode ’lda’...

Tagging: [...EOS..., ...EOS..., ich, habe, ein, kleines, problem, ...EOS..., ...EOS...]

TERMINAL: ich//alphaNXN//[211]: ich

TERMINAL: habe//alphaV//[1022]: habe kann

TERMINAL: ein//betavPnx//[222]: bei

TERMINAL: kleines//betaAn//[1022221]: kleines

TERMINAL: problem//alphaNXN//[2012020]: problem

LDA analyzed sentence: 0:alphaNXN[][?]; 1:alphaV[][-]; 2:betavPnx[][1*, 4.];

3:betaAn[][4*]; 4:alphaNXN[][-]

LDA toplevel: [0:alphaNXN[][?], 2:betavPnx[][1*, 4.], 3:betaAn[][4*]]

TERMINAL: ich//alphaNXN//[211]: ich

TERMINAL: habe//alphanx0Vnx1//[1022]: habe

TERMINAL: ein//alphaNXN//[222]: ein

TERMINAL: kleines//betaAn//[1022221]: kleines

TERMINAL: problem//alphaNXN//[2012020]: problem

LDA analyzed sentence: 0:alphaNXN[][-]; 1:alphanx0Vnx1[][0., 2.]; 2:alphaNXN[][-];

3:betaAn[][4*]; 4:alphaNXN[][-]

LDA toplevel: [1:alphanx0Vnx1[][0., 2.], 3:betaAn[][4*]]

TERMINAL: ich//alphaNXN//[211]: ich

TERMINAL: habe//alphaV//[1022]: habe kann

TERMINAL: ein//alphaNXN//[222]: ein

TERMINAL: kleines//betaAn//[1022221]: kleines

TERMINAL: problem//alphaNXN//[2012020]: problem

LDA analyzed sentence: 0:alphaNXN[][?]; 1:alphaV[][?]; 2:alphaNXN[][?];

3:betaAn[][4*]; 4:alphaNXN[][-]

LDA toplevel: [0:alphaNXN[][?], 1:alphaV[][?], 2:alphaNXN[][?], 3:betaAn[][4*]]

TERMINAL: ich//alphaNXN//[211]: ich

TERMINAL: habe//alphanx0Vnx1//[1022]: habe

TERMINAL: ein//betaDnx//[222]: ein den die

TERMINAL: kleines//betaAn//[1022221]: kleines

TERMINAL: problem//alphaNXN//[2012020]: problem

LDA analyzed sentence: 0:alphaNXN[][-]; 1:alphanx0Vnx1[][0., 4.]; 2:betaDnx[][4*];

3:betaAn[][4*]; 4:alphaNXN[][-]

117

C Test run

LDA toplevel: [1:alphanx0Vnx1[][0., 4.], 2:betaDnx[][4*], 3:betaAn[][4*]]

TERMINAL: ich//alphaNXN//[211]: ich

TERMINAL: habe//alphaV//[1022]: habe kann

TERMINAL: ein//betaDnx//[222]: ein den die

TERMINAL: kleines//betaAn//[1022221]: kleines

TERMINAL: problem//alphaNXN//[2012020]: problem

LDA analyzed sentence: 0:alphaNXN[][?]; 1:alphaV[][?]; 2:betaDnx[][4*];

3:betaAn[][4*]; 4:alphaNXN[][-]

LDA toplevel: [0:alphaNXN[][?], 1:alphaV[][?], 2:betaDnx[][4*], 3:betaAn[][4*]]

BHyps: 1 3

1. "ich":

Original match list: [211]: ist ich not bot ißt bus boß ... (11 more entries)

Boosted match list: [211]: ich ist not bot ißt bus boß ... (11 more entries)

2. "habe":

Original match list: [1022]: kann habe hand fand frei sand ... (20 more entries)

Boosted match list: [1022]: habe kann hand fand frei sand ... (20 more entries)

3. "ein":

Original match list: [222]: die den bei ein bin nie eid öde eie böe

Boosted match list: [222]: ein die den bei bin nie eid öde eie böe

4. "kleines":

Original match list: [1022221]: kleines kleidet kleides kreidet ... (12 more entries)

Boosted match list: [1022221]: kleines kleidet kleides kreidet ... (12 more entries)

5. "problem":

Original match list: [2012020]: problem näherer näherem emsiger ... (4 more entries)

Boosted match list: [2012020]: problem näherer näherem emsiger ... (4 more entries)

HYP: alphaNXN[ich]; alphanx0Vnx1[habe]; betaDnx[ein]; betaAn[kleines]; alphaNXN[problem]

HYPBEST 1

HYPMATC 4 5 3 4 3

HYPFAIL 1 0 2 1 2

HYPLDAC 3 5 2 5 4

HYPLDAT 4 3 4 2 3

HYPLDAMAX 5 5

HYPLDAMAXindices 1 3

HYPLDABESTcov 5

HYPLDABESTindices 1

HYPLDABESTtop 3

Hypothesis 1: alphaNXN alphaV betaDnx betaAn alphaNXN (-240.06063154421645)

Hypothesis 2: alphaNXN alphanx0Vnx1 betaDnx betaAn alphaNXN (-240.38368902077767)

Hypothesis 3: alphaNXN alphaV alphaNXN betaAn alphaNXN (-243.89617070437882)

Hypothesis 4: alphaNXN alphanx0Vnx1 alphaNXN betaAn alphaNXN (-244.12911205503033)

Hypothesis 5: alphaNXN alphaV betavPnx betaAn alphaNXN (-244.40697282629282)

==============================

number of test sentences: 1

number of test tokens: 5

number of correctly tagged sentences: 1

number of correctly tagged tokens: 4

percentage of correct sentences: 100.0%

percentage of correct tokens (avg): 80.0%

total time consumed: 68

tagged sentences per minute: 882.3529411764705

==============================

TotalRank1 40.0 100.0

TotalRank2 80.0 100.0

TotalRank3 80.0 100.0

TotalRank4 100.0 100.0

TotalRank5 100.0 100.0

TotalAvg 2.0 1.0

done.

118

Bibliography

Abney, S. (1991). Parsing by chunks. In (Berwick et al., 1991), pages 257–278.

Abney, S. (1997). Part-of-speech tagging and partial parsing. In (Young and
Bloothooft, 1997), pages 118–136.

ACL97-WS (1997). Proceedings of the Workshop on Natural Language Processing for
Communication Aids, Madrid, Spain. Association for Computational Linguistics.

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Reading, MA, USA.

Allen, J. F. (1995). Natural Language Understanding. Benjamin/Cummings, Red-
wood City, CA, USA, 2nd edition.

Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., and Yarowsky,
D., editors (1999). Natural Language Processing Using Very Large Corpora, vol-
ume 11 of Text, Speech and Language Technology. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Arnold, K. and Gosling, J. (1997). The Java Programming Language. Addison-
Wesley, Reading, MA, USA, 2nd edition.

Atkins, B. T. S. and Zampolli, A., editors (1994). Computational Approaches to the
Lexicon. Oxford University Press.

Baayen, R. H., Piepenbrock, R., and L., G. (1995). The CELEX lexical database
(release 2). CD-ROM, Linguistic Data Consortium, University of Pennsylvania,
PA, USA.

Bäcker, J. (2001). Entwicklung eines Supertaggers für das Deutsche. Studienarbeit,
Universität Koblenz-Landau, Fachbereich Informatik, Koblenz, Germany.

Bäcker, J. (2002). KoHDaS-ST — Supertagging in dem automatischen Dialogsystem
KoHDaS. Diplomarbeit, Universität Koblenz-Landau, Fachbereich Informatik,
Koblenz, Germany.

119

BIBLIOGRAPHY

Bäcker, J. and Harbusch, K. (2002). Hidden Markov model-based supertagging in a
user initiative dialogue system. In Proceedings of the Sixth International Work-
shop on Tree Adjoining Grammar and Related Frameworks (TAG+6), pages
269–278, Venice, Italy.

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum likelihood approach
to continuous speech recognition. In (Waibel and Lee, 1990), pages 308–319.

Baum, L. E. (1972). An inequality and associated maximization technique in statis-
tical estimation for probabilistic functions of Markov processes. In Shisha, O.,
editor, Inequalities, volume 3, pages 1–8, University of California, Los Angeles,
CA, USA. Academic Press.

Beck, A. R. and Fritz, H. (1998). Can people who have aphasia learn iconic codes?
Augmentative and Alternative Communication, 14(3):184–196.

Berwick, R. C. (1991). Principles of principle-based parsing. In (Berwick et al.,
1991), pages 1–37.

Berwick, R. C., Abney, S. P., and Tenny, C., editors (1991). Principle-based parsing:
Computation and Psycholinguistics, volume 44 of Studies in Linguistics and
Philosophy. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Boguraev, B. K., Garigliano, R., and Langer, S., editors (1998). Natural Language
Engineering, volume 4(1). Cambridge University Press.

Brants, T. (2000). TnT — A statistical part-of-speech tagger. In Proceedings of
the 6th Conference on Applied Natural Language Processing (ANLP ’00), pages
224–231, Seattle, WA, USA.

Brill, E. (1992). A simple rule-based part-of-speech tagger. In Proceedings of the 3rd
Conference on Applied Natural Language Processing (ANLP ’92), pages 152–
155, Trento, Italy.

Brill, E. (1994). Some advances in transformation-based part of speech tagging. In
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI
’94), pages 722–727, Seattle, WA, USA.

Brill, E. (1995). Transformation-based error-driven learning and natural language
processing: A case study in part of speech tagging. Computational Linguistics,
21(4):543–566.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., Lai, J. C., and Mercer, R. L.
(1992). An estimate of an upper bound for the entropy of English. Computational
Linguistics, 18(1):31–40.

120

BIBLIOGRAPHY

Charniak, E. (1993). Statistical Language Learning. MIT Press, Cambridge, MA,
USA.

Chow, Y.-L. and Schwartz, R. (1989). The N-best algorithm: An efficient procedure
for finding top N sentence hypotheses. In Proceedings of the DARPA Speech and
Natural Language Workshop, pages 199–202, Cape Cod, MA, USA.

Church, K. W. (1988). A stochastic parts program and noun phrase parser for unre-
stricted text. In Proceedings of the 2nd Conference on Applied Natural Language
Processing, pages 136–143, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Church, K. W. and Mercer, R. L. (1993). Introduction to the special issue on compu-
tational linguistics using large corpora. Computational Linguistics, 19(1):1–24.

Clarkson, P. and Rosenfeld, R. (1997). Statistical language modeling using the CMU-
Cambridge toolkit. In Proceedings of Eurospeech ’97, volume 5, pages 2707–2710,
Rhodes, Greece.

Cleary, J. G. and Witten, I. H. (1984). Data compression using adaptive coding and
partial string matching. IEEE Transactions on Communications, 32(4):396–402.

Copestake, A. (1996). Applying natural language processing techniques to speech
prostheses. In Proceedings of the AAAI Fall Symposium on developing assistive
technology for people with disabilities, MIT, Cambridge, MA, USA.

Copestake, A. (1997). Augmented and alternative NLP techniques for Augmentative
and Alternative Communication. In (ACL97-WS, 1997), pages 37–42.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms.
MIT Press, Cambridge, MA, USA.

Covington, M. A. (1994). Natural Language Processing for Prolog Programmers.
Prentice Hall, Englewood Cliffs, NJ, USA.

Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to Support Vector Ma-
chines and other kernel-based learning methods. Cambridge University Press,
Cambridge, UK.

Darragh, J. J. and Witten, I. H. (1992). The Reactive Keyboard. Cambridge Series
on Human-Computer Interaction. Cambridge University Press.

Demasco, P. W. and McCoy, K. F. (1992). Generating text from compressed input:
An intelligent interface for people with severe motor impairments. Communica-
tions of the ACM, 35(5):68–78.

121

BIBLIOGRAPHY

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
39(1):1–21.

Doran, C., Egedi, D., Hockey, B. A., Srinivas, B., and Zaidel, M. (1994). XTAG
system — A wide coverage grammar for English. In Proceedings of the 17th
International Conference on Computational Linguistics (COLING ’94), pages
922–928, Kyoto, Japan.

EACL03-WS (2003). Proceedings of the Workshop on Language Modeling for Text
Entry Methods, EACL 2003, Budapest, Hungary. Association for Computational
Linguistics.

Fazly, A. (2002). The use of syntax in word completion utilities. Master’s thesis,
Graduate Department of Computer Science, University of Toronto, Canada.

Fazly, A. and Hirst, G. (2003). Testing the efficacy of part-of-speech information in
word completion. In (EACL03-WS, 2003), pages 9–16.

Feller, W. (1968). An Introduction to Probability Theory and its Applications, vol-
ume 1, chapter Laws of Large Numbers, pages 228–247. John Wiley & Sons,
New York, NY, USA, 3rd edition.

Francis, W. N. and Kučera, H. (1964). Manual of Information to accompany A
Standard Corpus of Present-Day Edited American English, for use with Digital
Computers. Providence, RI, USA. Online document available at http://nora.
hd.uib.no/icame/brown/bcm.html.

Garbe, J., Kühn, M., and Lemler, K. (2001). Unbekanntes Kommunikationsobjekt
im Gespräch. Unterstützte Kommunikation, 4/2001.

Garbe, J. U. (2001). Optimizing the layout of an ambiguous keyboard using a genetic
algorithm. Diplomarbeit, Universität Koblenz-Landau, Fachbereich Informatik,
Koblenz, Germany.

Garside, R. (1987). The CLAWS word-tagging system. In (Garside et al., 1987),
pages 30–41.

Garside, R., Leech, G., and McEnery, A., editors (1997). Corpus Annotation: Lin-
guistic Information from Computer Text Corpora. Longman, London, UK.

Garside, R., Leech, G., and Sampson, G., editors (1987). The Computational Analysis
of English: A corpus-based approach. Longman, London, UK.

Garside, R. and Smith, N. (1997). A hybrid grammatical tagger: CLAWS4. In
(Garside et al., 1997), pages 102–121.

122

http://nora.hd.uib.no/icame/brown/bcm.html
http://nora.hd.uib.no/icame/brown/bcm.html

BIBLIOGRAPHY

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985). Generalized Phrase
Structure Grammar. Basil Blackwell, Oxford, UK.

Gleitman, L. R. and Liberman, M., editors (1995). Language, volume 1 of An Invi-
tation to Cognitive Science. MIT Press, Cambridge, MA, USA, 2nd edition.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, USA.

Gonnet, G. H. and Baeza-Yates, R. (1991). Handbook of Algorithms and Data Struc-
tures. Addison-Wesley, Wokingham, England, 2nd edition.

Good, I. J. (1953). The population frequencies of species and the estimation of
population parameters. Biometrika, 40:237–264.

Greene, B. B. and Rubin, G. M. (1971). Automatic Grammatical Tagging of English.
Brown University, Providence, RI, USA.

Guenthner, F., Langer, S., Krüger-Thielmann, K., Richardet, N., Sabatier, P., and
Pasero, R. (1993). KOMBE: Communication Aids for the Handicapped. Re-
port 92-55, Centrum für Informations- und Sprachverarbeitung (CIS), Munich,
Germany.

Harbusch, K., Knapp, M., and Laumann, C. (2001). Modelling user-initiative in
an automatic help desk system. In Isahara, H. and Ma, Q., editors, Proceed-
ings of the 2nd Workshop on Natural Language Processing and Neural Networks
(NLPNN2001), pages 69–76, Tokyo, Japan.

Harbusch, K. and Kühn, M. (2003a). An evaluation study of two-button scanning
with ambiguous keyboards. In Proceedings of the 7th Conference of the Asso-
ciation for the Advancement of Assistive Technology in Europe (AAATE 2003),
Dublin, Ireland. To appear.

Harbusch, K. and Kühn, M. (2003b). Towards an adaptive communication aid
with text input from ambiguous keyboards. In Proceedings of the 10th Confer-
ence of the European Chapter of the Association for Computational Linguistics
(EACL03), Conference Companion, pages 207–210, Budapest, Hungary.

Harbusch, K., Kühn, M., Hasan, S., Hoffmann, H., and Schüler, B. (2003). Domain-
specific disambiguation for typing with ambiguous keyboards. In (EACL03-WS,
2003), pages 67–74.

Harbusch, K., Widmann, F., and Woch, J. (1998). Towards a workbench for Schema-
TAGs. In Proceedings of the 4th International Workshop on Tree Adjoining
Grammars (TAG+4), pages 56–61, Philadelphia, PA, USA.

123

BIBLIOGRAPHY

Harbusch, K. and Woch, J. (2000). Direct parsing of Schema–TAGs. In Proceedings
of the 6th International Workshop on Parsing Technologies (IWPT), pages 305–
306, Trento, Italy.

Higginbotham, D. J. (1992). Evaluation of keystroke savings across five assistive
communication technologies. Augmentative and Alternative Communication,
8(4):258–272.

Hindle, D. (1994). A parser for text corpora. In (Atkins and Zampolli, 1994), pages
103–151.

Hobbs, J. R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., and
Tyson, M. (1997). FASTUS: A cascaded finite-state transducer for extracting
information from natural-language text. In (Roche and Schabes, 1997), pages
383–406.

Horn, E. M. and Jones, H. A. (1996). Comparison of two selection techniques used
in augmentative and alternative communication. Augmentative and Alternative
Communication, 12(1):23–31.

Horstmann Koester, H. and Levine, S. P. (1994). Modeling the speed of text entry
with a word prediction interface. IEEE Transactions on Rehabilitation Engi-
neering, 2(3):177–187.

Horstmann Koester, H. and Levine, S. P. (1996). Effect of a word prediction feature
on user performance. Augmentative and Alternative Communication, 12(3):155–
168.

ICASSP91 (1991). Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’91), Toronto, Canada.

IDS, editor (1996). Deutsche Rechtschreibung: Regeln und Wörterverzeichnis. Text
der amtlichen Regelung. Gunter Narr Verlag, Tübingen, Germany.

Johansson, S. (1986). The Tagged LOB Corpus: User’s Manual. Norwegian Com-
puting Centre for the Humanities, Bergen, Norway.

Joshi, A. and Hopely, P. (1996). A parser from antiquity. Natural Language Engi-
neering, 2(4):291–294.

Joshi, A. K. and Schabes, Y. (1997). Tree Adjoining Grammars. In Rozenberg,
G. and Salomaa, A., editors, Handbook of Formal Languages, volume 3, pages
69–214. Springer, Berlin, Germany.

124

BIBLIOGRAPHY

Joshi, A. K. and Srinivas, B. (1994). Disambiguation of super parts of speech (or
supertags): Almost parsing. In Proceedings of the 15th International Conference
on Computational Linguistics (COLING ’94), pages 154–160, Kyoto, Japan.

Jurafsky, D. and Martin, J. H. (2000). Speech and Language Processing. Prentice
Hall, Upper Saddle River, NJ, USA.

Kaplan, R. M. and Bresnan, J. (1982). The Mental Representation of Grammatical
Relations, chapter Lexical-Functional Grammar: A Formal System for Gram-
matical Representation, pages 173–281. MIT Press, Cambridge, MA, USA.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 35(3):400–401.

Klund, J. and Novak, M. (2001). If word prediction can help, which program do
you choose? Online document available at http://trace.wisc.edu/docs/
wordprediction2001/.

Knuth, D. E. (1997). Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA, 3rd edition.

Knuth, D. E. (1998). Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, USA, 2nd edition.

Kühn, M. and Garbe, J. (2001). Predictive and highly ambiguous typing for a severely
speech and motion impaired user. In Stephanidis, C., editor, Universal Access
in Human-Computer Interaction (UAHCI 2001), pages 933–937. Lawrence Erl-
baum, Mahwah, NJ, USA.

Kushler, C. (1998). AAC using a reduced keyboard. In Proceedings of the Technology
and Persons with Disabilities Conference 1998. Online document available at
http://www.csun.edu/cod/conf/1998/proceedings/csun98_140.htm.

Langer, S. and Hickey, M. (1999). Augmentative and alternative communication and
natural language processing: Current research activities and prospects. Aug-
mentative and Alternative Communication, 15(4):260–268.

Laver, J. (1994). Principles of Phonetics. Cambridge Textbooks in Linguistics.
Cambridge University Press, Cambridge, UK.

Lee, C.-H., Soong, F. K., and Paliwal, K. K., editors (1996). Automatic Speech and
Speaker Recognition: Advanced Topics. Kluwer Academic Publishers, Boston,
MA, USA.

125

http://trace.wisc.edu/docs/wordprediction2001/
http://trace.wisc.edu/docs/wordprediction2001/
http://www.csun.edu/cod/conf/1998/proceedings/csun98_140.htm

BIBLIOGRAPHY

Leech, G. (1997). Introducing corpus annotation. In (Garside et al., 1997), pages
1–18.

Lesher, G. W., Moulton, B. J., and Higginbotham, D. J. (1998). Techniques for
augmenting scanning communication. Augmentative and Alternative Communi-
cation, 14(2):81–101.

Lieberman, P. and Blumstein, S. E. (1988). Speech physiology, speech perception and
acoustic phonetics. Cambridge Studies in Speech Science and Communication.
Cambridge University Press, Cambridge, UK.

Loncke, F. T., Clibbens, J., Arvindson, H. H., and Lloyd, L. L., editors (1999).
Augmentative and Alternative Communication: New Directions in Research and
Practice. Whurr Publishers, London, UK.

MacKenzie, I. S., Kober, H., Smith, D., Jones, T., and Skepner, E. (2001). Let-
terWise: Prefix-based disabiguation for mobile text input. In Proceedings of
the 14th Annual ACM Symposium on User Interface Software and Technology
(UIST 2001), pages 111–120, Orlando, FL, USA.

Manning, C. D. and Schütze, H. (2000). Foundations of Statistical Language Pro-
cessing. MIT Press, Cambridge, MA, USA.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: The Penn treebank. Computational Linguistics,
19(2):313–330.

Matiasek, J., Baroni, M., and Trost, H. (2002). FASTY — A multilingual approach
to text prediction. In Miesenberger, K., Klaus, J., and Zagler, W., editors,
Computers Helping People with Special Needs — Proceedings of the 8th Interna-
tional Conference ICCHP 2002, Linz, Austria, volume 2398 of Lecture Notes in
Computer Science, pages 243–250, Berlin, Germany. Springer.

McCoy, K. F., Pennington, C. A., and Badman, A. L. (1998). Compansion: From
research prototype to practical integration. Natural Language Engineering,
4(1):73–95.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some lim-
its on our capacity for processing information. The Psychological Review,
63:81–97. Online document available at http://www.well.com/user/smalin/
miller.html.

Newell, A., Langer, S., and Hickey, M. (1998). The rôle of natural language processing
in alternative and augmentative communication. Natural Language Engineering,
4(1):1–16.

126

http://www.well.com/user/smalin/miller.html
http://www.well.com/user/smalin/miller.html

BIBLIOGRAPHY

Ney, H. (1999). The use of the maximum likelihood criterion in language modelling.
In Ponting, K. M., editor, Computational Models of Speech Pattern Processing,
volume 169 of NATO ASI Series F: Computer and Systems Sciences, pages
259–279. Springer, Berling, Germany.

Ney, H., Martin, S., and Wessel, F. (1997). Statistical language modeling using
leaving-one-out. In (Young and Bloothooft, 1997), pages 174–207.

Nietzio, A. (2002). Support vector machines for part-of-speech tagging. In Busemann,
S., editor, 6. Konferenz zur Verarbeitung natürlicher Sprache (KONVENS 2002),
pages 223–226. Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI),
Saarbrücken, Germany.

Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis, chapter Heuristic
Search. Morgan Kaufmann, San Francisco, CA, USA.

Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. Studies
in Contemporary Linguistics. Center for the Study of Language and Information
(CSLI), Stanford. The University of Chicago Press, Chicago, IL, USA.

Purnhagen, H. (1994). N-Best Search Methods Applied to Speech Recognition.
Diploma thesis, Universitetet i Trondheim, Norges Tekniske Høgskole, Institutt
for Teleteknikk, Norway.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications
in speech recognition. In (Waibel and Lee, 1990), pages 267–296.

Rabiner, L. R., Juang, B.-H., and Lee, C.-H. (1996). An overview of automatic
speech recognition. In (Lee et al., 1996), pages 1–30.

Rau, H. and Skiena, S. S. (1996). Dialing for documents: An experiment in informa-
tion theory. Journal of Visual Languages and Computing, 7:79–95.

Roche, E. and Schabes, Y., editors (1997). Finite-State Language Processing. MIT
Press, Cambridge, MA, USA.

Russell, S. J. and Norvig, P., editors (1995). Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, Upper Saddle River, NJ, USA.

Schabes, Y., Abeillé, A., and Joshi, A. K. (1988). Parsing strategies with ‘lexi-
calized’ grammars: Application to Tree Adjoining Grammars. In Proceedings of
the 12th International Conference on Computational Linguistics (COLING ’88),
volume 2, pages 578–583, Budapest, Hungary.

127

BIBLIOGRAPHY

Schabes, Y., Paroubek, P., and XTAG Research Group (1993). XTAG User Man-
ual: An X Window Graphical Interface Tool for Manipulation of Tree-Adjoining
Grammars. University of Pennsylvania, Department of Computer and Informa-
tion Science, Philadelphia, PA, USA.

Schwartz, R. and Austin, S. (1991). A comparison of several approximate algorithms
for finding multiple (N-best) sentence hypotheses. In (ICASSP91, 1991), pages
701–704.

Schwartz, R., Nguyen, L., and Makhoul, J. (1996). Multiple-pass search strategies.
In (Lee et al., 1996), pages 429–456.

Soong, F. K. and Huang, E.-F. (1991). A tree-trellis based fast search for finding the
N best sentence hypotheses in continuous speech recognition. In (ICASSP91,
1991), pages 705–708.

Sparck Jones, K. and Willett, P., editors (1997). Readings in Information Retrieval.
Morgan Kaufmann, San Francisco, CA, USA.

Srinivas, B. (1997a). Complexity of Lexical Descriptions and its Relevance to Partial
Parsing. PhD thesis, University of Pennsylvania, Philadelphia, PA, USA.

Srinivas, B. (1997b). Performance evaluation of supertagging for partial parsing. In
Proceedings of the Fifth International Workshop on Parsing Technology (IWPT-
97), Boston, MA, USA.

Srinivas, B. (2000). A lightweight dependency analyzer for partial parsing. Compu-
tational Linguistics, 6(2):113–138.

Srinivas, B. and Joshi, A. K. (1999). Supertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237–265.

Stolcke, A. (2002). SRILM — An extensible language modeling toolkit. In Proceedings
of the International Conference on Spoken Language Processing (ICSLP-2002),
volume 2, pages 901–904, Denver, CO, USA.

Tanaka-Ishii, K., Inutsuka, Y., and Takeichi, M. (2002). Entering text with a four-
button device. In Proceedings of the 19th International Conference on Compu-
tational Linguistics (COLING ’02), pages 988–994, Taipei, Taiwan.

Tapanainen, P. and Voutilainen, A. (1994). Tagging accurately — Don’t guess if
you know. In Proceedings of the 4th Conference on Applied Natural Language
Processing (ANLP ’94), pages 47–52, Stuttgart, Germany.

128

BIBLIOGRAPHY

Tech Connections (2002). Communication devices. Online document available
at http://www.techconnections.org/resources/guides/CommDevices.pdf.
Assistive Technology Quick Reference Series.

Thede, S. M. and Harper, M. P. (1999). A second-order Hidden Markov Model
for part-of-speech tagging. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, pages 175–182, College Park, MD,
USA. Association for Computational Linguistics.

van Halteren, H., editor (1999). Syntactic Wordclass Tagging, volume 9 of Text,
Speech and Language Technology. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

Venkatagiri, H. S. and Ramabadran, T. V. (1995). Digital speech synthesis: Tutorial.
Augmentative and Alternative Communication, 11(1):14–25.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information Theory,
13(2):1260–1269.

Waibel, A. and Lee, K.-F., editors (1990). Readings in Speech Recognition. Morgan
Kaufmann, San Mateo, CA, USA.

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L. A., and Palmucci, J. (1993).
Coping with ambiguity and unknown words through probabilistic models. Com-
putational Linguistics, 19(2):359–382.

Witten, I. H. (1982). Principles of Computer Speech. Academic Press, London, UK.

Witten, I. H., Radford, M. N., and Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540.

Woch, J. and Widmann, F. (1999). Implementation of a Schema-TAG-Parser. Tech-
nical Report 8–99, Universität Koblenz–Landau, Computer Science Department,
Koblenz, Germany.

XTAG Research Group (2001). A Lexicalized Tree Adjoining Grammar for English.
Technical Report IRCS-01-03, IRCS, University of Pennsylvania, Philadelphia,
PA, USA.

Young, S. and Bloothooft, G., editors (1997). Corpus-Based Methods in Language and
Speech Processing, volume 2 of Text, Speech and Language Technology. Kluwer
Academic Publishers, Dordrecht, The Netherlands.

129

http://www.techconnections.org/resources/guides/CommDevices.pdf

	Abstract
	Introduction
	Motivation
	Outline of this work
	Organization

	Statistical Language Modeling
	Markov models
	Discrete Markov processes
	Hidden Markov Models

	N-gram models
	Discounting
	Back-off
	Entropy

	Text Entry with Ambiguous Keyboards
	Augmentative and Alternative Communication
	Selection methods for augmentative devices

	Word completion and prediction
	Letter-wise approaches
	Word-wise approaches

	Ambiguous keyboards
	Sentence-wise text entry
	Unknown words

	The UKO-II communication aid
	Keyboard layout
	Frequency-based static language model

	Summary

	Partial Parsing and Search Techniques
	Part-of-Speech Tagging
	History of taggers
	Probabilistic data-driven tagging
	Rule-based data-driven tagging

	Tree Adjoining Grammars
	Lexicalized Tree Adjoining Grammars (LTAG)
	LTAG example

	Supertagging
	Lightweight Dependency Analysis
	Bäcker's Supertagger

	Other shallow parsing techniques
	Chunking
	Deterministic partial parsers

	Search methods
	Uninformed search
	Informed search
	N-best search

	N-best Supertagger for Ambiguous Typing
	N-best tree-trellis algorithm
	System's components
	Coping with ambiguity
	Implementation of the tree-trellis search
	Adjusting the candidate lists

	Results and Discussion
	Evaluation corpus
	German LTAG
	Lexicon

	Baseline results
	N-best supertagging results
	Reference test set and cross-validation
	Upper bound
	A* versus greedy search
	Experiment with word trigrams

	Discussion

	Conclusion
	Future work

	UML class diagrams
	Package supertagging
	Package supertagging.nbest
	Package LDA
	Package evaluate

	Evaluation graphs
	STAG vs. BEST
	STAG A* vs. greedy search
	STAG vs. TRIGRAM

	Test run

