Tutorial on Medical Image Retrieval - evaluation -

medinfo 2004, 8.9.2004

Henning Müller, Daniel Keysers

Service of Medical Informatics
Geneva University & Hospitals, Switzerland
Aachen Technical University, Germany
Overview

- Introduction to (image retrieval) evaluation
- **Parts** of an image retrieval benchmark
 - Data sets
 - Query tasks and topics
 - Ground truth
 - Evaluation measures
 - Benchmarking events
- Current initiatives
 - TRECVID
 - Benchathlon
 - imageCLEF
- Conclusions
Introduction

• **What** do we actually want to evaluate?
 • Realistic scenarios
 • Real user needs
 • What can we do if it is not used in practice?

• **Text retrieval** has a long experience in evaluation
 • Cranfield (early 60s), Smart, TREC, CLEF
 • What can we use and what not?
 • More commercial interest
 • First systems in 1960s were more theoretical

• **Usability** testing as well?
Usability testing, human factors

- Tests how real users operate with the system
 - User interface
 - Easy and quick to use
 - Adherence to interface standards
 - Novice vs. Advanced user mode

- Interactivity tests
 - Speed is important

- Result needs to be explained to the user
 - On screen feedback
Evaluating clinical information systems

- **Validation** of algorithms on test data
- Evaluation of the results on real data sets
- **Clinical impact**
 - Through user tests, improved diagnoses
- **Outcome**, does the use reduce the patient length of stay or the reduced use of system resources
 - Often hard to prove

- **We are still in an extremely early stage for image retrieval**
The need for evaluation

- Without evaluation there is **no proof of performance**
 - No improvement can be shown
 - Techniques cannot be compared
 - Techniques will not have any commercial success
 - We need to see how far image retrieval has come with respect to this, can we answer real user needs?

- Systematic evaluation can bring big **improvements** and deliver important results
 - Cranfield tests
 - TREC
 - Other domains
 - Compression, segmentation, watermarking of images, ...
History of image retrieval evaluation

- Example results of one query, then several queries
- Use of databases (Corel, Vistex) containing very similar images
 - Problem: different subsets
- Use of self-defined measures
 - Show clustering, often only one measure
 - Definition of invariant measures (generality, invariant PR graphs)
- Use of standardized measures
 - Recall, precision, normalized average precision (MPEG7)
- Why is it so hard to compare any two retrieval systems on the same basis?
Parts needed for a benchmark

- **Data sets**
 - Corel, Washington, Benchathlon, MPEG-7, Casimage

- **Query topics and tasks**
 - Definition based on real world tasks is needed!

- **Ground truth**
 - Implicitly used through Corel categories
 - Otherwise expensive

- **Evaluation measures**

- **Benchmarking events**
Image data sets available

- Corel
 - Not sold anymore, but thumbnails possible
- University of Washington
 - Groups of photographs from various regions
- MPEG-7 (copyrighted)
- Benchathlon
 - Images of people
- Casimage (medical images, and multilingual text)
- Corbis test set (text and images)
 - Which conditions?
- NIH publishes all the created databases but non for retrieval, so far
- Size matters!
Query tasks and topics

- Very few analyses of user behavior are available
 - Journalists queries (Finland)
 - Image archive use (England)
 - Trademark retrieval is fairly well defined
 - Study on medical images is underway

- How can we define real-world tasks?
 - They will have to be based on the databases available
 - Survey of medical teaching file users is planned
 - Problem: Almost no retrieval systems in routine use
 - How can we find out real behavior without a standard use of the systems?
• **Expensive** to define
 - Will need to involve real users
 - More than one set is good to model subjectivity
 - Pooling reduces complexity slightly (TREC methodology)

• Classification of images is practical but change of databases might be hard

• Databases and ground truth will need to be changed from time to time (regularly)

• **Community effort** would be great
 - Common project (EU, NSF, ?), financing needed
 - Annotation?
Performance measures

- **Standards** that are easy to interpret exist
 - Precision, recall, norm. average rank of MPEG7, ...
 - Mean average precision to create a ranking at TREC
- **One measure is not enough**
 - Although measures are strongly correlated
- **Normalization of collection size (generality) is not needed**
 - Difficulty of query task can be described in other ways
- **Measures do not pose a critical problem for evaluation**
Performance measures (2)

- **Precision**
 \[P = \frac{\text{number of relevant images retrieved}}{\text{number of all images retrieved}} \]

- **Recall**
 \[R = \frac{\text{number of relevant images retrieved}}{\text{number of all relevant images in the DB}} \]
• **Needed** for content-based visual information retrieval!!

• A friendly event that should help everyone
 • Such as trec, clef

• **Co-located with conferences** where people go anyways to reduce costs
 • Benchathalon at SPIE electronic imaging
 • CLEF at ECDL

• **Feedback and acceptance from the community is important**
 • But how can we motivate research groups?
 • Databases, other **benefits**
A technical infrastructure for evaluation

- Results send in **offline**
 - TREC, CLEF
- **Interactive** user evaluations

- Automatic solution based on a standard **communication protocol**
 - MRML
 - Solutions exist
 - Web-based evaluation procedure allows quick evaluations after an event
 - Harder to get acceptance
• Video retrieval at **TREC**, now a separate workshop
• Started in 2001
• 12 participants in 2001, 24 in 2003
• 130 hours of video in 2001
• **Accepted in the community**, proceedings have an impact, new tasks added every year
• Financing through TREC, domain seems important and databases are available
• **Speech and captions provide important semantic information**
TRECVID tasks

- **Shot boundary** detection
 - Cut or gradual
- **Story** segmentation
 - One news story, contains several shots
- **Feature** extraction
 - Concept extraction: indoor, outdoor, speech, people, train, boat, road, Bill Clinton, ...
- **Search**
 - Human information need is expressed in text+ multimedia
 - Results are a ranked shot list
• Goal was to create a forum for the discussion on evaluation of image retrieval systems and the creation of an evaluation infrastructure
• Situated at SPIE electronic imaging
• Started in 2001, after discussions in 2000 and an outline document on such a benchmark
• 2002: 5 papers
• 2003: 8 papers
• 2004: only discussions among participants
• Located at the Cross Language Evaluation Forum (CLEF)
• Goal is to evaluate the retrieval of images through multi-lingual information retrieval
• 2003: a first image retrieval task with 4 participants
 • Queries in different languages than the English collection annotation, image is part of the query
• 2004: 17 participants for two tasks (~200 runs)
 • Medical task for visual image retrieval added where the query topic is an image, only
Based on the TREC/CLEF methodologies

- Schedule for participation
- Release of data to participants, then query tasks
- After result submission, pooling and ground truthing
- Event to compare results
- Proceedings with an impact

Still in a learning phase as only in the second year

New tasks have been added

- Interactive query/retrieval in 2004
- Medical, visual only in 2004
- Tasks need to vary every year to cover new grounds
28,000 images, 25 queries
12 participants in 2004
Submissions include visual and textual runs and a large variety of techniques
• Almost 9000 images, 26 query tasks
• Goal was to activate the visual retrieval community
• Teaching file database, tasks chosen by a radiologists to represent data
 • Ground truthing as well by radiologist
• Submissions include automatic and manual submissions and several techniques
 • Automatic query expansion
 • Combination textual and visual data for expansion
• Visual retrieval delivers good results in the medical task
• **Relevance feedback** is extremely important
• Best results were obtained by combining textual and visual features
 • Both, for visual and textual tasks
 • More experience with this is needed
• Most groups wanted test data, which was not available this year
Conclusions

- Evaluation is essential for any research domain to prove the system performance
- Benchmarking events advance science and everybody profits
- Data sets and feedback from real users is crucial for future tasks
 - Studies on this are needed
 - Data sets need to be made available