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Part 1

Preprocessing
Ilja Bezrukov

Bezrukov, Deselaers, Keysers, Mauser: GfKl Data Mining Competition 2005 GfKl 2005 – March 9, 20053



Preprocessing

Real-world data often not suited to achieve good results in classification

Problems

• missing values

• outliers

• “insane distributions”

• noisy values

Possible countermeasures

• linear scaling

• creation of binary features

• outlier detection and substitution

• feature selection

• creation of histograms

• using the output of a classifier
as new feature
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Data for the task

Task: Prediction of a possible liquidity crisis of a company

• 20000 training and 10000 test examples

• 26 numerical features with unknown semantics

• 24% of missing values per feature on the average

• 2 classes, 0: no liqudity crisis, 1: liquidity crisis

• 11% of the training examples are from class 1
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Order preserving transformation

• contains a bin for each unique feature value

• feature values are replaced with the [0..1]-normalized index of their bins
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result: normalization of distances between neighboring feature values
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Equi-depth histogram

• contains 10 bins, each bin contains approx. the same number of elements

• feature values are replaced with the center of their bins
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result: discretization of the feature space and smoothing of feature values
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Binary features

Idea: Generalizing or emphasizing particularities

• missing values

• special values (e.g. zero)

• represent categorial values that are expressed numerically
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Dataset creation

test datatraining data 

1. merge train and test data for transformation:

merged data 

2. transform data completely
3. re-separate training and test data

transformed training data transf. test data

create two data sets:

• “quantile histogram”

• “equi-depth histogram”
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Part 2

Training and Testing
Thomas Deselaers

Bezrukov, Deselaers, Keysers, Mauser: GfKl Data Mining Competition 2005 GfKl 2005 – March 9, 200510



Problem

free parameters:

• classifier

• preprocessing

• feature combination

• classifier combination

• parameters to classifier

problem: model assessment and selection

• how to select the best for each of the above parameters?

• how good generalizes a considered model to unseen test data?
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Model Complexity vs. Classifier Performance
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Splitting the Data

given situation:

test datatraining data 

take some data from the training data away:

validation test datatraining data 

perform experiments with 5-fold cross validation on remaining training data:

validation test data
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Cross-Validation
assessing classifier performance:

• cross-validation on reduced training data:
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aim:

• determine some “good” setups
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Evaluation on Validation data

• given the set of “good” setups

• evaluate these on the so-far unseen training data:

validationtraining data 

Result:

• performance measure (here: recall) on the validation data

• average these performance measures with the according measures from
cross-validation experiments to select the “best” method
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Probabilty of Improvement

Question: What is the probability that one method is better than another?
(or: What is the probability that the one method is only by chance better than the other?)

comparing two methods:

A = B A > B A < B

probability of improvement:

• draw M ·N independent samples from the data and measure the performance

• count how often method A performs better than B on the M sample sets

The relative frequence of A performing better B on the M sample sets is the
bootstrap estimator for the probability of A outperforming B.
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Classification of the Testdata

from our current setup

validation test datatraining data 

go back to the initial setup

test datatraining data 

and classify the test data using all training data.
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Part 3

Classification 1
Arne Mauser
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Classification 1

utilization of publicly available classifiers:

• Weka data mining toolkit for JAVA

• Netlab machine learning library for Matlab

classifiers were selected according to performance on crossvalidation

models employed in the approaches:

• logistic model tree, LMT (Weka)

• alternating decision tree, ADT (Weka)

• multilayer perceptron, MLP (Netlab)

• logistic regression (Netlab)
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Multi-Layer Perceptron

single perceptron:
compute single output (class) value
as function of the weighted sum of
input values

multi-layer perceptron:
connect the outputs of perceptrons with
inputs of other perceptrons

approach used 2 layers of perceptrons
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Alternating Decision Tree

decision tree with alternating levels of
decision nodes and prediction nodes

training performed using modified
AdaBoost algorithm

provides confidence measure for
predictions

classification by combining all predictions
along the path from the root to the leaf
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Logistic Model Tree

decision tree with logistic regression functions at the leaves

combine the advantages of logistic regression

• restricted model space

• models posterior probibilities p(k|x)

• stability of fitting process

and decision trees

• less restricted model space

• capture non-linear patterns

decision tree learning algorithm based on C4.5

regression estimated using LogitBoost algorithm
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Part 4

Classification 2
Daniel Keysers
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Naive Bayes

naive Bayes classifier:
assumption of (conditional) feature independence

Pr(x|k) =
∏

i

Pr(xi|k)

often good results despite the obvious incorrectness of assumption

Can we use a similar naive combination for the posteriors Pr(k|xi) ?
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Classifier Combination of Feature Posteriors

view Pr(k|xi) as (weak) classifier (cp. boosting)
use classifier combination on these

classifier combination:
usually sum rule gives better results than product rule

leads to “naive posterior” rule:

Pr(k|x) ∝
∑

i

Pr(k|xi)

estimate importance of features in log-linear model :

Pr(k|x) ∝ exp
( ∑

i

λiPr(k|xi)
)

here:
estimate Pr(k|xi) as relative frequencies
after histogramization of features xi
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Maximum Entropy

resulting distribution has the log-linear or exponential functional form:

pΛ(k|x) =

exp

[∑
i

λifi(x, k)

]
∑
k′

exp

[∑
i

λifi(x, k′)

]

optimization problem is convex and has a unique global maximum

algorithm to compute the global maximum given a training set:

→ generalized iterative scaling

crucial problem in maximum entropy modeling:

– choice of the appropriate feature functions {fi}
– here: use Pr(k|xi)
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Classifier Combination

widely used method to smooth disadvantages of different classifiers

– parallel combination method

– different classifiers (and maybe parameters)

– using same features & training data

– combination method: sum of posteriors

one of the best method s used in the competition combines:

– naive posterior & maximum entropy

– alternating decision tree

– logistic regression
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Results

Method CV-Score V-Score testdata-score rank
combination 1445 360 894 2
LMT 1408 358 894 2
MLP 1395 358 884 6
ADT 1426 357 883 7
NB-ME 1412 362 881 9
maximum 1796 448 1111 -
winner (D.Vogel) 896 1
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Conclusion

– use appropriate data preprocessing

– avoid overfitting (cross-validation, hold-out, classifier combination)

– have a set of suitable classifiers ready for evaluation

– it is not necessary to use support vector machines
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Thank you for your attention!
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Maximum Entropy
idea: we have information about a probability distribution from training data

→ choose consistent distribution and with highest possible entropy

feature functions : (x, k) 7−→ fi(x, k)

maximum entropy principle:

Pr′(k|x) = arg max
Pr(k|x)

{
−

∑
n

∑
k

Pr(k|xn) log Pr(k|xn)
}

with the requirements :
– normalization constraint for each observation x:∑

k

Pr(k|x) = 1

– feature constraint for each feature i:∑
n

∑
k

Pr(k|xn)fi(xn, k) =
∑

n

fi(xn, kn)
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