A Cocktail of Deep Syntactic Features for Hierarchical Machine Translation

Daniel Stein, Stephan Peitz, David Vilar and Hermann Ney

Human Language Technology and Pattern Recognition, RWTH Aachen University

Introduction

- Using syntactic knowledge in hierarchical machine translation is reported to improve translation quality
- However, typically only one method is analyzed in each paper
- Here we compare and combine three different methods
- Parse Matching (Vilar et al., 2008)
- Soft Syntactic Labels (Venugopal et al., 2009)
- String-to-Dependency (Shen et al. 2008)

Data Used

Medium-sized (3M sent.) training set from NIST Chinese-English NIST 2006 evaluation set as a development corpus NIST 2008 evaluation set as the blind test corpus

Experimental Results

Parse Matching (par)

up to +0.3 BLEU

A lexical phrase extracted from a sentence is syntactically valid if it corresponds to the yield of a parse tree node Syntactically invalid phrases are penalized

Soft Syntactic Labels (syn)

up to +0.9 BLEU

- Labels of the parse trees are appended as additional information to the phrases
- A probability measuring the well-formedness of the translation

parsematch	31.37	63.09	24.36	67.89
dependency	32.23	61.93	24.61	66.69
syntax labels	32.22	62.12	24.99	67.15
par + dep	32.03	62.45	24.61	67.57
syn + par	32.36	62.27	25.31	67.28
syn + dep	32.90	61.39	25.39	66.66
all additional models	32.89	60.99	25.11	66.39

Translation Examples

reference	I hope that all of these worries are needless.
baseline	I hope that all these are worried that is.
par	We hope that all concerned that this is groundless.
dep	We hope that all this worry is groundless.
syn	I hope that all this concern is that.
par + dep	We hope that all these are worried about is the.
syn + par	I hope that all this worry is groundless.
syn + dep	I hope that all this worry is unnecessary.

parse tree is computed $\left\{egin{array}{l} p(A ightarrow uDvCw|r) \ p(B ightarrow uAvBw|r) \ p(C ightarrow uCvDw|r) \end{array} ight.$ dX ightarrow uXvXw $p(A|d_1)$ ` $p(B|d_2)$ $p(D|d_1)$ $p(C|d_2)$ d_2 $p(E|d_2)$ (Venugopal et al., 2009)

String-to-Dependency (dep)

up to +0.6 BLEU

- The dependency tree for the translation is reconstructed during search
- The well-formedness of the tree is measured applying dependency-level language models as rescoring

I hope that all this worry is superfluous. all

Commercial Break

- RWTH's hierarchical phrase-based translation toolkit Released as open source software
- Implemented in C++
- Applied in different MT evaluations (WMT, Gale, IWSLT, ...) http://www.hltpr.rwth-aachen.de/jane

(Vilar et al., 2010)

Conclusion

The above mentioned methods seem to complement each other Their combination achieves an increase of 1% in BLEU and a reduction of nearly 2% in TER All methods are released as open-source within the Jane framework

Lehrstuhl für Informatik 6 – Computer Science Department – RWTH Aachen University – Aachen, Germany e-mail: <surname>@cs.rwth-aachen.de www:http://www-i6.informatik.rwth-aachen.de