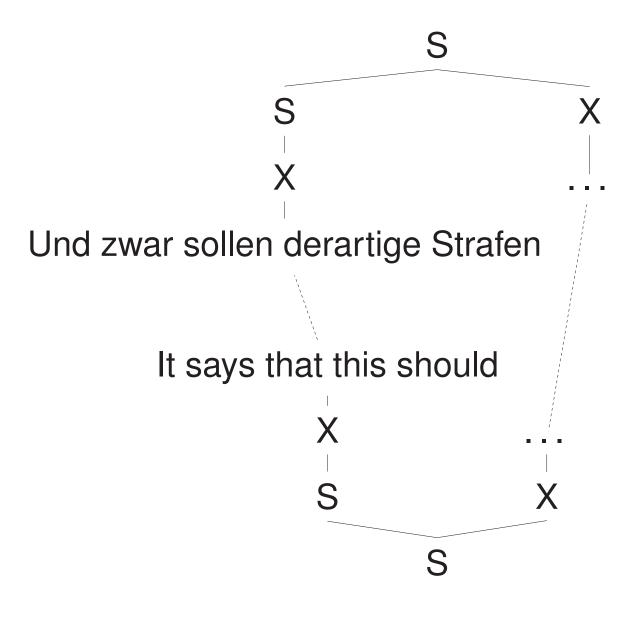
### Motivation

- heuristic hierarchical rule extraction causes two p
- translation probabilities depend on simple count
- Iarge number of extracted rules
- employ forced derivation procedure on parallel tra
- Iearn better rule probabilities with an EM-inspire
- apply more consistent pruning regarding the training

### Overview

- efficient framework to estimate translation probab
- perform an EM-inspired algorithm on parallel train
- expectation step: calculate expected counts for
- maximization step: update the translation proba
- during the forced derivation step
- two-parse algorithm [Dyer, HLT-NAACL 2010]
- inside-outside algorithm [Cmejrek et al., IWSLT
- Ieave-one-out [Wuebker et al., ACL 2010]
- Iog-linear combination of all features used in the
- after the forced derivation procedure
- threshold pruning to reduce rule set size using
- experimental results on following Europarl task from
- ▶German→English
- ▶ French→English
- open-source translation toolkit Jane [Wuebker et
- http://www.hltpr.rwth-aachen.de/jan

## **Forced Derivation Step**


- goal: calculate expected counts for each applied
- all possible synchronous derivations are needed
- two-parse algorithm reduces average run-time
- ▶ for a given sentence pair  $(f_1^J, e_1^I)$
- ▶ parse  $f_1^J$ , extract applied rules
- annotate rules with the source span
- parse  $e'_1$  with annotated rules
- perform inside-outside algorithm on target pars
- calculate expected count using inside and outs
- expected counts for a rule are summed up over

|                                                  |                                                                            |  | Le               |
|--------------------------------------------------|----------------------------------------------------------------------------|--|------------------|
| oroblems<br>ts from a word alignment             |                                                                            |  |                  |
| aining data<br>ed algorithm<br>anslation process |                                                                            |  |                  |
|                                                  |                                                                            |  |                  |
| oilities                                         |                                                                            |  |                  |
| ning data<br>each applied rule<br>abilities      |                                                                            |  | ► De             |
|                                                  |                                                                            |  | Ex               |
| 2009]<br>e translation process                   |                                                                            |  | ► par<br>► initi |
|                                                  |                                                                            |  | ▶ par            |
| expected counts                                  |                                                                            |  | ► pre            |
| rom the WMT 2012                                 |                                                                            |  |                  |
| al., CoLing 2012]                                |                                                                            |  |                  |
|                                                  |                                                                            |  |                  |
|                                                  |                                                                            |  | -                |
| d rule                                           | Rule Annotation                                                            |  | ⊾ in a<br>⊾ in   |
| $f_1^5 = \text{Ur}$                              | nd zwar sollen derartige Strafen                                           |  | ⊾ in             |
|                                                  | $X \rightarrow \langle \text{sollen } X, X \text{ should} \rangle$         |  | ► red            |
|                                                  | $X_3^5 \rightarrow \langle \text{sollen } X, X_4^5 \text{ should} \rangle$ |  |                  |
| se tree                                          |                                                                            |  |                  |
| side probabilities                               |                                                                            |  |                  |
| all sentence pairs                               |                                                                            |  |                  |
|                                                  |                                                                            |  |                  |

**Forced Derivations for Hierarchical Machine Translation** 

Stephan Peitz, Arne Mauser, Joern Wuebker and Hermann Ney Human Language Technology and Pattern Recognition, RWTH Aachen University

## ave-one-out



erivation example without and with leave-one-out


# perimental Results

- rallel training data: around 2M sentences
- tial rule set heuristically extracted
- rsing of 2000 sentences in 2.5 hours on a single machine (on average)
- eliminary experiments on the development set of the German $\rightarrow$ English task

|                  | <b>dev</b><br>Bleu | avg. # applied<br>glue rules /sent. |
|------------------|--------------------|-------------------------------------|
| without I10      | 20.3               |                                     |
| length-based I1o | 21.0               | 5.7                                 |
| baseline         | 20.8               | 3.4                                 |

- addition: log-linear interpolation
- itersect learned rule set with initial rule set
- iterpolation weight  $\omega$  was adjusted on the development set
- Juction of the rule set size by more than 95% provements on the test set of the German $\rightarrow$ English and French $\rightarrow$ English tasks

| setup                          | German→English |      | French → English |      |
|--------------------------------|----------------|------|------------------|------|
|                                | Bleu           | TER  | Bleu             | TER  |
| baseline                       | 19.1           | 63.4 | 24.6             | 57.2 |
| forced derivation +/10 +cutoff | 19.5           | 63.1 | 25.0             | 57.2 |
| interpolation $\omega = 0.2$   | 19.8           | 62.6 | 25.6             | 56.3 |



| dev  | % of full                                           |
|------|-----------------------------------------------------|
| Bleu | rule set                                            |
| 21.0 | 3.2                                                 |
| 21.4 | 3.9                                                 |
| 21.4 | 4.9                                                 |
| 21.2 | 13.2                                                |
| 21.1 | 23.4                                                |
| 21.0 | 92.0                                                |
|      | BLEU<br>21.0<br>21.4<br><b>21.4</b><br>21.2<br>21.2 |