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Introduction,

Current situation in Automatic Speech Recognition (ASR):
• Decade brought &50% relative improvements in WER by introducing artifical neural

networks to all levels of modeling.

• Traditional state-of-the-art challenged by novel “end-to-end” ASR architectures.

• Enabling factor: generic machine learning tools, developed for diverse and complex tasks.

ASR very challenging task - advantages from a method evaluation viewpoint:
• Provides clear performance objective.

• Strong state-of-the-art performance to compete against for new approaches.

• Various and diverse well-covered benchmarks.

Topics of interest:
• performance vs. system complexity

• variable length sequence alignment: beyond HMM

• primary training data and secondary knowledge sources

• reusability of inferred knowledge
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Statistical Sequence Classification,

Sequence Classification

Tasks:
• automatic speech recognition

• text image recognition

• machine translation

Most general case:
• input sequence:
X := x1...xt ...xT

• output sequence (of unknown length N):
W := w1...wn...wN

• true distribution pr(W |X )
(can be extremely complex!)

Speech Recognition

Informatik 6: Human Language Technology and Machine Learni ng

Automatic Speech Recognition

we  want to preserve this  great  idea

Machine Translation

wir wollen diese große Idee erhalten

 we  want to    preserve  this   great   idea

Handwriting Recognition

we  want to preserve this  great  idea

three tasks for machine learning:
– automatic speech recognition (ASR)
– handwriting recognition (HR)
– machine translation (MT)

H. Ney 1 May 28, 2015
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Statistical Sequence Classification,

Statistical Approach Revisited
• Performance measure:

judges quality of system output

• Probabilistic models:
capture dependencies
– elementary observations: Gaussian

mixture, log-linear, SVM, NN, ...
– strings: n-gram Markov chain,

HMM, CRF, RNN, LSTM,
attention/transformer, ...

• Training criterion:
learns free parameters of models

– linked to performance criterion?
– complex optimization (efficiency!)

• Bayes decision rule:
generates output word sequence

– combinatorial problem (efficient algorithms: dynamic programming, beam search, A∗, ...

Training
Data

Test
Data

Probabilistic
Models

Performance Measure
(Loss Function)

 Training 
Criterion

Bayes Decision Rule
(Efficient Algorithm)

Output

Parameter
Estimates

Evaluation

Optimization
(Efficient Algorithm)

Speech Recognition = Modeling + Statistics + Efficient Algorithms
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Statistical Sequence Classification,

Sequence Decision Rule

• performance measure or loss function L[w̃ Ñ
1 ,w

N
1 ] (e.g. edit distance for

word/phoneme/character error computation) between true output sequence w̃ Ñ
1 and

hypothesized output sequence wN
1 .

• Bayes decision rule minimizes expected loss:

xT1 → rL(xT1 ) := arg min
wN
1

{∑

w̃ Ñ
1

pr(w̃ Ñ
1 |xT1 ) · L[w̃ Ñ

1 ,w
N
1 ]
}

• Standard decision rule uses sequence-level zero-one loss: minimizes sentence error

xT1 → r0-1(x
T
1 ) := arg max

wN
1

{
pr(wN

1 |xT1 )
}

Since [Bahl & Jelinek+ 1983], this simpified Bayes decision rule is widely used
for speech recognition, handwriting recognition, machine translation, ...

• Works well, as often both decision rules coincide.
This can be proven under certain conditions [Schlüter & Nussbaum+ 2012], e.g.:

L[wN
1 , w̃

Ñ
1 ] is a metric, and max

wN
1

pr(wN
1 |xT1 ) ≥ 0.5 ⇒ rL(xT1 ) = r0-1(x

T
1 )
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Statistical Sequence Classification,

Statistical Approach: Integrated Decisions End-to-End

segmentation and classification

subword   hypotheses

word boundary detection 
     and lexical access

  syntactic, semantic, 
and pragmatic analysis

word   hypotheses

sentence   hypotheses

       subword models
(phoneme, character, etc.)

pronunciation lexicon

language model

   search, integrating 
all knowledge sources

acoustic feature extraction

audio signal

       recognized
   word sequence
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Statistical Sequence Classification,

Statistical Approach: Training End-To-End

segmentation and classification

subword   hypotheses

word boundary detection 
     and lexical access

  syntactic, semantic, 
and pragmatic analysis

word   hypotheses

sentence   hypotheses

       subword models
(phoneme, character, etc.)

pronunciation lexicon

language model

   search, integrating 
all knowledge sources

acoustic feature extraction

audio signal

spoken/transcribed
   word sequence

signal analysis model

search approach
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additional textual data

phoneme set
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ASR Architectures: State-of-the-Art in Transition,

Sequence Modeling
• Problem in Bayes decision rule:

– true posterior distribution: unknown
– separation into language model and acoustic model

p(wN
1 |xT1 ) =

p(wN
1 ) · p(xT1 |wN

1 )

p(xT1 )

• Acoustic model p(xT1 |wN
1 ): links sentence

hypothesis wN
1 to observation sequence xT1 .

• Problem in ASR: speaking rate variation
→ non-linear time alignment

• Hidden Markov model:

– linear chain of states s = 1, ..., S
– transitions: forward, loop and skip
– emissions: Gaussian mixture distributions (originally)

• acoustic model using hidden state sequences sT1 :

t

s

1 2 3 4 5

HMM

• Trellis:

– unfold HMM over time t = 1, ...,T
– path: state sequence sT1 = s1...st...sT
– observations: xT1 = x1...xt...xT

p(xT1 |wN
1 ) =

∑

sT1

p(xT1 , s
T
1 |wN

1 ) =
∑

sT1

∏

t

[p(st|st−1,w
N
1 )︸ ︷︷ ︸

transition

· p(xt|st,wN
1 )︸ ︷︷ ︸

emission

]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Statistical Approach

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

Statistical Approach to Automatic
Speech Recognition (ASR)
[Bahl & Jelinek+ 1983]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Search

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

search approaches:
• A∗/stack decoder [Jelinek & Bahl+ 1975]

• dynamic programming lexical prefix tree
beam search [Ney & Haeb-Umbach+ 1992]

• Look-ahead [Bahl & De Gennaro+ 1993,
Steinbiss & Tran+ 1994]

• WFST decoding [Mohri & Riley 1999]

• RNN LM one pass search
[Hori & Kubo+ 2014]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

neural acoustic modeling:
• hybrid HMM [Bourlard & Morgan 1993]
→ large vocabulary [Seide & Li+ 2011]
→ RNNs [Robinson 1994]

• deep generative modeling
[McDermott 2018]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1

 

...

 

xT

p(w1 ... wN)  p(y1 ... yT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(y1 ... yT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

Neural
Network

  y1...yT

neural feature transformation:
• tandem [Hermansky & Ellis+ 2000]

• bottleneck [Grézl & Karafiát+ 2007]
earlier introduced as non-linear LDA
[Fontaine & Ris+ 1997]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Neural Networks

Speech Input

Acoustic Model

Language Model

Global Search Process:

maximize

p(w1 ... wN)  p(s1 ... sM  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(s1 ... sM  |  w1...wN )

p(w1 ... wN)

opt {w1 ... w   }N

  s1 ... sM

Samples

integrated learning of acoustic
model and feature extraction
• single channel [Palaz & Collobert+ 2013]

[Tüske & Golik+ 2014]
[Golik & Tüske+ 2015a]

• multichannel [Sainath & Weiss+ 2015]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Neural Networks

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

  x1 
...
 
xT

p(w1 ... wN)  p(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p(x1 ... xT  |  w1...wN )

p(w1 ... wN)

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

neural language modeling:
• feed-forward (FF) [Schwenk 2007]

• very long context FF [Tüske & Irie+ 2016]

• recurrent [Mikolov & Karafiat+ 2010]

• LSTM [Sundermeyer & Schlüter+ 2012]

• Transformer [Liu & Saleh+ 2018]
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ASR Architectures: State-of-the-Art in Transition,

ASR Architecture:
Novel Approaches

Speech Input

Feature
Extraction

Integrated/End2End
Model

Global Search Process:

maximize

  x1 
...
 
xT

 p(x1 ... xT  ,  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  p( x1 ... xT | w1...wN )

Feature Vectors

opt {w1 ... w   }N

  s1 ... sM

Samples

 

integrated NN modeling and search:
• connectionist temporal classification

(CTC) [Graves & Fernández+ 2006]

• RNN-transducer/recurrent neural aligner
[Graves 2012, Sak & Shannon+ 2017]

• encoder-attention-decoder approach
[Bahdanau & Chorowski+ 2015]
[Chan & Jaitly+ 2015]

• transformer [Zhou & Dong+ 2018]

• segmental/inverted HMM
[Lu & Kong+ 2016]
[Doetsch & Hegselmann+ 2016]

• 2-dim. LSTM [Bahar & Zeyer+ 2019]

14 of 40 R. Schlüter: Modeling in ASR: Beyond (Standard) HMMs

Lehrstuhl Informatik 6 — Human Language Technology and Pattern Recognition
RWTH Aachen University Sep. 16, 2019



ASR Modeling Approaches,

Outline

Introduction

Statistical Sequence Classification

ASR Architectures: State-of-the-Art in Transition

ASR Modeling Approaches
Generative Modeling
Time-Synchronous Discriminative Modeling
Label-Synchronous Discriminative Modeling
Results & Analysis

Conclusions

References
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ASR Modeling Approaches,

Generative Modeling

Neural Network Acoustic Modeling within Standard HMM Approach

• Decomposition within Bayes decision rule [Bahl & Jelinek+ 1983]:

argmax
wN
1

p(wN
1 |xT1 ) = argmax

wN
1

p(wN
1 ) · p(xT1 |wN

1 )

• Decomposition of first order HMM:

p(xT1 |wN
1 ) =

∑

sT1

T∏

t=1

p(xt|st ,wN
1 ) · p(st|st−1,w

N
1 )

• emission probability distribution using Gaussian mixture:
– Gaussian mixture distribution:

p(xt|st,wN
1 ) =

∑

l

cst lN (xt|µst l ,Σsl)

– (state) posterior level:
+ Gaussian w/pooled covariance equivalent to log-linear model with linear features
+ Gaussian mixture equivalent to log-linear mixture model

• Possibilities to introduce neural network modeling while keeping the HMM alignment process?
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ASR Modeling Approaches,

Generative Modeling

Tandem [Hermansky & Ellis+ 2000]

• Idea: use (properly transformed) ANN outputs to augment acoustic feature set

• First ANN-approach to considerably improve LVCSR on top of Gaussian-mixture HMMs

• Approach:
– train phone-classifier ANN, use its output, or the output of intermediate/hidden layers as

(additional) features for Gaussian mixture HMMs,

– variant: bottleneck features [Grézl & Karafiát+ 2007], earlier introduced as non-linear
discriminant analysis [Fontaine & Ris+ 1997]

– usually requires less labels for NN training, than hybrid DNN/HMM approach.

– Typically, some post-processing is applied to the neural network output: log, decorrelation and
dimension reduction with PCA, concatenation with basic acoustic feature set (e.g. MFCC).

• Advantages:
– all techniques from Gaussian mixture HMM modeling can be used,

in particular speaker adaptation and discriminative (sequence) training
– cross-/multi-lingual training data exploitable [Stolcke & Grézl+ 2006, Tüske & Pinto+ 2013]
– bootstrapping on minimal amounts of target task training data [Golik & Tüske+ 2015b]

• Disadvantage: training usually twofold and thus inconsistent - two models required: tandem
DNN and Gaussian mixture or hybrid HMM (yet: fine-tuning end-to-end [Tüske & Golik+ 2015])
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ASR Modeling Approaches,

Generative Modeling

Hybrid HMM: modeling the acoustic vector xt [Bourlard & Morgan 1993]

• Phonetic labels (allophones, sub-phones): (s,wN
1 )→ φ = φs ,wN

1

• Typical approach: decision trees, e.g. classification and regression trees (CART):
• Hidden Markov model (HMM) emission probability density:

p(xt|s,wN
1 ) = p(xt|φs ,wN

1
)

• Idea: rewrite the emission probability for label φ and acoustic vector xt :

p(xt|φ) =
p(xt) · p(φ|xt)

p(φ)

– prior probability p(φ): estimated as relative frequencies (alternatively averaged NN posteriors)
– for recognition purposes: term p(xt) can be dropped

• Result: rather than the phone label emission distribution p(xt|φ),
model the phone label posterior probability by an NN:

xt → p(φ|xt)
• Justification:

– easier learning problem: O(104) labels φ vs. vectors xt ∈ IRD=40

– well-known result in pattern recognition (but ignored in ASR!)
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ASR Modeling Approaches,

Generative Modeling

Hybrid vs. Tandem and Beyond

• Tandem:
– provides high-level, robust and crosslingually generalizing features.
– known techniques from GMHMM apply (speaker adaptation, discriminative training, etc.)

• Hybrid:
– single model, consistent training.

• Discussion:
– Are they so much different?
– Relation between Gaussian and log-linear modeling: with pooled covariance only linear

features are used: similarity to (unnormalized) softmax layer
– joint tandem DNN and Gaussian mixture HMM can be viewed as hybrid DNN/HMM: specific

topology (combination of linear, sum-/max-pooling and softmax [Tüske & Golik+ 2015])
– Tandem & Gaussian mixture HMM can be trained jointly [Tüske & Tahir+ 2015] → hybrid

• Experiments:
– [Tüske & Sundermeyer+ 2012, Tüske & Golik+ 2015], ...: similar results for tandem & hybrid

• Towards deep generative modeling:
– combine deep tandem features with deep density models [McDermott 2018]
– what can be learnt from deep generative modeling in TTS? e.g. [van den Oord+ 2016]
→ utilize for unsupervised training [Tjandra+ 2017]
→ issue: speaker dependence/adaptation [Tjandra+ 2018]
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ASR Modeling Approaches,

Time-Synchronous Discriminative Modeling

Discriminative Modeling: from Labels to Frames

• Basically, Bayes decision rule requires modeling of label ([sub]word, ...) posterior probabilities

• Idea: redefine label sequence on time frame level:

p(cN1 |xT1 )← p(cT1 |xT1 )

with unique mapping from frame-wise to original label sequence G : V∗ → V∗, cN1 = G (cT1 )
• Alignment: marginalize over label boundaries on time frame level

p(cN1 |xT1 ) =
∑

cT1

p(cT1 , c
N
1 |xT1 )

=
∑

cT1

p(cN1 |cT1 )p(cT1 |xT1 ) =
∑

cT1 :G (cT1 )=cN1

p(cT1 |xT1 )

with deterministic frame to label mapping: p(cN1 |cT1 ) =

{
1 iff G (cT1 ) = cN1
0 otherwise

• decompose frame-level posterior p(cT1 |xT1 ) into product over time frames and assume
– label independence: connectionist temporal classification (CTC) [Graves & Fernández+ 2006]
– full label context: RNN-T/recurrent neural aligner [Graves 2012, Sak & Shannon+ 2017]
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ASR Modeling Approaches,

Time-Synchronous Discriminative Modeling

Connectionist Temporal Classific. (CTC) [Graves & Fernández+ 2006]

• Mapping from frame to label level: extend label set by blank symbol “ε“: V = V ∪ {ε}
– blank symbol may be inserted at any point without any effect
– Adjacent identical labels need to be separated by blank, e.g.:

G (εsspεeeeεεeεcεhhhε) = G (speεeεcchhε) = speech

• Assume statistical independence of label sequence

p(cT1 |xT1 ) =

T∏

t=1

pt(c t|xT1 )

a

b

c

...

c

t
1 2 3 4 5 T...

• Related to hybrid HMM:

– two-states per label, 2nd state globally shared for all labels

– w/o division by state prior
• During training, sum over alignments can be computed

with forward-backward algorithm, like the expectation step
in the EM algorithm for HMM training.
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ASR Modeling Approaches,

Time-Synchronous Discriminative Modeling

CTC: Search/Decoding
• w/o language model:

– leads to independent frame-by-frame decisions: trivial
– with extremely large training set even possible on word level [Soltau & Liao+ 2016]
– result of statistical independence assumption on label level

argmax
cT1

p(cT1 |xT1 ) = argmax
cT1

T∏

t=1

pt(c t|xT1 )

=
(

argmax
c

pt=1(c|xT1 ), . . . , argmax
c

pt=T (c|xT1 )
)

– equivalent to frame-level word error loss-based Bayes decision rule [Wessel & Schlüter+ 2001]:

argmin
cT1

∑

ĉT1

p(ĉT1 |xT1 ) · C(ĉT1 , c
T
1 ) = argmin

cT1

∑

ĉT1

p(ĉT1 |xT1 ) ·
T∑

t=1

(
1− δĉt ,c t

)

= argmax
cT1

T∑

τ=1

pt(c t|xT1 )

=
(

argmax
c

pt=1(c|xT1 ), . . . , argmax
c

pt=T (c|xT1 )
)

• with language model: CTC used within hybrid HMM approach [Miao & Gowayyed+ 2015]
→ standard decoding/search approach (here using WFST)
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ASR Modeling Approaches,

Time-Synchronous Discriminative Modeling

Recurrent Neural Aligner
• Recurrent neural aligner (RNA)

[Sak & Shannon+ 2017]:
– similar to CTC, but
– avoids label independence assumption:

p(cT1 |xT1 ) =
T∏

t=1

pt(c t|c t−11 , xT1 )
a

b

c

...

c

t
1 2 3 4 5 T...

RNN-Transducer
• RNN-transducer [Graves 2012]:

– similar to RNA, but does only forward to next
frame, if blank label is hypothesized

a

b

c

...

c

t
1 2 3 4 5 T...

Search/decoding:
• pursues tree of all label sequences

• fixed-size beam pruning
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ASR Modeling Approaches,

Label-Synchronous Discriminative Modeling

Directly Hypothesizing Label by Label

• Decompose label sequence posterior probability on a label-by-label level:

p(cN1 |xT1 ) =

N∏

n=1

p(cn|cn−1
1 , xT1 )

• modeling of unlimited label context: can be done by RNN structures (cf. RNN LMs)

• However: how do position-wise label posteriors access/align to corresponding input intervals?

– encoder/decoder attention and transformer: attention in time
– segmental/inverse HMM: explicit label boundary modeling
– 2D LSTM approach: temporal averaging/not at all

• Advantage: integrated model, fully exploits interaction between input and label sequence

• Disadvantage: training domain integration - domain transfer?
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ASR Modeling Approaches,

Label-Synchronous Discriminative Modeling

(Non-Latent) Attention-based Encoder/Decoder
[Bahdanau & Chorowski+ 2015, Chan & Jaitly+ 2015]

• decoder input for n-th label determined by attention process depending on label context:

p(cN1 |xT1 ) =

N∏

n=1

p(cn|cn−1
1 , xT1 )

=

N∏

n=1

p
(
cn|cn−1

1 , ξ(cn−1
1 , xT1 )

)

• soft attention: weighted average over encoder output of entire utterance:

ξ(cn−1
1 , xT1 ) =

T∑

t=1

αt(c
n−1
1 , xT1 ) · xt

• observations/problems:
– attention determined by context, does not consider current label
→ attention intervals are not revised after label hypothesization: no recombination

– left-right asymmetry [Mimura & Sakai+ 2018]
– competitive performance reported with sufficiently large training sets
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ASR Modeling Approaches,

Label-Synchronous Discriminative Modeling

Attention Visualization

Chapter 4 Encoder-Decoder with Attention
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switchboard-1/sw02161B/sw2161B-ms98-a-0049:
reference: ”that’s the one that never did yep”
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Figure 4.4: Attention weight visualization using forced alignment. Additionally, a
phonetic alignment based on a hybrid HMM model is shown as indicated
by the dashed lines and phonemes above the plot.

factor. The y-axis is labelled with the decoder output, in the case of forced align-
ment, this is always equal to the reference sentence. In the case in which a search
is performed, this indicates the actual network output word sequence.

4.4 Local Attention

Until now, the attention mechanism computed the energy scores over the whole
input sequence or rather its encoder representation. Although empirical results are
promising, having to require the complete utterance to be available prohibits the
use of the model for online speech recognition. Furthermore, speech is monotonic
with respect to the output which is ignored by the attention mechanism, meaning
it can violate this behaviour. Local attention rather computes the energies only
over a subset of the input instead of the full sequence.

A simple method to convert a global attention model to a local one is to com-
pute the energies only over a window of encoder states. Now the problem shifts to
the decision where to place the window to be able to capture most of the informa-
tion, which should intuitively be where the spoken words are. One particular simple
methodology is explored by [Chorowski & Bahdanau+ 15] by using a fixed-size win-
dow around the position of the median of the previous attention weights. Similarly
one could also use the position of the largest value as the window starting point.

38

attention
w

eight
range

encoder frames

• attention weights: peaky, incomplete coverage of encoder output (depending on downsampling)
⇒ encoder needs to temporally compress information

• informal experiments: attention trained on top of fixed hybrid encoder does not perform

• strong interaction of attention and encoder.

• transformer: replaces RNN decoder by self-attention, cascades attention [Zhou & Dong+ 2018]
→ attention issues w.r.t. alignment apply similarly

25 of 40 R. Schlüter: Modeling in ASR: Beyond (Standard) HMMs

Lehrstuhl Informatik 6 — Human Language Technology and Pattern Recognition
RWTH Aachen University Sep. 16, 2019



ASR Modeling Approaches,

Label-Synchronous Discriminative Modeling

Segmental/Inverted HMM, Posterior Attention
[Lu & Kong+ 2016, Doetsch & Hegselmann+ 2016]

• Idea: label sequence posterior with latent alignment and Markov assumptions:

p(cN1 |xT1 ) =
∑

tN1

p(cN1 , t
N
1 |xT1 ) =

∑

tN1

N∏

n=1

p(cn, tn|cn−1
1 , tn−1

1 , xT1 )

=
∑

tN1

N∏

n=1

p(cn, tn|cn−1
1 , tn−1, x

T
1 ) 1st-order Markov joint model (A)

=
∑

tN1

N∏

n=1

p(cn|cn−1
1 , tn−1, x

T
1 ) · p(tn|cn−1

1 , cn, tn−1, x
T
1 ) target label-dependent (B)

alignment distribution

=
∑

tN1

N∏

n=1

p(cn|cn−1
1 , tn−1, tn, x

T
1 ) · p(tn|cn−1

1 , tn−1, x
T
1 ) target label-independent

• marginalization of alignment efficiently performed using dynamic programming

• ongoing work: modeling of decoder model distributions for label and alignment
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ASR Modeling Approaches,

Label-Synchronous Discriminative Modeling

Inverting HMM Alignment

Exemplary toplogies for standard and inverted HMM alignment:
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Standard HMM trellis. Inverted HMM trellis.

• In MT introduced as neural HMM [Wang & Zhu+ 2018]: results similar to attention.
• Introduced as latent generalization of attention:

posterior attention [Shankar & Sarawagi 2019]: consistently better results reported (BLEU).
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ASR Modeling Approaches,

Label-Synchronous Discriminative Modeling

2-dim. LSTM [Bahar & Zeyer+ 2019]

• Idea: use 2D-LSTM for both
label propagation and alignment/
input coverage

• Keep label-synchronous derivation,
avoid explicit temporal alignment:

p(cN1 |xT1 ) =

N∏

n=1

p(cn|cn−1
1 , xT1 )

• Advantage:
exploits 2-dim. structure
of input-output relation,
completely avoids alignment.

• Disadvantage:
as for soft attention
no monotonicity or
locality constraints.

wn+1 pooling softmax

wn pooling softmax

wn−1 pooling softmax

st′−1,n st′,n

st′,n−1

max-pooling

ht−1 ht ht+1

xt−1 xt xt+1

2DLSTM layer

×L

2D-LSTM architecture avoiding attention.
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ASR Modeling Approaches,

Results & Analysis

Current Results for new Architectures
• Training: LibriSpeech 1000h, Switchboard 300h
• CDP: context-dependent phonemes (generalized triphone states)
• BPE: subwords based on byte-pair encoding, 1000 merges

WER [%]
acoustic model language model Switchboard LibriSpeech

approach labels labels approach Hub5 ’00 test-other

inv. HMM CDP words 4-gram 13.0 -
2D-LSTM BPE none 10.6 -
attention 9.9 10.3

LSTM 9.3 8.2
Transformer 9.2 7.5

hybrid CDP words 4-gram 8.1 8.8
LSTM 6.7 5.5

Transformer 6.6 5.0
(Librispeech results, hybrid: [Lüscher & Beck+ 2019], attention: unpublished 2019)

(Switchboard results, hybrid: [Kitza & Schlüter+ 2019], attention: unpublished 2019)
(Inv. HMM results: [Beck & Hannemann+ 2018], work in progress)

(2D-LSTM results: work in progress following [Bahar & Zeyer+ 2019])

29 of 40 R. Schlüter: Modeling in ASR: Beyond (Standard) HMMs

Lehrstuhl Informatik 6 — Human Language Technology and Pattern Recognition
RWTH Aachen University Sep. 16, 2019



ASR Modeling Approaches,

Results & Analysis

Performance as a Function of Training Data Amount

GMM/HMM vs. hybrid BLSTM/HMM vs. BLSTM/attention:
Comparison on LibriSpeech, dev-clean

amount WER [%] dev-clean
training HMM Attention
data [h] GMM AM + 4g LM BLSTM AM + LSTM LM

10 13.0 9.2 >100
50 23.0

100 9.7 5.1 10.1
1000∗ 7.6 2.2 2.9

(∗ Resuls for 1000h from [Lüscher & Beck+ 2019])
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ASR Modeling Approaches,

Results & Analysis

Results on LibriSpeech Test

Results published at this Interspeech∗ and coming ASRUo 2019

data WER [%]
augm. approach encoder LM clean other publication

no CTC CNN 6gram 3.3 9.6 [Li & Lavrukhin+ 2019]∗

attention TDS conv CNN 3.3 9.8 [Hannun & Lee+ 2019]∗

yes CTC CNN Trafo 2.8 7.8 [Li & Lavrukhin+ 2019]∗

attention LSTM LSTM 2.5 8.0 [Tüske & Audhkhasi+ 2019]∗

2.5 5.8 [Park & Chan+ 2019]∗

Trafo Trafo 2.8 7.4 [Zeyer & Bahar+ 2019]o

LSTM 2.4 8.2 [Kim & Shin+ 2019]∗

CTC+att’n Trafo RNN 2.6 5.7 [Karita & Chen+ 2019]o

no hybrid LSTM LSTM 2.6 5.5 [Lüscher & Beck+ 2019]∗

Trafo 2.3 5.0
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ASR Modeling Approaches,

Results & Analysis

Encoder

• even hybrid model can be seen as:
– encoder (up to last hidden layer)
– decoder (output activation+softmax:

decoder (log-linear layer)

• formally, encoder modeling similar for
all cases, e.g.using
deep bidirectional LSTMs,
some variation:
– temporal sub-sampling
– layer sizes

• however, parameterization after
training may vary strongly,
e.g. attention vs. hybrid:
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Phoneme positions and hybrid DNN/HMM encoder.
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ASR Modeling Approaches,

Results & Analysis

Alignment

0 50 100 150 200
Input sequence

see
under

any
circumstances

where
you

send
anybody

money
</s>

s iy ah n d ereh n iy s er k axms t ae n s ihz weyr y uws ehndehniyb ahd iy m ah n iy

switchboard-1/sw02791A/sw2791A-ms98-a-0024:
”see under any circumstances where you send anybody money”
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Comparison of alignment/attention for exemplary SWB utterance.

Var. A:
first-order joint
model

Var. B:
separate length
model

• attention strongly localized, variation in label length covered by attention positioning
→ alignment: interaction between attention and encoder!
→ encoding: necessarily differs between hybrid and inverted HMM

• depending on modeling, inverted HMM aligns similar to hybrid HMM
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ASR Modeling Approaches,

Results & Analysis

Vocabulary Modeling

Goal:
• discard intermediate modeling based on pronunications
→ avoid pronunciation lexicon

• enable direct vocabulary modeling
→ how to cover words unseen during training?
e.g. character-based, even for HMM, cf. e.g. [Kanthak & Ney 2002], or Babel project

Approach:
• decompose words into subwords
→ enables open vocabulary, provided all characters are included

(explicitly or implicitly over subsequences)
• byte-pair encoding (BPE) [Sennrich, Haddow+ 2016]

– originally data compression approach
– successive agglomeration of frequent character (byte) pairs
– short BPE units: good statistics, but acoustic realization (pronunciation) possibly ambiguous
– long BPE units/full words: proper pronunciation, but much longer tail of infrequent units
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ASR Modeling Approaches,

Results & Analysis

Beyond Zipf’s Law: Byte Pair Encoding
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Label rank r vs. frequency N(r) for different vocabularies (Switchboard task).

(Dichotomy in Zipf’s Law: cf. [Montemurro 2001].)
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ASR Modeling Approaches,

Results & Analysis

Label Positional Perplexity Trend
• LibriSpeech Dev clean+other perplexities per word position:
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Word 4-gram LM: approx. stationary.
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Word LSTM LM: clear initial trend.

• Full/recurrent word context models show trend over word positions.

• Supports “middle-out decoding” approach proposed at this NeurIPS in [Mehri & Sigal 2018]

• Might partly explain directional asymmetry considered in [Mimura & Sakai+ 2018].
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ASR Modeling Approaches,

Results & Analysis

Search/Decoding, Domain-Dependence

• Various HMM approaches and CTC with LM: search includes alignment optimization.

• Standard beam search with relative pruning, look-ahead methods and dynamic search spaces.

• Attention: search only on label level, attention is not globally optimized:
locally determined by the label history: constitutes intermediate decisions to some extent.

• Label-synchronous decoding: how to perform pruning? Which hypotheses are comparable?
Relation to input coverage?

• Size of search space varies with model quality and with input properties,
search in end-to-end systems often is reduced to small fixed-size beams.

Separate audio and text data resources:

• clear separation in standard decomposition into acoustic/language model

• speech chain allows inclusion of separate textual data during training [Tjandra+ 2017]:
interpret concatenation of TTS and ASR (and vice versa) as text (speech audio) autoencoders

• [Sriram & Jun+ 2018] includes LM in decoder training to prevent that the decoder implicitly
learns LM information
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Conclusions,

Common characterization of end-to-end systems:
• directly convert input (audio signal) into output (word sequences)
• do not involve intermediate representations (ASR: phoneme set, pronunication lexicon)
• can be trained from scratch end-to-end to optimize performance measure (ASR: word error rate)

Discussion:
• Integrated decision end-to-end based on all knowledge sources:

natural goal of statistical approach to ASR - caveats: beam search, search complexity?
• Existing knowledge sources (e.g. signal processing, phonetic, temporal segmentation, existing

models like multilingual features, etc.) may be viewed as additional (possibly noisy or
mismatched) “data” - using it may still help, especially if primary training data is sparse.

• Internal structuring provides intermediate representations that enable internal model
analysis to some extent.

• taking training from scratch literally would also exclude pretraining or any hyperparameter
optimization (aka repeated training and testing on held out data).

• Training hierarchically with intermediate representations and corresponding objectives
provides potential modes of initialization, regularization, and analysis.

• Transition between training from scratch and using prior knowledge needed: supported by
machine learning methods.
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Conclusions,

Current Situation

Training
• Any ASR system today is sequence discriminative trainable.

• However: pretraining/prior training with different objective might be necessary.

• Hyperparameter optimization concerns all approaches.
• Varying amounts of training data:

– Insertion of external knowledge sources?
– Transition from standard to novel end-to-end models?

Recognition:
• Strictly speaking, only CTC fully searchable (but...).

• Small vocabulary and short context LM: no pruning needed.
• All others not strictly optimal, incl. end-to-end:

– Beam search, pruning: global optimum not guaranteed.
– Exponential search tree with RNN LM and/or decoder.
– How does an end-to-end system indicate uncertainty?
→ Calibration [Guo & Pleiss+ 2017] needed?

– “Two-Pass End-to-End” Speech Recognition [Sainath & Pang+ 2019]
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Conclusions,

Thank you for your attention!
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D. Rybach, H. Ney, R. Schlüter: “Lexical Prefix Tree and WFST: A Comparison
of Two Dynamic Search Concepts for LVCSR,” IEEE Trans. on Audio, Speech,
and Language Processing, Vol. 21, No. 6, pp. 1295–1307, June 2013.
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Z. Tüske, M. Sundermeyer, R. Schlüter, H. Ney: “Context-Dependent MLPs for
LVCSR: TANDEM, Hybrid or Both?” Interspeech, pp. 18–21, Portland, OR,
Sept. 2012.
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