Contents

1 Introduction 3

2 Installation 5
 2.1 Software requirements .. 5
 2.2 Optional dependencies ... 6
 2.2.1 Configuring the grid engine operation 7
 2.3 Compiling ... 7
 2.3.1 Compilation options ... 8
 2.3.2 Compilation output ... 8
 2.3.3 Compiling with OpenFst ... 8
 2.3.4 Mac OS installation walkthrough 10

3 Short walkthrough 13
 3.1 Running Jane locally .. 14
 3.1.1 Preparing the data ... 15
 3.1.2 Extracting rules ... 15
 3.1.3 Binarizing the rule table ... 20
 3.1.4 Minimum error rate training 21
 3.1.5 Translating the test data .. 27
 3.2 Running Jane in a SGE queue ... 29
 3.2.1 Preparing the data ... 29
 3.2.2 Extracting rules ... 29
 3.2.3 Binarizing the rule table ... 36
 3.2.4 Minimum error rate training 36
 3.2.5 Translating the test data .. 42

4 Rule extraction 45
 4.1 Extraction workflow .. 45
 4.2 Usage of the training script .. 45
 4.3 Extraction options ... 47
 4.3.1 Input options ... 47
 4.3.2 Output options ... 48
 4.3.3 Extraction options .. 48
CONTENTS

4.4 Normalization options 52
 4.4.1 Input options 52
 4.4.2 Output options 52
 4.4.3 Feature options 52
 4.4.4 Lexicon options 53

4.5 Additional tools .. 53
 4.5.1 Rule table filtering—filterPhraseTable 53
 4.5.2 Rule table pruning—prunePhraseTable.pl 54
 4.5.3 Ensuring single word phrases—ensureSingleWordPhrases .. 54
 4.5.4 Interpolating rule tables—interpolateRuleTables 55
 4.5.5 Rule table binarization—rules2Binary 57
 4.5.6 Lexicalized Reordering Score Normalization—normalizeLRMScores 57

5 Translation .. 59
 5.1 Components and the config file 59
 5.1.1 Controlling the log output 61
 5.2 Operation mode .. 62
 5.3 Input/Output .. 62
 5.4 Search parameters 62
 5.4.1 Cube pruning parameters 62
 5.4.2 Cube growing parameters 62
 5.4.3 Source cardinality synchronous search (scss and fastScss) pa-
 rameters ... 63
 5.4.4 Common parameters 64
 5.5 Rule file parameters 64
 5.6 Scaling factors 64
 5.7 Language model parameters 65
 5.8 Secondary models 66
 5.9 Multithreading 66

6 Phrase training ... 67
 6.1 Overview ... 67
 6.2 Usage of the training script 67
 6.3 Decoder configuration 68
 6.3.1 Operation mode 70
 6.3.2 Input/Output 70
 6.3.3 ForcedAlignmentSCSS decoder options 71
 6.3.4 Scaling factors 73

7 Optimization ... 75
 7.1 Implemented methods 75
 7.1.1 Optimization via cluster 77
CONTENTS

8 Additional features

8.1 Alignment information in the rule table 81
8.2 Extended lexicon models ... 81
 8.2.1 Discriminative word lexicon models 81
 8.2.2 Triplet lexicon models 82
8.3 Reordering extensions for hierarchical translation 83
 8.3.1 Non-lexicalized reordering rules 84
 8.3.2 Distance-based distortion 86
 8.3.3 Discriminative lexicalized reordering model 86
8.4 Syntactic features .. 89
 8.4.1 Syntactic parses .. 89
 8.4.2 Parse matching .. 90
 8.4.3 Soft syntactic labels 90
8.5 Soft string-to-dependency ... 91
 8.5.1 Basic principle ... 92
 8.5.2 Dependency parses ... 93
 8.5.3 Extracting dependency counts 94
 8.5.4 Language model scoring 95
 8.5.5 Phrase extraction with dependencies 96
 8.5.6 Configuring the decoder to use dependencies 96
8.6 More phrase-level features ... 97
 8.6.1 Activating and deactivating costs from the rule table 97
 8.6.2 The phraseFeatureAdder tool 101
8.7 Lexicalized reordering models for SCSS 106
 8.7.1 Training .. 106
 8.7.2 Decoding .. 106
8.8 Word class language model ... 108

9 System Combination

9.1 Preprocessing ... 109
9.2 Alignment and Language Model 109
9.3 Lambda File ... 111
9.4 Optimization .. 111
9.5 Single-Best Decoding ... 112
9.6 n-Best Rescoring ... 113
9.7 Additional Language Model 113
9.8 IBM1 Lexical Propabilities 114

A License

A.1 Introduction .. 121

B The RWTH N-best list format

B.1 Introduction .. 121
B.2 RWTH format ... 121
Chapter 1

Introduction

This is the user’s manual for Jane, RWTH’s statistical machine translation toolkit. Jane supports state-of-the-art techniques for phrase-based [Wuebker & Huck+ 12] and hierarchical phrase-based machine translation [Vilar & Stein+ 10, Stein & Vilar+ 11, Vilar & Stein+ 12] as well as for system combination [Freitag & Huck+ 14]. Many advanced features are implemented in the toolkit, as for instance forced alignment phrase training for the phrase-based model and several syntactic extensions for the hierarchical model.

RWTH has been developing Jane during the past years and it was used successfully in numerous machine translation evaluations. It is developed in C++ with special attention to clean code, extensibility and efficiency. The toolkit is available under an open source non-commercial license.

Note that, once compiled, the binaries and scripts intended to be used by the user are placed in the bin/ directory (the ones in the scripts/ and in the subdirectory corresponding to your architecture are additional tools that are called automatically). All programs and scripts have more or less intuitive names, and all of them accept the --help option. In this way you can find your way around. The main Jane and extraction binary (extractPhrases in the directory corresponding to your architecture) also accept the option --man for displaying unix-style manual pages.
CHAPTER 1. INTRODUCTION
Chapter 2

Installation

In this chapter we will guide you through the installation of Jane. Jane has been developed under Linux using gcc and is officially supported for this platform. It may or may not work on other systems where gcc may be used.

2.1 Software requirements

Jane needs these additional libraries and programs:

SCons Jane uses SCons\(^1\) as its build system (minimum required version 1.2). It is readily available for most Linux distributions. If you do not have permissions to install SCons system-wide in your computer you may download the scons-local package from the official SCons page, which you may install locally in any directory you choose.

SRI LM toolkit Jane uses the language modelling [Stolcke 02] toolkit made available by the SRI group.\(^2\) This toolkit is distributed under another license which you have to accept before downloading it. One way for installing the SRI toolkit for Jane is using the following commands

```
$ cd ~/src/jane2
$ ./externalTools/install_srilm.sh path-to/srilm.tgz
```

This script extracts and installs the toolkit. Furthermore, all files used by Jane are copied into externalTools/SRILM.

Jane supports linking with both the standard version and the _c space efficient version of the SRI toolkit (the latter is the default).

\(^1\)http://www.scons.org
\(^2\)http://www-speech.sri.com/projects/srilm/
libxml2-dev This library is readily available and installed in most modern distributions. It is needed for some legacy code and the dependency will probably be removed in upcoming releases.

libz-dev This library is needed to read and write compressed files.

python This programming language is installed by default in virtually every Linux distribution.

Note

All Jane scripts retrieve the python binary to use by calling `env python2`. On some systems, `python2` may not point to any python interpreter at all. This problem can be fixed by adding an appropriate soft link, e.g.:

```
ln -s /usr/bin/python2.5 /usr/bin/python2
```

zsh This shell is used in some scripts for distributed operation. It is probably not strictly necessary, but no guarantees are given. It should be also readily available in most Linux distribution and trying it out is also a good idea per se.

2.2 Optional dependencies

If they are available, Jane can use following tools and libraries:

Oracle Grid Engine (aka Sun Grid Engine, SGE) Jane may take advantage of the availability of a grid engine infrastructure\(^3\) for distributed operation. More information about configuring Jane for using the grid engine can be found in Section 2.2.1.

Platform LSF Since version 2.1, Jane facilitates the usage of Platform LSF batch systems\(^4\) as an alternative to the Oracle Grid Engine.

Numerical Recipes If the Numerical Recipes [Press & Teukolsky\(^+\) 02] library is available, Jane compiles an additional optimization toolkit. This is not needed for normal operation, but can be used for additional experiments.

cppunit Jane supports unit testing through the cppunit library\(^5\). If you just plan to use Jane as a translation tool you do not really need this library. It is useful if you plan to extend Jane, however.

doxygen The code is documented in many parts using the doxygen documentation system\(^6\). Similar to cppunit, this is only useful if you plan on extending Jane.

\(^3\)http://www.oracle.com/technetwork/oem/grid-engine-166852.html
\(^4\)http://www.platform.com/Products/platform-lsf
\(^5\)http://sourceforge.net/apps/mediawiki/cppunit/
\(^6\)http://www.doxygen.org
There is some functionality for word graphs (e.g. system combination), which makes use of the OpenFst library.

2.2.1 Configuring the grid engine operation

Internally at RWTH we use a wrapper script around the `qsub` command of the oracle grid engine. The scripts that interact with the queue make use of this wrapper, called `qsubmit`. It is included in the Jane package, in `src/Tools/qsubmit`. Please have a look at the script and adapt the first lines according to your queue settings (using the correct parameter for time and memory specification). Feel free to use this script for your every day queue usage. If `qsubmit` is found in your `PATH`, Jane will use it instead of its local version.

If you have to include some additional shell scripts in order to be able to interact with the queue, or if your queue does not accept the `qstat` and `qdel` commands, you will have to adapt the files `src/Core/queueSettings.bash` and `src/Core/queueSettings.zsh`. The `if` block in this file is there for usage in the different queues available at RWTH. It may be removed without danger or substituted if needed.

If you want to work on a Platform LSF batch system, you need to use the `src/Tools/bsubmit` wrapper script instead of `qsubmit`. In order to make Jane invoke `bsubmit` instead of `qsubmit` internally, you need to configure the environment accordingly in `src/Core/queueSettings.bash` and `src/Core/queueSettings.zsh`:

```bash
export QUEUETYPE=lsf
export QSUBMIT=<path-to-bsubmit>
```

2.3 Compiling

Compiling Jane in most cases just involves calling `scons` on the main Jane directory. However you may have to adjust your `CPPFLAGS` and `LDFLAGS` environment variables, so that Jane may find the needed or optional libraries. Standard `scons` options are supported, including parallel compilation threads through the `-j` flag.

Jane uses the standard scons mechanism to find an appropriate compiler (only `g++` is officially supported, though), but you can use the `CXX` variable to overwrite the default. Concerning code optimization, Jane is compiled with the `-march=native` option, which is only supported starting with `g++` version 4.2. For older versions you can specify the target architecture via the `MARCH` variable. A simple example call

```bash
$ scons
```
CHAPTER 2. INSTALLATION

2.3.1 Compilation options

Jane accepts different compilation options in the form of `VAR=value` options. Currently these options are supported:

SRILIBV Which version of the SRI toolkit library to use, the standard one or the space optimized one (suffix `c`). This last one is the default. As discussed in Section 2.1, the object files of the SRI toolkit must have a `.c` suffix. Use `SRILIBV=standard` for using the standard one.

COMPILE You can choose to compile Jane in standard mode (default), in debug or in profile mode by setting the `COMPILE` variable in the command line.

VERBOSE With this option you can control the verbosity of the compilation process. The default is to just show a rotating spinner. If you set the `VERBOSE` variable to `normal`, `scons` will display messages about its current operation. With the value `full` the whole compiler commands will be displayed.

An example compilation command line could be (compilation in debug mode, using the standard SRI toolkit library, displaying the full compiler command lines and using three parallel threads).

```
$ scons -j3 SRILIBV=standard COMPILE=debug VERBOSE=full
```

2.3.2 Compilation output

The compiled programs reside in the `bin/` directory. This directory is self-contained, you can copy it around as a whole and the programs and scripts contained will use the appropriate tools. This is useful if you want to pinpoint the exact version you used for some experiments. Just copy the `bin/` directory to your experiments directory and you are able to reproduce the experiments at any time.

The compilation process also creates a `build/` directory where all the object files and libraries are compiled into. This directory may be safely removed when the compilation is finished.

2.3.3 Compiling with OpenFst

For system combination, you need to install OpenFst\(^8\) 1.3.4 or higher and configure it with the `--enable-far` flag. For openFST version 1.3.4, you can download, extract and compile openFSt with the following commands:

\(^8\)http://www.openfst.org
2.3. COMPILING

```
$ wget http://www.openfst.org/twiki/pub/FST/
   FstDownload/openfst-1.3.4.tar.gz
$ tar -xvzf openfst-1.3.4.tar.gz
$ cd openfst-1.3.4
$ ./configure --enable-far; make; make install;
```

For the openFst ngram models, you need to download OpenGrm\(^9\) 1.1.0 or higher and install it on top of OpenFst. This toolkit is needed for the language model handling during system combination. The following command show you how to get and install OpenGrm.

```
$ wget http://www.openfst.org/twiki/pub/GRM/
   NGramDownload/opengrm-ngram-1.1.0.tar.gz
$ tar -xvzf opengrm-ngram-1.1.0.tar.gz
$ cd opengrm-ngram-1.1.0
$ ./configure; make; make install;
```

If you have no write permission on /usr/lib/, you could tell openFST and OpenGrm to put the include and library files into another directory. You have to change the installation process as follows:

```
$ wget http://www.openfst.org/twiki/pub/FST/
   FstDownload/openfst-1.3.4.tar.gz
$ tar -xvzf openfst-1.3.4.tar.gz
$ cd openfst-1.3.4
$ ./configure --prefix=/home/$user/lib/$ARCH/ --enable-far;
$ make; make install;
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:
   /home/$user/lib/$ARCH/lib:
   /home/$user/lib/$ARCH/lib/fst
$ wget http://www.openfst.org/twiki/pub/GRM/
   NGramDownload/opengrm-ngram-1.1.0.tar.gz
$ tar -xvzf opengrm-ngram-1.1.0.tar.gz
$ cd opengrm-ngram-1.1.0
$ ./configure CPPFLAGS=-I/home/$user/lib/$ARCH/include/
   --prefix=/home/$user/lib/$ARCH/
$ make; make install;
```

If you used the non-standard library path, it is a good idea to include the library path to your .bashrc. You will need the libraries again when running system combination: Append to $HOME/.bashrc:

\(^9\)http://www.opengrm.org
CHAPTER 2. INSTALLATION

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:
/home/$user/lib/$ARCH/lib:/home/$user/lib/$ARCH/lib/fst

In version 1.1.0 of openGrm, the header file /usr/local/include/ngram/ngram.h (or ngram.h in your above selected include folder) has to be changed before compiling jane. You need to change the following four lines:

```c
#include "ngram/ngram-countprune.h"
#include "ngram/ngram-kneserney.h"
#include "ngram/ngram-seymoreshrink.h"
#include "ngram/ngram-wittenbell.h"
```

into:

```c
#include "ngram/ngram-count-prune.h"
#include "ngram/ngram-kneser-ney.h"
#include "ngram/ngram-seymore-shrink.h"
#include "ngram/ngram-witten-bell.h"
```

The standard setup does not include openFST during compiling. If you want to use openFST or/and the system combination framework, you need to enable the FST libraries when compiling:

```
$ scons -j3 FST=1
```

If you does not use the standard library path, you can compile as follows:

```
$ scons -j3 FST=1 openFstDir=/home/$user/lib/$ARCH/
```

You can use METEOR for the pairwise alignment between the different input hypotheses. You can download and install METEOR\(^\text{10}\) as follows:

```
$ wget https://www.cs.cmu.edu/~alavie/METEOR/download/meteor-1.4.tgz
$ tar -xvzf meteor-1.4.tgz
```

2.3.4 Mac OS installation walkthrough

First you need to install the “Command Line tools” from Apple\(^\text{11}\). We use brew\(^\text{12}\) to install the necessary tools and libraries. Installation of brew:

\(^\text{10}\)http://www.cs.cmu.edu/~alavie/METEOR/
\(^\text{11}\)http://connect.apple.com
\(^\text{12}\)http://mxcl.github.io/homebrew/
$ ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

Install scons and libraries:

$ brew install scons
$ brew install libxml2
$ brew install pkg-config

Replace POSIX utilities by GNU utilities in bash:

$ brew install coreutils findutils gnu-tar gnu-sed
$ brew install coreutils gawk gnutls gnu-indent gnu-getopt
$ ln -s /usr/bin/gzcat $HOME/bin/zcat
$ ln -s /usr/local/bin/gsed $HOME/bin/sed

Append to $HOME/.bashrc

PATH="$HOME/bin:/usr/local/opt/coreutils/libexec/gnubin:$PATH"
MANPATH="/usr/local/opt/coreutils/libexec/gnuman:$MANPATH"

Create directory for Jane and extract the Jane package:

$ mkdir -p ~/src/jane2
$ cd ~/src/jane2
$ tar -xfv path-to/jane.tar.gz

Next download the SRILM toolkit\(^{13}\) as described in section 2.1. Install it:

$ cd ~/src/jane2
$./externalTools/install_srilm.sh path-to/srilm.tgz

Compile Jane:

$ cd ~/src/jane2
$ scons

\(^{13}\)http://www-speech.sri.com/projects/srilm/
Chapter 3

Short walkthrough

In this chapter we will go through an example use case of the Jane toolkit, starting with the phrase extraction, following with minimum error rate training on a development corpus and finally producing a final translation on a test corpus.

This chapter is divided into two sections. In the first section we will run all the processes locally on one machine. In the second section we will make use of a computer cluster equipped with the Sun Grid Engine for parallel operation. This is the recommended way of using Jane, especially for large corpora. You can skip one of these sections if you do not intend to operate Jane in one of these modes. Both sections are self-contained.

Since Jane supports both—hierarchical and phrase-based translation modes—each section contains examples for both cases. Make sure that you do not mix configuration steps from these modes since they will most likely not be compatible.

Note: All examples shown in this chapter are distributed along with Jane.

- Configuration for setting up a hierarchical system running on one machine
 examples/local/hierarchical
- Configuration for setting up a phrase-based system running on a local machine
 examples/local/phrase-based
- Configuration for setting up a hierarchical system running in a cluster
 examples/queue/hierarchical
- Configuration for setting up a phrase-based system running in a cluster
 examples/queue/phrase-based

For each of these examples, the data we will use consists of a subset of the data used in the WMT evaluation campaigns. We will use parts of the 2008 training data, a subset of the 2006 evaluation data as development corpus and a subset of the 2008 evaluation data as “test” corpus. Note that the focus of this chapter is to provide you with a basic
feeling of how to use Jane. We use only a limited amount of data in order to speed up the operation. The optimized parameters found with this data are in no way to be taken as the best performing ones for the WMT task.

Note

Standard practice is to copy the `bin/` directory of the Jane source tree to the directory containing the data for the experiments. Because the directory is self-contained, this assures that the results are reproducible in a later point in time. We will assume this has been done in the example we present below.

Although Jane also supports the *moses format* for alignments, we usually represent the alignments in the so called in-house “Aachen format”. It looks like this

| SENT: 0 |
|---------|---
| S 0 0 |
| S 1 2 |
| S 2 3 |

| SENT: 1 |
|---------|---
| S 0 0 |
| S 1 1 |
| S 2 3 |
| S 3 10 |
| S 4 11 |
| S 6 30 |
| ... |

The alignments for a sentence pair begin with the **SENT**: identifier. Then the alignment points follow, one per line. The **S** in the beginning is for a “**Sure**” alignment point. “**Possible**” alignment points, which may appear in human produced alignments, are marked with a **P**. Jane, however, does not distinguish between the two kinds. The two indices in each line correspond to the words in the source and target sentences, respectively.

3.1 Running Jane locally

In this section we will go through a typical training-optimization-translation cycle of Jane running locally on a single computer. We selected only a very small part of the WMT data (10,000 training sentence pairs, dev and test 100 sentences each) so that you can go through all the steps in just one session. In this way you can get a feeling of how to use Jane, but the results obtained here are by no way representative for the performance of Jane.
3.1.1 Preparing the data

The configuration files for the examples shown in this chapter are located in examples/local. The data files needed for these examples can be downloaded at: http://www.hltpr.rwth-aachen.de/jane/files/exampleRun_local.tgz. The configuration files expect those files to reside in the same directory as the configuration files themselves.

In our case we concatenate the development and test corpora into one big filter corpus. This allows us to use the same rule table for optimization and for the final translation. To be able to use the provided configuration files, you should do the same by running the following command:

```
cat german.dev.100 german.test.100 > german.dev.test
```

3.1.2 Extracting rules

The main program for phrase extraction is `trainHierarchical.sh`. With the option `-h` it gives a list of all its options. For local usage, however, many of them are not relevant. The options can be specified in the command line or in a config file. As already stated above, we will use configuration files.

After copying the configuration files (for either the phrase-based or the hierarchical system) to the same directory as the data you prepared in Chapter 3.1.1 (or Chapter 3.2.1 if you want to run the larger examples) start the rule extraction by running the following command

```
$ bin/trainHierarchical.sh --config extract.config
```

The command for starting rule extraction is the same for phrase-based and hierarchical phrase extraction.

Since running this command typically takes a couple of minutes, you might just go on reading while Jane is extracting.

Understanding the general format of the extract.config file

To understand how configuration files work in general, let’s first have a look at the configuration file for extracting phrase-based rules:
source=german.10000.gz
target=english.10000.gz
alignment=Alignment.10000.gz
filter=german.dev.test

useQueue=false
binarizeMarginals=false

sortBufferSize=950M

extractOpts="--extractMode=phrase-based-PBT \
--standard.nonAlignHeuristic=true \
--standard.swHeuristic=true \
--standard.forcedSwHeuristic=true \
--standard.maxTargetLength=12 \
--standard.maxSourceLength=6 \
--filterInconsistentCategs=true"

normalizeOpts="--standard.IBM1NormalizeProbs=false \
--hierarchical.active=false \
--count.countVector 1.9,2.9,3.9"

Important

Since config files are included in a **bash** script, as such it must follow **bash** syntax. This means, e.g., that *no spaces* are allowed before or after the `=.`

The contents of the config file should be fairly self-explanatory. The first lines specify the files the training data is read from. The **filter** option specifies the corpus that will be used for filtering the extracted rules in order to limit the size of rule table. This parameter may be omitted, but—especially in case of extracting **hierarchical** rules—be prepared to have huge amounts of free hard disk space for large sized tasks.

By setting the **useQueue** option to **false** we instruct the extraction script to work locally. The **sortBufferSize** option is carried over to the Unix **sort** program as the argument of the `-S` flag, and sets the internal buffer size. The bigger, the more efficient the sorting procedure is. Set this according to the specs of your machine.

The **extractOpts** field specifies the options for rule extraction. Thus it makes sense that—as we will see later—this is where the configuration files for hierarchical and phrase-based rule extraction differ.
3.1. RUNNING JANE LOCALLY

Understanding the extract.config file for phrase-based rule extraction

In case of phrase-based rule extraction, we first instruct Jane to use phrase-based extraction mode via `--extractMode=phrase-based-PBT` in the `extractOpts` field. The following options specify the details of this extraction mode. Since the standard phrase-based extractor’s default settings are mostly only good choices for the hierarchical extraction, we need to modified some of its settings: This includes using some heuristics (`standard.nonAlignHeuristic`, `standard.swHeuristic`, `standard.forcedSwHeuristic`), switching of the normalization of lexical scores (`standard.IBM1NormalizeProbs=false`) and choosing different maximum phrase lengths for target and source phrases (`standard.maxTargetLength`, `standard.maxSourceLength`). Furthermore we instruct Jane to filter phrases with inconsistent categories by specifying `--filterInconsistentCategs=true`.

Since some parts needed for phrase-based rule extraction are calculated in the normalization step, we have to configure another field named `normalizeOpts`. Here we instruct Jane to use a modified version of lexical probabilities, switch off the hierarchical features and include 3 count features with thresholds 1.9, 2.9 and 3.9 to the phrase table.

For a more detailed explanation and further possible options, consult Chapter 4.

Understanding the extract.config file for hierarchical rule extraction

In contrast to the phrase-based configuration, let’s have a look at the configuration for the hierarchical case:

```
examples/local/hierarchical/extract.config

source=german.10000.gz
target=english.10000.gz
alignment=Alignment.10000.gz
filter=german.dev.test
useQueue=false
binarizeMarginals=false

sortBufferSize=950M
extractOpts="--extractMode=hierarchical \
--hierarchical.allowHeuristics=false \ 
--standard.nonAlignHeuristic=true \ 
--standard.swHeuristic=true"
```

As you can see, the first couple of lines are identical to the configuration file used for phrase-based rule extraction. The most important difference is that we instruct Jane to use hierarchical rule extraction by setting `--extractMode=hierarchical` in the `extractOpts` field.

The following options specify the details of this extraction mode. As explained
above, we also need to specify details of the standard features rule. In this case we stick to the default settings (which are already a good choice for hierarchical extraction), except for setting `standard.nonAlignHeuristic=true` in order to extract initial phrases over non-aligned words and for setting `standard.swHeuristic=true` to ensure extracting rules for every (single) word seen in the training corpus. For more details on `hierarchical.allowHeuristics` have a closer look at Chapter 4.

Understanding the general structure of a rule table

After the extraction is finished, you will find (among other files) a file called `german.dev.test.scores.gz`. This file holds the extracted rules.

In case of *phrase-based* extraction, the rule table will look something like this:

```
1.4013e-45 0 0 0 0 1 0 0 0 0 0 # X # <unknown-word> <unknown-word> # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 # S # X~0 # X~0 # 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 # S # S~0 X~1 # S~0 X~1 # 1 1 1 1 1
...
2.14007 1.79176 7.75685 6.6614 1 2 1 1 1 0 # X # Ich will # Allow me # 2 2 17 12 2
2.83321 0.693147 11.4204 6.66637 1 4 0.5 2 1 0 0 # X # Ich will # But I would like # 1 1 17 2 1
3.52636 8.66492 1.13182 5.3448 1 1 2 0.5 1 0 0 # X # Ich will # I # 0.5 0.5 17 2898 1
2.14007 5.07829 4.88639 5.99186 1 2 1 1 1 0 # X # Ich will # I am # 2 2 17 321 2
2.83321 4.54329 4.90073 6.02781 1 2 1 1 1 0 0 # X # Ich will # I do # 1 1 17 94 1
...
```

Each line consists of different fields separated with hashes (“#”). The first field corresponds to the different costs of the rule. It's subfields contain negative log-probabilities for the different models specified in extraction. The second field contains the non-terminal associated with the rule. In the standard model, for all the rules except the first two, it is the symbol X. The third and fourth fields are the source and target parts of the rule, respectively. Here the non-terminal symbols are identified with a tilde (”) symbol, with the following number indicating the correspondences between source and target non-terminals. The fifth field stores the original counts for the rules. Further fields may be included for additional models.
3.1. RUNNING JANE LOCALLY

The hash and the tilde symbols are reserved, i.e. make sure they do not appear in your data. If they do, e.g. in urls, we recommend substituting them in the data with some special codes (e.g. “<HASH>” and “<TILDE>”) and substitute the symbols back in postprocessing.

Understanding the structure of the rule table for phrase-based rules

Let’s have a closer look at the phrase-based phrase table from above: The scores contained in the first field correspond to

1. Phrase source-to-target score
2. Phrase target-to-source score
3. Lexical source-to-target score (not normalized to the phrase length)
4. Lexical target-to-source score (not normalized to the phrase length)
5. Phrase penalty (always 1)
6. Word penalty (number words generated)
7. Source-to-target length ratio
8. Target-to-source length ratio
9. Binary flag: Count > 1.9
10. Binary flag: Count > 2.9
11. Binary flag: Count > 3.9
Understanding the structure of the rule table layout for *hierarchical* rules

Let’s have a look at the first lines of the *hierarchical* phrase table.

```
1.4013e-45 0 0 0 0 1 0 0 0 1 # X # <unknown-word> # <unknown-word> # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 # S # X^0 # X^0 # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 1 # S # S^0 X^1 # S^0 X^1 # 1 1 1 1 1
...
1.81916 4.58859 4.88639 5.99186 1 2 1 1 1 1 0 # X # Ich will X^0 # I am X^0 # 3 3 18.5 295.067 4
2.07047 2.57769 4.90073 6.02781 1 2 1 1 1 1 0 # X # Ich will X^0 # I do X^0 # 2.33333 4 18.5 52.6666 4
1.76509 2.75207 5.22612 6.1557 1 2 1 1 1 1 0 # X # Ich will X^0 # I must X^0 # 3.16667 3.33333 18.5 52.25 5
2.00148 0 20.9296 7.21078 1 6 0.33333 3 1 1 0 # X # Ich will X^0 # I shall restrict myself to raising X^0 # 2.5 3 18.5 3 3
1.81916 0 16.2028 6.53239 1 5 0.4 2.5 1 1 0 # X # Ich will X^0 # I want to make it X^0 # 3 2.5 18.5 2.5 3
...
```

The scores of the *hierarchical* phrase table correspond to the following model scores:

1. Phrase source-to-target score
2. Phrase target-to-source score
3. Lexical source-to-target score
4. Lexical target-to-source score
5. Phrase penalty (always 1)
6. Word penalty (number of words generated)
7. Source-to-target length ratio
8. Target-to-source length ratio
9. Binary flag: isHierarchical
10. Binary flag: isPaste
11. Binary flag: glueRule

3.1.3 Binarizing the rule table

For such a small task as in this example we may load the whole rule table into main memory. For real-life tasks, however, this would require too much memory. Jane supports a binary format for rule tables with on-demand-loading capabilities. We will binarize
3.1. RUNNING JANE LOCALLY

the rule table—regardless of having extracted in phrase-based mode or in hierarchical mode—with the following command:

```
$ bin/rules2Binary.x86_64-standard \
--file german.dev.test.scores.gz \
--out german.dev.test.scores.bin
```

This will create a new file named `german.dev.test.scores.bin`.

3.1.4 Minimum error rate training

In the next step we will perform minimum error rate training on the development set. For this first we must create a basic configuration file for the decoder, specifying the options we will use.

The jane.config configuration file in general

The config file is divided into different sections, each of them labelled with some text in square brackets `[]`. All of the names start with a `Jane` identifier. The reason for this is because the configuration file may be shared among several programs\(^1\). The same options can be specified in the command line by specifying the fully qualified option name, without the `Jane` identifier. For example, the option `fileIn` in block `[Jane.singleBest]` can be specified in the command line as `--singleBest.fileIn`. In this way we can translate another input file without needing to alter the config file.

\(^1\) This feature is rarely used any more
The **jane.config** configuration file for the *phrase-based* decoder

In case of a *phrase-based* system, create a **jane.config** file with the following contents:

```
[jane]
   decoder = scss

[jane.nBest]
   size = 20

[jane.SCSS]
   observationHistogramSize = 100
   lexicalHistogramSize = 16
   reorderingHistogramSize = 32
   reorderingConstraintMaximumRuns = 2
   reorderingMaximumJumpWidth = 5
   firstWordLMLookAheadPruning = true
   phraseOnlyLMLookAheadPruning = false
   maxTargetPhraseLength = 11
   maxSourcePhraseLength = 6

[jane.SCSS.LM]
   file = english.lm.4gram.gz
   order = 4

[jane.SCSS.rules]
   file = german.dev.test.scores.bin
   whichCosts = 0,1,2,3,4,5,6,7,8,9,10
   costsNames = s2t,t2s,ibm1s2t,ibm1t2s,phrasePenalty,wordPenalty,s2tRatio,t2sRatio,cnt1,cnt2,cnt3

[jane.scalingFactors]
   s2t = 0.1
   t2s = 0.1
   ibm1s2t = 0.05
   ibm1t2s = 0.05
   phrasePenalty = 0
   wordPenalty = -0.1
   s2tRatio = 0
   t2sRatio = 0
   cnt1 = 0
   cnt2 = 0
   cnt3 = 0
   LM = 0.25
   reorderingJump = 0.1
```

The most important thing to note here is that we specify the decoder to be **scss** (which stands for *Source Cardinality Synchronous Search*) which is the decoder of choice for a *phrase-based* system. Furthermore, we instruct the decoder to generate the top 20 translation candidates for each sentence. These nbest lists are used for the MERT training. Then lots of options (**HistogramSize**, **Pruning**) define the size of the search space we want the decoder to look at in order to find a translation. **Jane.SCSS.LM** specifies the language model we want to use, and **Jane.SCSS.rules** specifies the rule table we want to use. Since we refer to the different scores by their names, we need to tell Jane which score resides in which row, e.g. **s2t** resides in field 0, **t2s** resides in field 1, and so on. These score names are used in the **Jane.scalingFactors** to specify some initial scaling factors. In addition to the scores given in the rule table we also need to set the weights for the language model (**LM**) and the costs for a reordering jump (**reorderingJump**).

More details about the configuration file are discussed in Chapter 5.
The `jane.config` configuration file for the `hierarchical` decoder

In case of the `hierarchical` system, create a `jane.config` file with the following contents:

```
[jane]
decoder = cubeGrow

[jane.nBest]
size = 20

[jane.CubeGrow]
lmNbestHeuristic = 50
maxCGBufferSize = 200

[jane.CubeGrow.LM]
file = english.lm.4gram.gz

[jane.CubeGrow.rules]
file = german.dev.test.scores.bin

[jane.scalingFactors]
s2t = 0.1
t2s = 0.1
ibm1s2t = 0.1
ibm1t2s = 0.1
phrasePenalty = 0.1
wordPenalty = -0.1
s2tRatio = 0.1
t2sRatio = 0.1
isHierarchical = 0.1
isPaste = 0.1
 glueRule = 0.1
LM = 0.2
```

The most important thing to note here is that we specify the decoder to be `cubeGrow` which is the decoder of choice for a `hierarchical` system. Furthermore, we instruct the decoder to generate the top 20 translation candidates for each sentence. These nbest lists are used for the MERT training. Then options specifying more details of the decoding process are listed in `Jane.CubeGrow`. `Jane.CubeGrow.LM` specifies the language model we want to use, and `Jane.CubeGrow.rules` specifies the rule table we want to use. The last section shows initial scaling factors for the different models used. Since `hierarchical` extraction is the default setup of Jane, Jane automatically knows which rows correspond to what scores—and we just need to specify the initial scaling factors. Note that we
here have some different additional weighting factors: \textit{LM}—like in case of the phrase-based system—and for example \textit{glueRule}—which was not included in the phrase-based system.

We will now run the MERT algorithm [Och 03] on the provided (small) development set to find appropriate values for them. The lambda values for the MERT are stored in so-called \textit{lambda files}. The initial values for the MERT are stored in a file called \texttt{lambda.initial}. These files contain the same scaling factors as the \texttt{jane.config} file we created before, but without equal signs. This small inconvenience is for maintaining compatibility with other tools used at RWTH. It may change in future versions.

\texttt{lambda.initial parameters file} for \textit{phrase-based} MERT

In case of the \textit{phrase-based} system, the initial lambda file could look like this

```
examples/local/phrase-based/lambda.initial

s2t 0.1
t2s 0.1
ibm1s2t 0.05
ibm1t2s 0.05
phrasePenalty 0
wordPenalty -0.1
s2tRatio 0
t2sRatio 0
cnt1 0
cnt2 0
cnt3 0
LM 0.25
reorderingJump 0.1
```

\texttt{lambda.initial parameters file} for \textit{hierarchical} MERT

In case of the \textit{hierarchical} system, the initial lambda file could look like this
3.1. RUNNING JANE LOCALLY

Running MERT

We will now optimize using the `german.dev.100` file as the development set. The reference translation can be found in `english.dev.100`. The command for performing minimum error rate training is

```bash
$ bin/localOptimization.sh --method mert \
--janeConfig jane.config \
--dev german.dev.100 --reference english.dev.100 \
--init lambda.initial --optDir opt --randomRestarts 10
```

You will see some logging messages about the translation process. This whole process will take some time to finish.

You can observe that a directory `opt/` has been created which holds the n-best lists that Jane generates together with some auxiliary files for the translation process. Specifically, by examining the `nBestOptimize.*.log` files you can see the evolution of the optimization process. Currently only optimizing for the BLEU score is supported, but different extern error scorer can be included as an extern error scorer, too.
Final Lambdas

At the end of the optimization there is a opt/lambda.final file which contains the optimized scaling factors.

lambda.final parameters file after phrase-based MERT

```
examples/local/phrase-based/lambda.final

s2t  0.0645031115738305
t2s  0.0223328781410195
ibm1s2t  0.115763502220802
ibm1t2s -0.0926093658987379
phrasePenalty -0.0906163708734068
wordPenalty -0.112589503827774
s2tRatio  -0.0175426263656464
t2sRatio  -0.00742491151019232
cnt1  0.123425996586134
cnt2  0.129850043906202
cnt3  0.0607985515573982
LM  0.141997281727464
reorderingJump  0.0205458558113928
```

lambda.final parameters file after hierarchical MERT

```
examples/local/hierarchical/lambda.final

s2t  0.156403748922424
t2s  0.0103275779072478
ibm1s2t  0.0258805080762006
ibm1t2s  0.0230766268886117
phrasePenalty -0.0358096401282086
wordPenalty -0.0988531371883096
s2tRatio  0.145972814894252
t2sRatio  -0.221343456126843
isHierarchical  0.0991346055179334
isPaste  0.0146280186654634
glueRule  0.00808237632602873
LM  0.160487489358477
```

Note

Your results will vary, due to the random restarts of the algorithm.
3.1. RUNNING JANE LOCALLY

3.1.5 Translating the test data

We must now take the optimized scaling factors we found in last section and update them in the `jane.config` file.

Note

Do not forget to add the equal sign if you copy & paste the contents of the `lambda.final` file.

We will also specify the test corpus we want to translate.

Final `jane.opt.config` configuration file for the phrase-based decoder

```
[jane]
decoder = scss

[jane.singleBest]
fileIn = german.test.100
fileOut = german.test.100.hyp

[jane.nBest]
size = 100

[jane.SCSS]
observationHistogramSize = 100
lexicalHistogramSize = 16
reorderingHistogramSize = 32
reorderingConstraintMaximumRuns = 2
reorderingMaximumJumpWidth = 5
firstWordMLookaheadPruning = true
phraseOnlyMLookaheadPruning = false
maxTargetPhraseLength = 11
maxSourcePhraseLength = 6

[jane.SCSS.LM]
file = english.lm.4gram.gz
order = 4

[jane.SCSS.rules]
whichCosts = 0,1,2,3,4,5,6,7,8,9,10
costSums = s2t,t2s,ibm1s2t,ibm1t2s,phrasePenalty,wordPenalty,s2tRatio,t2tRatio,cnt1,cnt2,cnt3

[jane.scalingFactors]
s2t = 0.0645031115738305
t2s = 0.0223328781410195
ibm1s2t = 0.115763502220802
ibm1t2s = -0.0926093658987379
phrasePenalty = -0.0906163708734068
wordPenalty = -0.0912088503927774
s2tRatio = -0.0175426263656464
t2sRatio = -0.00742491151019232
cnt1 = 0.123425996586134
cnt2 = 0.129850043906202
cnt3 = 0.060786515733982
LM = 0.141997281727464
reorderingJump = 0.0205458558113928
```
Final *jane.opt.config* configuration file for the *hierarchical* decoder

```plaintext
[Jane]
decoder = cubePrune

[Jane.singleBest]
fileIn = german.test.100
fileOut = german.test.100.hyp

[Jane.nBest]
size = 100

[Jane.CubePrune]
generationNbest = 100
observationHistogramSize = 50

[Jane.CubePrune.rules]
file = german.dev.test.scores.bin

[Jane.CubePrune.LM]
file = english.lm.4gram.gz

[Jane.scalingFactors]
s2t = 0.156403748922424
t2s = 0.0103275779072478
ibm1s2t = 0.0258805080762006
ibm1t2s = 0.0230766268886117
phrasePenalty = -0.0358096401282086
wordPenalty = -0.0988531371883096
s2tRatio = 0.145972814894252
t2sRatio = -0.221343456126843
isHierarchical = 0.0991346055179334
isPaste = 0.0146280186654634
glueRule = 0.00808237632602873
LM = 0.160487489358477
```

Starting the translation process

We are now ready to translate the test data. For this—regardless of using a *phrase-based* system or a *hierarchical* system—we just have to type
$ bin/jane.x86_64-standard --config jane.opt.config

The results are then located in `german.test.100.hyp`.

3.2 Running Jane in a SGE queue

In this section we will go through the whole process of setting up a Jane system in an environment equipped with the SGE grid engine. We will assume that Jane has been properly configure for queue usage (see Section 2.2.1). The examples will make use of the `qsubmit` wrapper script provided with Jane. If you do not wish to use the tool, you may easily adapt the commands accordingly.

3.2.1 Preparing the data

The configuration files for the examples shown in this chapter are located in `examples/queue`. The data files needed for these examples can be downloaded at: http://www.hltpr.rwth-aachen.de/jane/files/exampleRun_queue.tgz. The configuration files expect those files to reside in the same directory as the configuration files themselves.

We selected only a small part of the WMT data (100,000 training sentence pairs, dev and test 100 sentences each) so that you can go through all the steps in just one session. In this way you can get a feeling of how to use Jane, but the results obtained here are by no way representative for the performance of Jane.

In our case we concatenate the development and test corpora into one big filter corpus. This allows us to use the same rule table for optimization and for the final translation. To be able to use the provided configuration files, you should do the same by running the following command:

```
cat german.dev.100 german.test.100 > german.dev.test
```

3.2.2 Extracting rules

The main program for phrase extraction is `trainHierarchical.sh`. With the option `-h` it gives a list of all its options. For local usage, however, many of them are not relevant. The options can be specified in the command line or in a config file. As already stated above, we will use configuration files.

After copying the configuration files (for either the phrase-based or the hierarchical system) to the same directory as the data you prepared in Chapter 3.1.1 (or Chapter 3.2.1 if you want to run the larger examples) start the rule extraction by running the following command:
The command for starting rule extraction is the same for phrase-based and hierarchical phrase extraction.

Since running this command typically takes a couple of minutes, you might just go on reading while Jane is extracting.

Understanding the general format of the extract.config file

To understand how configuration files work in general, let’s first have a look at the configuration file for extracting phrase-based rules.

The contents of the config file should be fairly self-explanatory. The first lines specify the file the training data is read from. The filter option specifies the corpus which will be used for filtering the extracted rules in order to limit the size of the rule table. This parameter may be omitted, but—especially in case of extracting hierarchical rules—be prepared to have huge amounts of free hard disk space for large sized tasks.

Since config files are included in a bash script, as such it must follow bash syntax. This means, e.g., that no spaces are allowed before or after the =.

Setting the useQueue option to true we instruct the extraction script to use the SGE queue. The sortBufferSize option is carried over to sort program as the argument of the -S flag, and sets the internal buffer size, the bigger, the more efficient the sorting procedure is. Set this according to the specs of your machines.

Most of the options of the config file then refer to setting memory and time specifications for the jobs that will be started. You can see that we included comments with rough guidelines of how much time and memory each step takes. The file was generated with the command

```
$ bin/trainHierarchical.sh --exampleConfig > extract.config
```

and then adapting it accordingly.

The extractOpts field specifies the options for phrase extraction. Thus it makes sense that—as we will see later—this is where the configuration files for hierarchical and phrase-based rule extraction differ.
3.2. RUNNING JANE IN A SGE QUEUE

```
source=german.100000.gz
target=english.100000.gz
alignment=Alignment.100000.gz
filter=german.dev.test
useQueue=true
jobName=janeDemo
additionalModels=""

# All sort operations use this buffer size
sortBufferSize=950M

# Extraction options, look into the help of extractPhrases for a complete list of options
extractOpts="--extractMode=phrase-based-PBT \ 
--standard.nonAlignHeuristic=true \ 
--standard.swHeuristic=true \ 
--standard.forcedSwHeuristic=true \ 
--standard.maxTargetLength=12 \ 
--standard.maxSourceLength=6 \ 
--filterInconsistentCategs=true"

# Time and memory greatly depend on the corpus (and the alignments). No good
# default estimate can be given here
extractMem=1
extractTime=0:30:00

# The second run will need more memory than the first one.
# Time should be similar, though
extractMem2ndRun=1
extractTime2ndRun=0:30:00

# The higher this number, the lower the number of jobs but with higher requirements
extractSplitStep=5000

# Count threshold for hierarchical phrases
# You should specify ALL THREE thresholds, one alone will not work
sourceCountThreshold=0
targetCountThreshold=0
realCountThreshold=2

# The lower this number, the higher the number of normalization jobs
splitCountsStep=50000

# If using useQueue, adjust the memory requirements and the buffer size for sorting appropriately
sortCountsMem=1
sortCountsTime=0:30:00

# Joining the counts
# Memory efficient, time probably not so much
joinCountsMem=1
joinCountsTime=0:30:00

# Sorting the source marginals
# These are relatively small, so probably not much resources are needed
sortSourceMarginalsMem=1
sortSourceMarginalsTime=0:30:00

# Resources for binarization of source counts should be fairly reasonable for standard dev/test corpora
# Warning, this also includes joining
binarizeSourceMarginalsWriteDepth=0
binarizeSourceMarginalsMem=1
binarizeSourceMarginalsTime=0:30:00

# Resources for filtering source marginals
filterSourceMarginalsMem=1
filterSourceMarginalsTime=4:00:00

# Sorting the target marginals
# The target marginals files are much bigger than the source marginals, more time is needed
sortTargetMarginalsMem=1
sortTargetMarginalsTime=0:30:00

# All target marginals must be extracted. This operation is therefore more resource
# intensive than the source marginals. Memory requirements can however be controlled
# by the writeDepth parameter
binarizeTargetMarginalsWriteDepth=0
binarizeTargetMarginalsMem=1
binarizeTargetMarginalsTime=0:30:00

# Resources for filtering target marginals
filterTargetMarginalsMem=1
filterTargetMarginalsTime=4:00:00

# Normalization is more or less time and memory efficient
normalizeOpts="--standard.IBM1NormalizeProbs=false \ 
--hierarchical.active=false \ 
--count.countVector 1.0,2.9,3.9"
normalizeCountsMem=1
normalizeCountsTime=0:30:00

# This is basically a (z)cat, so no big deal here either
joinScoresMem=1
joinScoresTime=0:30:00
```

Understanding the extract.config file for phrase-based rule extraction

In case of phrase-based rule extraction, we first instruct Jane to use phrase-based extraction mode via \texttt{--extractMode=phrase-based-PBT} in the \texttt{extractOpts} field. The following options specify the details of this extraction mode. Since the standard phrase-based extractor’s default settings are mostly only good choices for the hierarchical extraction, we need to modified some of its settings: This includes using some heuristics (\texttt{standard.nonAlignHeuristic}, \texttt{standard.swHeuristic}, \texttt{standard.forcedSwHeuristic}), switching of the normalization of lexical scores (\texttt{standard.IMBM1NormalizeProbs=false}) and choosing different maximum phrase lengths for target and source phrases (\texttt{standard.maxTargetLength}, \texttt{standard.maxSourceLength}). Furthermore we instruct Jane to filter phrases with inconsistent categories by specifying \texttt{--filterInconsistentCategs=true}.

Since some parts needed for phrase-based rule extraction are calculated in the normalization step, we have to configure another field named \texttt{normalizeOpts}. Here we instruct Jane to use a modified version of lexical probabilities, switch off the hierarchical features and include 3 count features with thresholds 1.9, 2.9 and 3.9 to the phrase table.

For a more detailed explanation and further possible options, consult Chapter 4.

Understanding the extract.config file for hierarchical rule extraction

In contrast to the phrase-based configuration, let’s have a look at the configuration for the hierarchical rule extraction:

As you can see, the first couple of lines are identical to the configuration file used for phrase-based rule extraction. The most important difference is that we instruct Jane to use hierarchical rule extraction by setting \texttt{--extractMode=hierarchical} in the \texttt{extractOpts} field.

The following options specify the details of this extraction mode. As explained above, we also need to specify details of the standard features rule. In this case we stick to the default settings (which are already a good choice for hierarchical extraction), except for setting \texttt{standard.nonAlignHeuristic=true} in order to extract initial phrases over non-aligned words and for setting \texttt{standard.swHeuristic=true} to ensure extracting rules for every (single) word seen in the training corpus. For more details on \texttt{hierarchical.allowHeuristics} have a closer look at Chapter 4.
3.2. RUNNING JANE IN A SGE QUEUE

```
examples/queue/hierarchical/extract.config

source=german.100000.gz
target=english.100000.gz
alignment=Alignment.100000.gz
filter=german.dev.test

useQueue=true
jobName=janeDemo
additionalModels=""

# All sort operations use this buffer size
sortBufferSize=950M

# Extraction options, look into the help of extractPhrases for a complete list of options
extractOpts="--extractMode=hierarchical \ 
--hierarchical.allNeuralHeuristics=false \ 
--standard.nonAlignNeuralHeuristic=true \ 
--standard.swNeuralHeuristic=true"

# Time and memory greatly depend on the corpus (and the alignments). No good
default estimate can be given here
extractTime=0:30:00
extractTime2ndRun=0:30:00

# The second run will need more memory than the first one.
# Time should be similar, though
extractMem2ndRun=1

extractMem=1

# The higher this number, the lower the number of jobs but with higher requirements
extractSplitStep=5000

# Count threshold for hierarchical phrases
# You should specify ALL THREE thresholds, one alone will not work
sourceCountThreshold=0
targetCountThreshold=0
realCountThreshold=2

# The lower this number, the higher the number of normalization jobs
splitCountsStep=500000

# If using useQueue, adjust the memory requirements and the buffer size for sorting appropriately
sortCountsMem=1
sortCountsTime=0:30:00

# Joining the scores
# Memory efficient, time probably not so much
joinScoresMem=1
joinScoresTime=0:30:00

# Sorting the source marginals
# These are relatively small, so probably not much resources are needed
sortSourceMarginalsMem=1
sortSourceMarginalsTime=0:30:00

# Resources for binarization of source counts should be fairly reasonable for standard dev/test corpora
# Warning, this also includes joining
binarizeSourceMarginalsWriteDepth=0
binarizeSourceMarginalsMem=1
binarizeSourceMarginalsTime=0:30:00

# Resources for filtering source marginals
filterSourceMarginalsMem=1
filterSourceMarginalsTime=0:00:00

# Sorting the target marginals
# The target marginals files are much bigger than the source marginals, more time is needed
sortTargetMarginalsMem=1
sortTargetMarginalsTime=0:30:00

# All target marginals must be extracted. This operation is therefore more resource
# intensive than the source marginals. Memory requirements can however be controlled
# by the writeDepth parameter
binarizeTargetMarginalsWriteDepth=0
binarizeTargetMarginalsMem=1
binarizeTargetMarginalsTime=0:30:00

# Resources for filtering target marginals
filterTargetMarginalsMem=1
filterTargetMarginalsTime=0:00:00

# Normalization is more or less time and memory efficient
normalizeOpts=""
normalizeCountsMem=1
normalizeCountsTime=0:30:00

# This is basically a (z)cat, so no big deal here either
joinScoresMem=1
joinScoresTime=0:30:00
```
CHAPTER 3. SHORT WALKTHROUGH

Understanding the general structure of a rule table

After the extraction is finished, you will find (among other files) a file called `german.dev.test.scores.gz`. This file holds the extracted rules.

In case of phrase-based extraction, the rule table will look something like this:

```plaintext
1.4013e-45 0 0 0 1 0 0 0 0 0 # X # <unknown-word> # <unknown-word> # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 # S # X^0 # X^0 # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 # S # S^0 X^1 # S^0 X^1 # 1 1 1 1 1
...)
2.14007 1.79176 7.75685 6.6614 1 2 1 1 1 1 0 # X # Ich will # Allow me # 2 2 17 12 2
2.83321 0.693147 11.4204 6.66637 1 4 0.5 2 1 0 0 # X # Ich will # But I would like # 1 1 17 2 1
3.52636 8.66492 1.13182 5.3448 1 1 0.5 1 0 0 # X # Ich will # I # 0.5 0.5 17 2898 1
2.14007 5.07829 4.88639 5.99186 1 2 1 1 1 1 0 # X # Ich will # I am # 2 2 17 321 2
2.83321 4.54329 4.90073 6.02781 1 2 1 1 1 0 0 # X # Ich will # I do # 1 1 17 94 1
...)
```

Each line consists of different fields separated with hashes (“#”). The first field corresponds to the different costs of the rule. It’s subfields contain negative log-probabilities for the different models specified in extraction. The second field contains the non-terminal associated with the rule. In the standard model, for all the rules except the first two, it is the symbol `X`. The third and fourth fields are the source and target parts of the rule, respectively. Here the non-terminal symbols are identified with a tilde ("~") symbol, with the following number indicating the correspondences between source and target non-terminals. The fifth field stores the original counts for the rules. Further fields may be included for additional models.

Important

The hash and the tilde symbols are *reserved*, i.e. make sure they do not appear in your data. If they do, e.g. in urls, we recommend substituting them in the data with some special codes (e.g. "<HASH>" and "<TILDE>") and substitute the symbols back in postprocessing.

Understanding the structure of the rule table for phrase-based rules

Let’s have a closer look at the phrase-based phrase table from above: The scores contained in the first field correspond to
3.2. **RUNNING JANE IN A SGE QUEUE**

1. Phrase source-to-target score
2. Phrase target-to-source score
3. Lexical source-to-target score (not normalized to the phrase length)
4. Lexical target-to-source score (not normalized to the phrase length)
5. Phrase penalty (always 1)
6. Word penalty (number words generated)
7. Source-to-target length ratio
8. Target-to-source length ratio
9. Binary flag: Count > 1.9
10. Binary flag: Count > 2.9
11. Binary flag: Count > 3.9

Understanding the structure of the rule table layout for hierarchical rules

Let’s have a look at the first lines of the hierarchical phrase table.

```
1.4013e-45 0 0 0 0 1 0 0 0 0 1 # X # <unknown-word> # <unknown-word> # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 # S # X~0 # X~0 # 1 1 1 1 1
0 0 0 0 1 0 0 0 0 0 1 # S # S~0 X~1 # S~0 X~1 # 1 1 1 1 1
... 
```

The scores of the hierarchical phrase table correspond to the following model scores:

1. Phrase source-to-target score
2. Phrase target-to-source score
3. Lexical source-to-target score
4. Lexical target-to-source score
5. Phrase penalty (always 1)
6. Word penalty (number of words generated)
7. Source-to-target length ratio
8. Target-to-source length ratio
9. Binary flag: isHierarchical
10. Binary flag: isPaste
11. Binary flag: glueRule

3.2.3 Binarizing the rule table

For such a small task as in this example we may load the whole rule table into main memory. For real-life tasks, however, this would require too much memory. Jane supports a binary format for rule tables with on-demand-loading capabilities. We will binarize the rule table—regardless of having extracted in phrase-based mode or in hierarchical mode—with the following command:

```
$ bin/rules2Binary.x86_64-standard \
--file german.dev.test.scores.gz \
--out german.dev.test.scores.bin
```

3.2.4 Minimum error rate training

In the next step we will perform minimum error rate training on the development set. For this first we must create a basic configuration file for the decoder, specifying the options we will use.

The `jane.config` configuration file in general

The config file is divided into different sections, each of them labelled with some text in square brackets ([]). All of the names start with a Jane identifier. The reason for this is because the configuration file may be shared among several programs\(^2\). The same options can be specified in the command line by specifying the fully qualified option name, without the Jane identifier. For example, the option `fileIn` in block `[Jane.singleBest]` can be specified in the command line as `--singleBest.fileIn`. In this way we can translate another input file without needing to alter the config file.

\(^2\)This feature is rarely used any more
The \texttt{jane.config} configuration file for the \textit{phrase-based} decoder

```{.highlight}
$examples/queue/phrase-based/jane.config$

[Jane]
decoder = scss

[Jane.nBest]
size = 20

[Jane.SCSS]
observationHistogramSize = 100
lexicalHistogramSize = 16
reorderingHistogramSize = 32
reorderingConstraintMaximumRuns = 2
reorderingMaximumJumpWidth = 5
firstWordLMLookAheadPruning = true
phraseOnlyLMLookAheadPruning = false
maxTargetPhraseLength = 11
maxSourcePhraseLength = 6

[Jane.SCSS.LM]
file = english.lm.4gram.gz
order = 4

[Jane.SCSS.rules]
file = german.dev.test.scores.bin
whichCosts = 0,1,2,3,4,5,6,7,8,9,10
costsNames = s2t,t2s,ibm1s2t,ibm1t2s,phrasePenalty,wordPenalty,s2tRatio,t2sRatio,cnt1,cnt2,cnt3

[Jane.scalingFactors]
s2t = 0.1
t2s = 0.1
ibm1s2t = 0.05
ibm1t2s = 0.05
phrasePenalty = 0
wordPenalty = -0.1
s2tRatio = 0
t2sRatio = 0
cnt1 = 0
cnt2 = 0
cnt3 = 0
LM = 0.25
reorderingJump = 0.1
```

The most important thing to note here is that we specify the decoder to be \texttt{scss} (which stands for \textit{Source Cardinality Synchronous Search}) which is the decoder of choice for a \textit{phrase-based} system. Furthermore, we instruct the decoder to generate the top 20 translation candidates for each sentence. These nbest lists are used for the MERT training. Then lots of options (*HistogramSize, *Pruning) define the size of the search space we want the decoder to look at in order to find a translation. \texttt{Jane.SCSS.LM} specifies the language model we want to use, and \texttt{Jane.SCSS.rules} specifies the rule table we want to use. Since we refer to the different scores by their names, we need to tell Jane which score resides in which row, e.g. \texttt{s2t} resides in field 0, \texttt{t2s} resides in field 1, and so on. These score names are used in the \texttt{Jane.scalingFactors} to specify some initial scaling factors. In addition to the scores given in the rule table we also need to set the weights for the language model (\texttt{LM}) and the costs for a reordering jump (\texttt{reorderingJump}).

More details about the configuration file are discussed in Chapter 5.
The `jane.config` configuration file for the *hierarchical* decoder

```
[Jane]
decoder = cubePrune

[Jane.nBest]
size = 50

[Jane.CubePrune]
generationNbest = 100
observationHistogramSize = 50

[Jane.CubePrune.rules]
file = german.dev.test.scores.bin

[Jane.CubePrune.LM]
file = english.lm.4gram.gz

[Jane.scalingFactors]
s2t 0.1
t2s 0.1
ibmis2t 0.1
ibm1t2s 0.1
phrasePenalty 0.1
wordPenalty -0.1
s2tRatio = 0.1
t2sRatio = 0.1
isHierarchical 0.1
isPaste 0.1
glueRule 0.1
LM 0.2
```

The most important thing to note here is that we specify the decoder to be *cubeGrow* which is the decoder of choice for a *hierarchical* system. Furthermore, we instruct the decoder to generate the top 20 translation candidates for each sentence. These nbest lists are used for the MERT training. Then options specifying more details of the decoding process are listed in `Jane.CubeGrow`. `Jane.CubeGrow.LM` specifies the language model we want to use, and `Jane.CubeGrow.rules` specifies the rule table we want to use. The last section shows initial scaling factors for the different models used. Since *hierarchical* extraction is the default setup of Jane, Jane automatically knows which rows correspond to what scores—and we just need to specify the initial scaling factors. Note that we here have some different additional weighting factors: LM—like in case of the phrase-
3.2. RUNNING JANE IN A SGE QUEUE

Based system—and for example glueRule—which was not included in the phrase-based system.

We will now run the MERT algorithm [Och 03] on the provided (small) development set to find appropriate values for them. The lambda values for the MERT are stored in so-called lambda files. The initial values for the MERT are stored in a file called lambda.initial. These files contain the same scaling factors as the jane.config file we created before, but without equal signs. This small inconvenience is for maintaining compatibility with other tools used at RWTH. It may change in future versions.

Lambda.initial parameters file for phrase-based MERT

In case of the phrase-based system, the initial lambda file could look like this

```bash
examples/queue/phrase-based/lambda.initial

s2t 0.1
t2s 0.1
ibm1s2t 0.05
ibm1t2s 0.05
phrasePenalty 0
wordPenalty -0.1
s2tRatio 0
t2sRatio 0
cnt1 0
cnt2 0
cnt3 0
LM 0.25
reorderingJump 0.1
```

Lambda.initial parameters file for hierarchical MERT

In case of the hierarchical system, the initial lambda file could look like this
Running MERT

We will optimize using the `german.dev.100` file as the development set. The reference translation can be found in `english.dev.100`. The command for performing minimum error rate training is

```bash
$ bin/nBestOptimize.sh --method mert \
  --janeConfig jane.config --dev german.dev.100 \
  --init lambda.initial --optDir opt \
  --janeMem 1 --janeTime 00:30:00 --janeArraySize 20 \
  --optMem 1 --optTime 00:30:00 --optArraySize 10 \
  --reference english.dev.100 --randomRestarts 1
```

Adapt the memory, time and array size parameters according to your queue settings. Note that the `optArraySize` indirectly specifies the number of random restarts. The optimization script starts an array job for each optimization iteration, and each job performs the number of random restarts specified with the `randomRestarts` option. In our case we chose to compute ten random restarts, each in a separate machine.

You will see that a chain of jobs will be sent to the queue. These jobs will also send new jobs upon completion. When no more jobs are sent, the optimization process is finished.

You can observe that a directory `opt/` has been created which holds the n-best lists that Jane generates together with some auxiliary files for the translation process. Specifically, by examining the `nBestOptimize.*.log` files you can see the evolution of the optimization process. Currently only optimizing for the BLEU score is supported, but different extern error scorer can be included as an extern error scorer, too.
3.2. RUNNING JANE IN A SGE QUEUE

Final Lambdas

At the end of the optimization there is a opt/lambda.final file which contains the optimized scaling factors.

lambda.final parameters file after phrase-based MERT

<table>
<thead>
<tr>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s2t</td>
<td>0.0696758464544523</td>
</tr>
<tr>
<td>t2s</td>
<td>0.0180786938607117</td>
</tr>
<tr>
<td>ibm1s2t</td>
<td>0.0361285674919483</td>
</tr>
<tr>
<td>ibm1t2s</td>
<td>0.0644095653517781</td>
</tr>
<tr>
<td>phrasePenalty</td>
<td>0.181822209953712</td>
</tr>
<tr>
<td>wordPenalty</td>
<td>-0.122356857048535</td>
</tr>
<tr>
<td>s2tRatio</td>
<td>0.0656873567730854</td>
</tr>
<tr>
<td>t2sRatio</td>
<td>-0.122776043782363</td>
</tr>
<tr>
<td>cnt1</td>
<td>0.0304779772872443</td>
</tr>
<tr>
<td>cnt2</td>
<td>0.00695168518078979</td>
</tr>
<tr>
<td>cnt3</td>
<td>-0.0739878069246538</td>
</tr>
<tr>
<td>LM</td>
<td>0.167782753973761</td>
</tr>
<tr>
<td>reorderingJump</td>
<td>0.0398646359169653</td>
</tr>
</tbody>
</table>

lambda.final parameters file after hierarchical MERT

<table>
<thead>
<tr>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s2t</td>
<td>0.0462496217417032</td>
</tr>
<tr>
<td>t2s</td>
<td>0.0355359285844982</td>
</tr>
<tr>
<td>ibm1s2t</td>
<td>0.030521523643418</td>
</tr>
<tr>
<td>ibm1t2s</td>
<td>0.0574017896322204</td>
</tr>
<tr>
<td>phrasePenalty</td>
<td>0.0465293618066137</td>
</tr>
<tr>
<td>wordPenalty</td>
<td>-0.163296065020935</td>
</tr>
<tr>
<td>s2tRatio</td>
<td>0.0609724092578274</td>
</tr>
<tr>
<td>t2sRatio</td>
<td>-0.0728110320952373</td>
</tr>
<tr>
<td>isHierarchical</td>
<td>-0.114194840556601</td>
</tr>
<tr>
<td>isPaste</td>
<td>0.0855658364580968</td>
</tr>
<tr>
<td>glueRule</td>
<td>0.106049601487447</td>
</tr>
<tr>
<td>LM</td>
<td>0.180871989715401</td>
</tr>
</tbody>
</table>

Note

Your results will vary, due to the random restarts of the algorithm.
3.2.5 Translating the test data

We must now take the optimized scaling factors we found in last section and update them in the `jane.config` file.

Note

Do not forget to add the equal sign if you copy & paste the contents of the `lambda.final` file.

We will also specify the test corpus we want to translate.

Final jane.opt.config configuration file for the phrase-based decoder

```
examples/queue/phrase-based/jane.opt.config

```

```yaml
[Jane]
decoder = scss

[Jane.singleBest]
fileIn = german.test.100
fileOut = german.test.100.hyp

[Jane.nBest]
size = 100

[Jane.SCSS]
observationHistogramSize = 100
lexicalHistogramSize = 16
reorderingHistogramSize = 32
reorderingNumberOfMaxRuns = 2
reorderingMaximumJumpWidth = 5
firstWordLMLookaheadPruning = true
phraseOnlyLMLookaheadPruning = false
maxTargetPhraseLength = 11
maxSourcePhraseLength = 6

[Jane.SCSS.LM]
file = english.lm.4gram.gz
order = 4

[Jane.SCSS.rules]
whichCosts = 0,1,2,3,4,5,6,7,8,9,10
costaNames = s2t,t2s,ibm1s2t,ibm1t2s,phrasePenalty,wordPenalty,s2tRatio,t2sRatio,cnt1,cnt2,cnt3

[Jane.scalingFactors]
s2t = 0.0666675864644533
t2s = 0.0180786938607117
ibm1s2t = 0.0361285674919483
ibm1t2s = 0.0644095653517781
phrasePenalty = 0.181822209953712
wordPenalty = -0.123456870493535
s2tRatio = 0.0656873567730854
t2sRatio = -0.122776043782363
cnt1 = 0.0304779772872443
cnt2 = 0.0069516851078979
cnt3 = -0.0739878069246538
LM = 0.167782753973761
reorderingJump = 0.0398646359169653
```
3.2. Running Jane in a SGE Queue

Final `jane.opt.config` configuration file for the `hierarchical` decoder

```
examples/queue/hierarchical/jane.opt.config

[Jane]
decoder = cubePrune

[Jane.CubePrune]
generationNbest = 100
observationHistogramSize = 50

[Jane.CubePrune.rules]
file = german.dev.test.scores.bin

[Jane.CubePrune.LM]
file = english.lm.4gram.gz

[Jane.scalingFactors]
s2t = 0.0462496217417032
t2s = 0.0355359285844982
ibm1s2t = 0.030521523643418
ibm1t2s = 0.057401789632204
phrasePenalty = 0.0465293618066137
wordPenalty = -0.163296065020935
s2tRatio = 0.0609724092578274
t2sRatio = -0.0728110320952373
isHierarchical = -0.114194840556601
isPaste = 0.0855658364580968
glueRule = 0.106049601487447
LM = 0.180871989715401
```

Starting the translation process

We are now ready to translate the test data. For this we send an array job to the queue

```
$ qsubmit -m 1 -t 1:00:00 -j 1-20 -n janeDemo.trans \
   bin/queueTranslate.sh -c jane.opt.config \
   -t german.test.100 -o german.test.100.hyp
```
If you run multiple translation tasks in the same directory, make sure that they use a different synchronisation file. You can specify the file by appending `-s SYNCFILE` to above’s `queueTranslate.sh` call. Furthermore you should specify a different identifier for each translation with the `-i IDENTIFIER` flag.

When the array job is finished, the results will be located in `german.test.100.hyp`. Submit it and start winning evaluations :-)

Note
Chapter 4

Rule extraction

In this chapter, we are going to look a little bit more closely at the extraction.

In Section 4.1, we roughly explain a typical extraction workflow. In Section 4.2, we look at the options of the training script. For more details of the various options of the single tools, we present some of the most important ones in Section 4.3 and Section 4.4.

In general, the descriptions are mainly taken from the man pages of the tools. Be aware that the specific options might change (and there is a non-zero possibility that we forgot to update this manual), so if in doubt always believe the man/help pages.

4.1 Extraction workflow

The idea of the rule training is that we extract the counts of each rule that we are interested in, and afterwards normalize them, i.e. compute their relative frequencies. We typically filter the rules to only those that are needed for the translation. Otherwise, even for medium-sized corpora the files are getting too large.

Mandatory files are the corpus, consisting of the source and the target training file, and their alignment. Highly recommended—especially for hierarchical rule extraction—is the source filter file. We actually extract twice:

In the first run, we generate the actual rule counts. They are filtered with the source filter file (by using suffix arrays). Now that we know which target counts we will need for normalization, we run the extraction a second time, filtering with the source filter file and all rule targets that were generated (by using prefix trees).

With some lexical counts that are typically extracted from the corpus, we are now able to start the normalization and produce our actual rule table. See Figure 4.1 for a graphical representation.

4.2 Usage of the training script

Jane provides a shell script which basically performs all the necessary operations as mentioned above.
Figure 4.1: Workflow of the extraction procedure

Note

`trainHierarchical.sh` is the generic script for *hierarchical* and *phrase-based* extraction. It’s misleading filename stems from the fact that Jane initially only supported hierarchical extraction.

You can invoke the script with

```
trainHierarchical.sh [options] -s source -t target -a alignment
```

This will then start the extraction. Long options can be included in an external config file, but the command line will override these settings. With the option `exampleConfig`, you will be shown a config file with sensible standard values for sensible-sized tasks. Adapt it for your needs.

`trainHierarchical.sh` will call/submit lots of different tools, which handle different aspects of the extraction process.

Most of the options that need to be specified deal with the memory and timing requirements for the various algorithms. They are not needed if you run the jobs locally, but are only targeted at grid computation. We believe that they are self-explanatory and therefore will not go much into detail here. See the help page for details.

Important options for directly evaluated by `trainHierarchical.sh` are:

- **source** specifies the source file
- **target** specifies the target file
- **alignment** specifies the alignment file. By default, the RWTH Aachen format is assumed. If you want to change this, you will have to add some extraction options in `extractOpts` (cf. Section 4.3.3)
- **filter** the source filter phrase (i.e. the source sentences that you want to translate)
4.3. EXTRACTION OPTIONS

baseName base name for generated files. By default, the name will be derived from the name of the filter file.

outDir directory to write the result files to. By default, it will write into the directory where it was invoked.

useQueue submit jobs into the queue (needs qsubmit, flag)

jobName (base-)name for submitted jobs in the queue

additionalModels comma-separated list of additional information that you want to be included (cf. Chapter 8)

sortBufferSize buffer size for sort program (sort syntax, used in all sort operations)

extractOpts options for extractPhrases (cf. Section 4.3.3)

binDir directory holding the binaries. By default, its the path where the trainhierarchical is located.

padWidth pad width for file names

tempDir specify temp dir. Otherwise, a random local temp folder will be created.

4.3 Extraction options

This section describes the options of the extractPhrases binary. Usually this binary is called (with options) by the trainHierarchical.sh script. However, you still might be interested in some of its details, since the extractOpts parameters in trainHierarchical.sh’s config file are just passed to this binary.

4.3.1 Input options

alignmentType Specify the alignment model format (out of: rwth, moses). If you don’t work at the RWTH, you are probably looking for the common form used in e.g. Moses: 0-1 1-2 2-3 5-3 It is planned to automatically detect the alignment type, so expect this option to disappear in a later release. (default: rwth)

alignmentFile The file that contains the alignment. As said above, you have to specify the format that you are employing if you are using a different format than RWTH’s.

sourceCorpus The file that contains the source language sentences.

targetCorpus The file that contains the target language sentences.

sourceFilterFile The source file that will be used to filter the phrase table. To do this, we employ a prefix tree from the sentences to be translated, thus, all suffixes of these prefixes will be included in the table as well.
CHAPTER 4. RULE EXTRACTION

targetFilterFile The target file that will be used to filter the phrase table. This, naturally, assumes that we already know which phrases are going to be produced in the target part of the phrases, i.e. in a second extraction run. The goal is to significantly reduce the file size of the phrase table and the target marginals.

startSentence The first sentence to be included in the extraction.

endSentence The last sentence to be included in the extraction. Set this to -1 if you want to extract until the last line (default: -1).

Note All input files can also be gzipped.

4.3.2 Output options

We refer to the source and target counts as marginals. Since we apply various heuristics, the counts do not consist of natural numbers any more. This is why we felt more in-line with this notation.

out The output file for the phrase table (default: stdout).

sourceMarginals The output file for the source marginals.

targetMarginals The output file for the target marginals.

size Maximum cache size (in phrases)

4.3.3 Extraction options

extractOpts This section describes options available to customize the algorithmic side of the extraction process. Jane’s extraction process can run in different extraction modes, which define the general process of extracting rules. Each of these extraction modes may use different modules that perform a specific task. Thus, besides choosing the right extraction mode, careful configuration of all modules is very important.

extractMode Select the extraction mode, out of phrase-based, phrase-based-PBT, hierarchical, discontinuous.

Use hierarchical for hierarchical extraction, phrase-based-PBT for phrase-based extraction and discontinuous for phrase-based extraction with source-side discontinuous phrases. The phrase-based-PBT mode counts all (also unaligned) phrases for marginals, whereas hierarchical, discontinuous and phrase-based modes count only aligned phrases for marginals. (default: hierarchical)
4.3. EXTRACTION OPTIONS

filterInconsistentCategs If set to true, rules with non-consistent categories on source and target side are not extracted. Categories in Jane are strings starting with $ (e.g. $number, $name, ...). Source and target side of a rule are consistent with respect to categories, if for all categories on the source side there also exist one on the target side, and vice versa. (e.g. ($number times, $number mal) would be consistent, but ($number times, hundert mal) would not be consistent) (default: false)

additionalModels Comma seperated list of additional models. Currently implemented are lrm, hrm, alignment, dependency, gap, heuristic, labelled, parsematch, pos, syntax.

Module [standard]

This module is responsible for extracting phrase-based rules (also called standard phrases, initial phrases, or standard rules). Normal lexical phrases derived from a source sentence f_1^j, a target sentence e_1^i and an alignment A are defined as follows:

$$BP(f_1^j, e_1^i, A) := \{ (j_{j_1}^{j_2}, i_{i_1}^{i_2}) \mid j_1, j_2, i_1, i_2 \text{ so that}$$
$$\forall (j, i) \in A : (j_1 \leq j \leq j_2 \Leftrightarrow i_1 \leq i \leq i_2)$$
$$\wedge \exists (j, i) \in A : (j_1 \leq j \leq j_2 \land i_1 \leq i \leq i_2) \}.$$

(4.1)

See Figure 4.2(a) for a valid lexical phrase.

For language pairs like Chinese-English, the alignments naturally tend to be quite non-monotonic, with a lot of words being left un-aligned based on the merge algorithm employed for the two alignment directions. In Jane, there are three heuristics that soften up the extraction:

standard.nonAlignHeuristic If set to true, this option allows phrases to be extended at their border when there are empty alignment rows or columns. See Figure (c) for an example. Note that the count of the original phrase will be distributed equally among the produced phrases, and the scores will thus be smaller. (default: true)

standard.swHeuristic If set to true, this option enforces extraction of single alignment dots, even if they do not constitute a valid phrase. For example, two consecutive words in one language aligned to a single word in the other are typically only extracted as a complete phrase, but we also include each word independently in a penalized word pair. The motivation for this is to be able to come up with partial translations for all the words encountered in the training, even if the word does not show up in its usual word group environment (cf. Figure (b)). Note that the count of this phrase will be very low (currently 0.01) (default: true)

standard.forcedSwHeuristic If set to true, every alignment point that is not aligned in source AND target will be extracted. See Figure (d) for an example. (default: false)
If you want to limit the maximum length of the lexical phrases, you can use the following options:

standard.maxSourceLength Restricts the length of extracted phrases to \(X \) words on the source part (default: 10)

standard.maxTargetLength Restricts the length of extracted phrases to \(X \) words on the target part (default: 10)

Module [hierarchical]

This module is responsible for extracting hierarchical rules. Options include:

hierarchical.maxNonTerminals The maximum of non terminals that we want to extract

hierarchical.nonTerminalIndicator We indicate hierarchical phrases by including a ~ in its non terminals, e.g. X~0. However, it is crucial that this char does not appear in the corpus, so you might want to change this. Keep in mind that you need to change this for all the other tools, too.

hierarchical.s2tThreshold Threshold for considering initial phrases on source side. By default, this is set to 0.1, but this seems arbitrary

hierarchical.t2sThreshold Threshold for considering initial phrases on target side. See above.

hierarchical.maxInitialLength Maximum length for the initial phrases. Keep in mind that it makes no sense to set this value higher than the maximum length of phrases that will be extracted by the standard phrase extractor.

hierarchical.maxSourceLength Maximum source length of hierarchical phrases, including non-terminals. Default is set to 5, which means that a phrase containing two non-terminals can only contain 3 terminal symbols, i.e. words. (default: 5)
4.3. EXTRACTION OPTIONS

hierarchical.maxTargetLength Maximum target length of hierarchical phrases, including non-terminals. (default: 10)

hierarchical.allowHeuristics Allow the various heuristics from the standard extraction to be considered as initial phrases. See standard phrase extraction.

hierarchical.distributeCounts Distribute counts evenly among the extracted phrases.

Module [discontinuous]

This module is responsible for extracting *source-side discontinuous* phrases. Options include:

discontinuous.maxSourceNonTerminals The maximum number of gaps on the source side that we want to extract. (default: 2)

discontinuous.nonTerminalIndicator Specifies how to denote gaps in the source side of a phrase. Works exactly as in the hierarchical extractor.

discontinuous.maxSourceLength Maximum source length of discontinuous phrases, including non-terminals (gap symbols). Default is set to 10, which means that a phrase containing two gaps can only contain 8 words. (default: 10)

discontinuous.maxTargetLength Maximum target length of phrases. (default: 10)

discontinuous.maxGap Maximum number of words that may be skipped on the source side to introduce a new gap. (default: 10)

discontinuous.maxSpan Maximum number of positions between the first and the last word on both the source and target side of the phrase. 0 for unbounded. Can be used for compatibility with hierarchical length constraints. (default: 0)

discontinuous.onlyDiscontinuous Extract only phrases that are discontinuous on the source side and no continuous phrases. (default: false)

discontinuous.onlyNonStandardGaps Extract a source-discontinuous phrase only if it has a gap over a non-standard phrase. These phrases can not be extracted hierarchically. However, this does not cover all non-hierarchical source-discontinuous phrases. (default: false)

discontinuous.swHeuristic See documentation for the standard module. (default: true)

discontinuous.forcedSwHeuristic See documentation for the standard module. (default: false)

discontinuous.nonAlignHeuristic See documentation for the standard module. This parameter only affects standard phrases, not source-discontinuous phrases.
discontinuous.gappyNonAlignHeuristic Like nonAlignHeurisic but for source-discontinuous phrases. Extends source-discontinuous phrases with unaligned words at phrase boundaries and inside gaps. (default: true)

4.4 Normalization options

This section describes the options of the normalizeScores binary. Usually this binary is called (with options) by the trainHierarchical.sh script. However, you still might be interested in some of its details, since the normalizeOpts parameters in trainHierarchical.sh’s config file are just passed to this binary.

During the normalization step all features of a rule are calculated and written to the final rule table. Due to this fact, this is the natural place to specify which to calculate and write to the final rule table.

4.4.1 Input options

source.marginals file with source marginals (binary or ascii format)
target.marginals file with target marginals (binary or ascii format)
source.isBinary specify the format of the source marginals (default: true)
target.isBinary specify the format of the target marginals (default: true)

4.4.2 Output options

nonTerminalIndicator char to specify the non-terminals (default: ~)
writeJaneRules output jane rules (default: false)
out output file

4.4.3 Feature options

hierarchical.active extract hierarchical features (default: true)
standard.IBM1NormalizeProbs specify whether to normalize IBM1 scores to length (default: true)
count.countVector comma separated thresholds for binary count feature (default: empty)
fisher.countVector comma separated thresholds for binary count feature (default: 5,10,20)
fisher.totalSentences specify total number of sentences for significance calculation (default: 0)
normSyntax normalization of rules with extended non-terminal set (default: false)
4.5. ADDITIONAL TOOLS

s2tThreshold count threshold for outputting phrases (s2t) (default: 0.1)
t2sThreshold count threshold for outputting phrases (t2s) (default: 0.1)
additionalModels comma separated additional models, e.g. hrm, if you wish to train a hierarchical reordering model.

4.4.4 Lexicon options

Additionally you have to specify the parameters of the two single word based lexica subcomponents for the standard phrase extractor (named standard.s2t and standard.t2s):

standard.{s2t,t2s}.regularizationType
standard.{s2t,t2s}.unigramProbabilitiesFile
standard.{s2t,t2s}.paramLambda
standard.{s2t,t2s}.file lexicon file
standard.{s2t,t2s}.format format of the word lexicon (possible values: giza,pbt*,binary)
standard.{s2t,t2s}.emptyString string representing the empty word (default: NULL)
standard.{s2t,t2s}.floor floor value for unseen pairs (default: 1e-6)
standard.{s2t,t2s}.emptyProb probability for empty word (if not in lexicon)
standard.{s2t,t2s}.useEmptyProb

4.5 Additional tools

4.5.1 Rule table filtering—filterPhraseTable

Rule table filtering reduces a rule table to only those rules that are actually needed to translate a given set of data. Suppose you wanted to translate the sentence “Life is good .”. Then for instance all rules whose source side contains any words other than “Life”, “is”, “good” and “.” will not be helpful for translating the sentence. In fact even more rules can be left out without harming the translation quality.

This procedure is called rule table filtering and is implemented in Jane’s filterPhraseTable tool. This tool implements filtering on both— source and target— sides and also allows filtering rules by their source and target lengths. The command has the following options:

file file to read rules from
out file to write filtered rules to
sourceFilterFile source file for filtering the phrases
targetFilterFile target file for filtering the phrases
maxSourceLength maximum source length (default: 10)
maxTargetLength maximum target length (default: 10)

4.5.2 Rule table pruning—prunePhraseTable.pl

This section describes Jane’s support for rule table pruning using the prunePhraseTable.pl script. Usually this script is called (with options) by the trainHierarchical.sh script. However, you still might be interested in some of its details, since the pruneOpts parameters in trainHierarchical.sh’s config file are just passed to this script. The prunePhraseTable flag in trainHierarchical.sh’s config file specifies whether to run this step (default: false).

Important
Parameters for prunePhraseTable.pl may only have one ‘-’ sign. This is inconsistent with the other steps, and will change in future versions.

In order to keep rule tables small Jane supports rule table pruning. The basic principle is the following: for each source side of a rule contained in a rule table, get all target sides and sort these according to their score (which is log-linearly combined using the factors specified in factorsPhrase). Then only keep the maxcand most promising rules for the given source side. When pruning, the filename of the final (pruned) rule table will be have the .pruned suffix.

factorsphrase factors for log-linear combination of feature scores (default: 1_1_0_0_0_0)
maxcand number of candidates (default: 400)

4.5.3 Ensuring single word phrases—ensureSingleWordPhrases

This section describes the options of the ensureSingleWordPhrases binary. Usually this binary is called (with options) by the trainHierarchical.sh script. However, you still might be interested in some of its details, since the ensureSingleWordsOpts parameters in trainHierarchical.sh’s config file are just passed to this script. The ensureSingleWords flag in trainHierarchical.sh’s config file specifies whether to run this step (default: false).

This tool checks whether the rule table contains rules for all words in the source vocabulary. In case some of these single word source rules do not exist, generate new rules based on a simple heuristic. For details, see comments in code.

dumpOldPhrases Dump old phrase table entries? If set to false, only the new entries will be written. (default: true)
phrasetableOut Specify output file to write new rule table to (default: stdout)
4.5. ADDITIONAL TOOLS

phrasetable Specify the input phrase table (default: stdin)

phraseScoreAppend Constant score string to append, will be shortened to the default length found in phrasetable (default: 1 1 0 0 0 0 0 0 0 0 0 0 0)

phraseCountAppend Constant count string to append, will be shortened to the default length found in phrasetable (default: 1 1 1 1 1 1 1 1 1 1 1 1 1)

phraseS2THeuristic Use result of s2t score heuristic. If switched off, use costs 0.0. (default: true)

phraseT2SHeuristic Use result of t2s score heuristic. If switched off, use costs 0.0. (default: true)

phraseS2TPenalty Add this additional phrase s2t penalty (-log(prob)) to the result of the s2t heuristic score (default: 0.0)

phraseS2TPenalty Add this additional phrase t2s penalty (-log(prob)) to the result of the t2s heuristic score (default: 0.0)

4.5.4 Interpolating rule tables—interpolateRuleTables

This section describes the options of the interpolateRuleTables binary. This tool allows you to create a new rule table by combining multiple input rule tables. The tool is kept as general as possible, so that you can easily create combinations of rule tables that suit your needs. We first need to explain some basic concepts of this tool:

When creating a new rule table from multiple input rule tables, we first need to decide which new rules should be included into the new rule table (**decisionAlgorithm**). Then, for each new rule, we need to decide which fields will be included, and which values each field will have (**interpolationAlgorithm**).

Typical choices for a **decisionAlgorithm** are `intersect:Table1,Table2` which will generate a rule for each rule that is contained in both Table1 and Table2; `intersectAll` which will generate a rule for each rule that is contained in all rule tables; `union:Table1,Table2` which will generate a rule for each rule contained in Table1 or Table2, and `unionAll` which will create a rule for every rule found in any of the given tables.

The fields that will be contained in the final rule table are specified using a configuration string of the format

```
ALGORITHM1:TABLE.FIELD, TABLE.FIELD,... CONSTANT1,... #ALGORITHM2:...
```

Each **Algorithm** will generate data for one field of the resulting rule table. The **Table.Field** part tells each algorithm on which input data it should work (2.3 means e.g.: Rule Table 2, field 3). The **Constant** section allows you to specify some parameters used by the algorithm (e.g. a weight for some interpolation). The # sign denotes the beginning of a new field.
Current interpolation Algorithms available are listed below. Here \((TF)_i\) indicates the Table.Field value—which is assumed to be in logspace—, \(C\) indicates the given constants.

- **loglinear**: \(\sum_i (TF)_i \cdot C_i\)
- **linear**: \(\log\sum_i \exp\((TF)_i\) \cdot C_i\)
- **copy**: \((TF)_i\)
- **max**: \(\max_i (TF)_i\)
- **ifelse**: \((TF)_i\) with \(i\) the smallest value such that \((TF)_i\) does not have the default value
- **key**: current key

In order to progress the input rule tables efficiently, these have to be sorted on the key fields (usually consisting of source- and target phrase).

Here are all the options available:

- **out** output file name (default: -)
- **skipLines** specify the number of lines for which the ordering check will be skipped. This is needed because the first lines often violate the ordering of the rule table. (default: 3)
- **fieldSeparator** field separator (default: #)
- **keyFields** fields that define the joining criterion (beginning at 1) e.g. 2, 3, 4 for # X # srcphr # trgphr #
- **defaultValues** Rule table default values. For each rule table, a comma separated list specifies the default field values. These lists are then semi-colon separated, e.g.: val1A,val1B,...;val2A,val2B;...
- **interpolation** interpolation fields. Commands for fields to be generated separated by ‘#’. Specification of single interpolation field: ALGORITHM:TABLE.FIELD, TABLE.FIELD;CONSTANT1,CONSTANT2 Choice for ALGORITHM are ‘loglinear’, ‘linear’, ‘copy’, ‘max’, ‘ifelse’, ‘key’. ‘loglinear’, ‘linear’ are both taking a list of fields to be interpolated. For each field a constant needs to be specified, which is used as scaling factor for the individual field’s value. ‘key’ outputs the key string.
- **decisionAlgorithm** decision algorithm. Currently implemented: ‘intersect:TABLE1,TABLE2’, ‘intersectAll’, ‘union:TABLE1,TABLE2’, ‘unionAll’ (default: intersectAll)
- **verbose** be verbose? (default: false)
4.5. ADDITIONAL TOOLS

4.5.5 Rule table binarization—rules2Binary

When using plain text rule tables Jane needs to store the whole rule table in main memory. This is no problem for small tasks but becomes a big issue as soon as the rule table becomes bigger than the amount of main memory that is available. Jane implements a binary format for rule tables with on-demand-loading capabilities so that Jane can deal with rule tables that are larger than main memory.

Plain text rule tables can be converted to binary rule tables regardless of having extracted in phrase-based mode or in hierarchical mode. This is done with the rules2Binary command, which offers the following options:

file file to read rules from

out output file name

observationHistogramSize observation histogram size (default: 0)

scalingFactors scaling factors for observation pruning (in the same order as the costs)

nonTerminalIndicator character that indicate a non-terminal in the rule file

whichCosts which costs are to be read from the phrase table Important: sorted list! (default: 0:10)

unknownWord string for identifying unknowns

l1o do leaving one out score estimation

additionalFile file with additional rules to read (text only!)

writeDepth depth for writing rules (in lexicalized form, 0 for deactivating)

writeDepthIgnoreFirst "ignore" first n lines for writeDepth (default: 5)

4.5.6 Lexicalized Reordering Score Normalization—normalizeLRMScores

The orientation counts for the lexicalized reordering models (e.g. lrm, hrm) extracted during phrase training need to be normalized. This can be done using this tool on the resulting phrase table. The resulting output phrase table will be identical to the input phrase table file, with the exception that the corresponding additional information fields now contain normalized scores.

The final orientation probabilities will be smoothed. You can specify the smoothing probabilities using the **globalCounts** parameter, otherwise the smoothing counts will be extracted from the given input phrase table file.

The parameters to this tool are given as *comma separated lists*, as this tool is designed to normalize scores of several models simultaneously. An example call would be:

`normalizeLRMScores --in file1 --out file2 --smoothingMethod 1Stage,1Stage --smoothingWeightGlobal 2.0,2.0 --informationTag lrm,hrm` The command has the following options:
in Input phrase table file

out Output phrase table file

smoothingMethod Choose the smoothing method (1Stage,2Stage). If you want con-
sistent smoothing using the globalCounts parameter, use 1Stage. Comma sepa-
rated list.

smoothingWeightGlobal Weight used for smoothing with global distribution. Higher
values give higher weight to global distribution. Comma separated list.

smoothingWeightLocal Weight used for smoothing the source phrase distribution.
Only for smoothingMethod=2Stage. Comma separated list.

informationTag Specify the tag used to identify the scores in the phrase table (e.g.
hrm). Comma separated list.

defaultEntry For inconsistent phrase table files. If no additional information tag was
found, this entry is used. A common value would be (for two models): lrm 0 0 0
0 0 0, hrm 0 0 0 0 0 0. Comma separated list.

globalCounts Specify the global orientation counts for 1Stage smoothing in the follow-
ing order: leftM leftS leftD rightM rightS rightD. Each entry is a space separated
list of these orientation counts. Comma separated list.
Chapter 5

Translation

In this chapter we will discuss the jane tool, the decoder used for producing the translations. Invoking jane --man shows all the supported options in the form of a man page. jane --help shows a compacter description. The manual page is generated automatically and thus is (should be) always up-to-date. It is the preferred source of documentation for the translation engine. In this chapter we will present the configuration mechanism and discuss the main options, but refer to the above commands for a complete list.

5.1 Components and the config file

Although all of the options can be specified in the command line, in order to avoid tedious repetitive typing, usually you will be working using a config file. We already encountered them in Chapter 3. Figure 5.1 shows such a config file. jane can be started using

```sh
$ jane --config jane.opt.config
```

You can see that the config file is divided into sections. We refer to each of these sections as components, and correspond to important modules in the source code. There are components for the search algorithms, for the language model, for the phrase table, etc.

In the config file the name of each component is prefixed with Jane. The reason for this is that the same file may be shared among several programs. This capability, however, is rarely used. Just keep this in mind when writing your own configurations. When specifying the options on the command line, the Jane prefix has to be dropped, but do not forget to include the full name of the component. Options specified in the command line have precedence over the config file. If for example you wanted to start a translation with the parameters shown in Figure but using a different language model, you would use the command
CHAPTER 5. TRANSLATION

Figure 5.1: Example config file for jane
$ jane --config jane.opt.config \
--CubePrune.LM.file other.lm.5gram.gz

The type of parameters should be quite clear from the context. Boolean parameters can be specified as true/false, yes/no, on/off or 1/0.

5.1.1 Controlling the log output

Nearly all components accept a verbosity parameter for controlling the amount of information they report. The parameter can have 6 possible values:

noLog Suppresses log messages.

normalLog Produces a normal amount of log messages (this is the default)

additionalLog Produces additional informative messages. This are normally not needed for normal operation, but in certain situations they may be useful.

normalDebug Produces additional debugging information.

additionalDebug Produces more informative debugging information.\(^1\)

insaneDebug Produces lots of debugging information. Use this if you want to fill up your hard disk quickly.

You can specify some parameters for all components using a star (\(\ast\)). For example, if you want to suppress all log messages (not only for one component), you should use:

$ jane --config jane.opt.config --*.verbosity noLog

Other parameters accepted by all components that are useful for controlling the output are:

logDates Suppresses the logging of date and time for each message, useful e.g. for diffing log files.

color Boolean parameter for controlling if the log message should use color. By default, Jane detects if the output is directed to a terminal or a file and sets the value accordingly.

logColor,warningColor,errorColor Controls the colors used for log, warning and error messages respectively. Standard xterm color names are accepted.

\(^1\)This level of debugging information is rarely used.
5.2 Operation mode

\texttt{jane} accepts two parameters in the first level (i.e. without additional component specification):

\textbf{runMode} Specifies the mode of operation of \texttt{jane}. It may have the values \texttt{singleBest} or \texttt{nBest}. Parameters for controlling the input-output paths and other options (e.g. size of the \texttt{n}-best list) are specified in the corresponding components. There is an additional operation mode, \texttt{optimizationServer}, which opens a socket and waits for connections, typically from the mert training programs. This is activated by the optimization scripts and is normally not needed to start it by hand.

\textbf{decoder} Specifies the search procedure. Available options are \texttt{cubePrune} or \texttt{cubeGrow} for hierarchical translation and \texttt{scss} for phrase-based translation.

5.3 Input/Output

Depending on the \texttt{runMode}, the input/output parameters are specified either in the \texttt{singleBest} or the \texttt{nBest} component. The input file is specified with the \texttt{fileIn} option. The input format is just a sentence per line, in plain text. No fancy \texttt{sgml}, \texttt{xml} or whateverml formats, thanks. The output file is specified via the \texttt{fileOut} parameter. For \texttt{n}-best generation you can alternatively use the \texttt{fileOutBase} parameter, for writing the \texttt{n}-best list of each sentence to a different file. Two formats for \texttt{n}-best list output are supported: \texttt{rwth} (the default) and \texttt{joshua}. A description of RWTH’s format can be found in Appendix B. The size of the \texttt{n}-best list can be given with the parameter \texttt{size}.

5.4 Search parameters

Depending on the search algorithm selected with the \texttt{runMode} option, following parameters should appear in the \texttt{Jane.CubePrune} or \texttt{Jane.CubeGrow} section.

5.4.1 Cube pruning parameters

The main parameter for cube pruning is the size of the internal \texttt{n}-best lists the decoder generates. This can be controlled with the \texttt{generationNbest} parameter. The maximum number of considered derivations is controlled by \texttt{maxGenerationNbest}. You can also use \texttt{generationThreshold} for specifying the beam as a margin with respect to the current best derivations.

5.4.2 Cube growing parameters

For cube growing, two language model heuristics are supported. The original, -\texttt{LM} heuristic proposed in [Huang & Chiang 07] and the coarse \texttt{LM} heuristic described in [Vilar & Ney 09]. They are chosen via the \texttt{lmHeuristic} parameter (set it either to \texttt{minusLM} or \texttt{coarseLM}).
5.4. SEARCH PARAMETERS

When using the -LM heuristic, you should set the `lmNbestHeuristic` parameter to the desired size of the n-best list generated for computing the heuristic.

When using the coarse LM heuristic, the parameters are specified in the language model component (see Section 5.7).

The minimum and maximum size of the intermediate buffer for cube growing can be specified via the `minCGBufferSize` and `maxCGBufferSize` parameters.

5.4.3 Source cardinality synchronous search (scss and fastScss) parameters

The details of the phrase-based search algorithm implemented in Jane can be found in [Zens & Ney 08]. scss and fastScss implement the same search algorithm. However, fastScss is optimized to produce a single best hypothesis as fast as possible. It does not keep track of separate model costs and also is not capable of producing n-best lists. Also, scss additionally supports source-side discontinuous phrases.

The parameters `maxSourcePhraseLength` and `maxTargetPhraseLength` control the maximum source and target phrase length, respectively, independent of the rule table.

`reorderingMaximumJumpWidth` controls the maximum distance (in number of words) between the last translated source position and the first translated position of the new phrase, when extending a hypothesis. This can be made a hard constraint by setting `reorderingHardJumpLimit` to `true`, otherwise the reordering costs will only be squared for higher distances (fixed to `true` for fastScss). The maximum number of gaps in the source coverage is controlled by `reorderingConstraintMaximumRuns` (#gaps = #runs - 1).

The beam size is controlled by two pruning parameters. `reorderingHistogramSize` is the number of different coverage vectors (the set of translated source words) allowed for each cardinality (number of translated source words). For each coverage vector, there is one stack which contains at maximum `lexicalHistogramSize` lexical hypotheses.

For higher efficiency, two different kinds of early pruning based on the language model score are implemented. `firstWordLMLookAheadPruning` uses the score of the first word of the new phrase within context. `phraseOnlyLMLookAheadPruning` uses the score of the whole new phrase without context. The latter will in most cases be faster, but may lead to slightly worse translations.

When activating both `firstWordLMLookAheadPruning` and `phraseOnlyLMLookAheadPruning`, the decoder will use a hybrid approach, which has proven to be most effective. Here, the LM score of the first word within context will be added to the score of all other words without context.

To perform phrase-based search with source-side discontinuous phrases, the scss run mode must be used with `useGappyPhrases` set to `true`. With `maxNumberOfGaps`, search can be restricted to phrases with the given maximum number of source-side gaps, independently from the rule table. `maxGapSize` controls the maximum number of positions that may be skipped for each gap in a source-discontinuous phrase.
5.4.4 Common parameters

The derivation recombination policy for cubeGrow and cubePrune can be controlled with the recombination parameter. Two values are possible. If set to translation derivations that produce the same translation are recombined. If set to LM derivations with the same language model context are recombined. This allows for a bigger coverage of the search space for the same internal n-best generation size, but of course it implies higher computational costs, both in time and memory.

The search effort can also be controlled via the observationHistogramSize parameter. This quantity controls the maximum number of translations allowed for each source phrase.

The number of language models to use is specified via the nLMS parameter. Secondary models are also specified in the corresponding decoder section. However, we will discuss them in detail in Section 5.8.

5.5 Rule file parameters

This component is specified as a sub-component of the corresponding search algorithm (e.g. Jane.cubePrune.rules). The file name to read the rules from is specified in the name parameter. Jane automatically detects the format of the file (plain text or binary format).

Jane expects the rules to have 9 costs. If you want to use another number of costs, you have to specify which ones via the whichCosts parameter. It accepts a comma separated list of values or ranges, the latter specified via a semicolon notation. Indexes start at 0. An example value for this parameter would be “0,1,4:8,10,11”. If you use non-standard costs you have to specify the names for the costs in the costsNames option (comma separated list of strings). The standard value is “s2t, t2s, ibm1s2t, ibm1t2s, isHierarchical, isPaste, wordPenalty, phrasePenalty, glueRule”, which corresponds to the costs as extracted in the standard training procedure.

It is possible to read the rules from two files specifying an additional file name in the additionalFile parameter. In this case the main rules file must be in binary format and the “additional file” must be in plain text format. This last one will be re-read for each sentence to translate. Use this only for small changes in the rules file, e.g. experiment with alternative glue rules.

5.6 Scaling factors

The scaling factors have their own component, independent of the search algorithm used. They are specified via the names given in the costsNames parameter described above.
5.7 LANGUAGE MODEL PARAMETERS

5.7 Language model parameters

The language model component are also specified as subsections of the search algorithm, very much like the rules parameters. The first language model is identified as LM. If several language models are used, they get an additional index. We can then have e.g. these section in the config file: Jane.cubePrune.LM, Jane.cubePrune.LM2, Jane.cubePrune.LM3.

Important

In the current implementation of Jane, the first language model must have the highest order of all the language models applied. This limitation will be suppressed in future versions. If you use the phrase-based decoder (scss), only the SRI LM format is supported yet. For the hierarchical decoder KenLM is available.

The file name to read the language model is given with the file parameter. The ARPA, binary SRI, binary Ken and jane LM formats are detected automatically. Language models can be converted from SRI format to the jane format using the lm2bin.sh script found in the bin/ directory. If you want to use the randlm format you have to set type to randlm. For KenLM the type is kenlm. Language models in APRA format can be converted into KenLM format with binaryKenLM.

Important

If you use the hierarchical decoder and set the language model type to kenlm, we recommend recombination=state.

The order of the language model is detected automatically, but you can specify it separately in the order parameter.²

If you are using cube growing with the coarse LM heuristic, you have to set the classes and classLM parameters. The first one specifies a file with the word-class mapping. The format is simply two fields per line, the first one the class, the second one the word, e.g.

²Specifying an incorrect LM order is probably a bad idea in most cases, but you are free to do so.
The \texttt{classLM} parameter gives the heuristic table, in ARPA format. This file can be computed from a LM and a class file with the \texttt{reduceLMWithClasses} command, found in the \texttt{bin/} directory.

5.8 Secondary models

Additional models are specified with the \texttt{secondaryModel} option of the corresponding decoder. The argument is just a comma separated list of additional model names. Each model will then have its additional section in the config file, with its name as identifier. If you want to use several instantiations of the same model, you may append a new identifier to the model by adding an @ symbol followed by the new identifier to the model name.

The secondary models included in Jane are discussed in Chapter 8.

5.9 Multithreading

Jane supports multithreading if it’s compiled with the \texttt{MULTITHREADING} flag enabled (\texttt{scons MULTITHREADING=1}). The number of parallel translation threads can be specified using the \texttt{--threadsNumber} flag. To distribute the translations between the different threads (or possible different instances) a central services is needed. This services is automatically started along side with jane by running the \texttt{bin/queueTranslate.sh} script. The following command starts for example the distribution server and jane with 8 threads: \texttt{bin/queueTranslate.sh -c jane.config -t test.txt -o output.hyp -- --threadsNumber 8}.

\begin{verbatim}
... 34 bar 19 barbarian 21 barbarianism 21 barbarians 19 barbaric 48 barbarically 21 barbarism 17 barbarities 26 barbarity 19 barbarous 16 barbarously ...
\end{verbatim}
Chapter 6

Phrase training

For the phrase-based decoder, Jane implements the forced alignment phrase training technique described in [Wuebker & Mauser+ 10].

6.1 Overview

The idea of forced alignment phrase training is to use a modified version of the translation decoder to force-align the training data. We apply the identical log-linear model combination as in free translation, but restrict the decoder to produce the reference translation for each source sentence. Rather than using the word alignment to heuristically extract possible phrases, we now have real phrase alignment information to work with. From these we extract real phrase counts, either from an n-best list or via the forward-backward algorithm (not implemented yet), and estimate phrase translation probabilities as relative frequencies. To counteract over-fitting, we apply a leave-one-out technique in the first iteration and cross-validation on further iterations.

The easiest way to invoke phrase training in Jane is via the extraction script. It takes two config files as parameters: an extended version of the standard extraction config (cf. Chapter 4), and a Jane decoder config (cf. Chapter 5).

6.2 Usage of the training script

The training script trainHierarchical.sh is capable of performing the full training pipeline by itself (an SGE grid engine should be available for reasonable performance). First it performs the standard extraction. If the option \texttt{--phraseTraining} is set, it will perform forced alignment training. The first iteration is initialized with the extracted rule table. You can invoke the script with the config file \texttt{extract.config} with \texttt{trainHierarchical.sh --config extract.config --phraseTraining [options]}.

If the extraction is already finished, you can also directly call the phrase training via \texttt{trainHierarchical.sh [options] startPhraseTraining}. In this case you should make sure that the extraction-related options are identical to the ones used before. Many of them are used again for the normalization of the trained rule table.
After the heuristic extraction, it will create a subdirectory `phraseTraining`, which again contains the directories `iter1`, `iter2`, etc. Omitting what was already described in Chapter 4, the (more interesting) options are:

- **phraseTraining** switches on forced alignment training if set to `true`
- **phraseTrainingIterations** specifies the number of phrase training iterations
- **phraseTrainingBatchSize** specifies the number of sentences processed in each queue job. Also the batch size for cross-validation
- **phraseTrainingLocalLM** switches on automatic production of 1-gram language models from the target side of the current batch
- **phraseTrainingFilterRuleTable** switches on filtering the full rule table for the current batch before decoding

- **janeConfig** the decoder configuration file used for forced alignment training
- **ensureSingleWords** switches on a heuristic to ensure that all source words within the vocabulary appear in at least one single-word rule in the final rule table

6.3 Decoder configuration

The configuration for forced alignment decoding has to be specified in a config file. An example configuration is shown here:

```plaintext
examples/queuePhraseTraining/jane.config

[Jane]
runMode = forcedAlignment
decoder = forcedAlignmentScss

[Jane.forcedAlignment]
fileIn = f
referenceFileIn = e
fileOut = f.hyp
phraseCountNBestSizes = 1000
phraseCountScalingFactors = 0
phraseOutputFilePrefix = f.hyp

[Jane.forcedAlignment.phraseOutput]
sourceMarginals = sourceMarginals.gz
targetMarginals = targetMarginals.gz
out = phrases.gz
size = 100000
```
6.3. Decoder Configuration

- **Observation Histogram Size**: 500
- **Observation Histogram Use LM**: true
- **Lexical Histogram Size**: 16
- **Reordering Histogram Size**: 64
- **Reordering Constraint Maximum Runs**: 2
- **Max Target Phrase Length**: 10
- **Max Source Phrase Length**: 6
- **First Word LM Look Ahead Pruning**: true
- **Phrase Only LM Look Ahead Pruning**: false
- **Backoff Phrases**: 0, 1
- **Backoff Phrases Max Source Length**: 1, 1
- **Backoff Phrases Max Target Length**: 1, 1
- **Backoff Phrases Costs Per Source Word**: 10, 10, 0, 0, 0, 0, 0, 0, 0
- **Backoff Phrases Costs Per Target Word**: 10, 10, 0, 0, 0, 1, 0, 0, 0
- **Backoff Phrases General Costs**: 0, 0, 0, 0, 1, 0, 0, 0, 0
- **Backoff Phrases IBM 1s2t Factors**: 0, 0, 1, 0, 0, 0, 0, 0, 0
- **Backoff Phrases IBM 1t2s Factors**: 0, 0, 0, 1, 0, 0, 0, 0, 0
- **Final Uncovered Costs Per Word**: 10
- **Leave One Out Cross Validation Mode**: 1
- **Leave One Out Cross Validation Penalty Per Source Word**: 5
- **Leave One Out Cross Validation Penalty Per Target Word**: 5
- **Leave One Out Cross Validation Penalty Per Phrase**: 0
- **Leave One Out Cross Validation Offset**: 0
- **Leave One Out Cross Validation Number Of Scores**: 2

Backoff Phrase Word Lexicon

- **s2t File**: f.s2t.lexCounts.gz
- **t2s File**: f.t2s.lexCounts.gz
- **IBM 1 Normalize Probs**: false

Rules

- **File**: f.scores.pruned.gz
- **Which Costs**: 0, 1, 2, 3, 4, 5
- **Costs Names**: s2t, t2s, ibm1s2t, ibm1t2s, phrasePenalty, wordPenalty

Language Model

- **File**: lm.1gram.gz
- **Order**: 1
[Jane.ForcedAlignmentSCSS.leaveOneOut]
standard.nonAlignHeuristic = true
standard.swHeuristic = true
hierarchical.allowHeuristics = false
extractMode = phrase-based-PBT
standard.forcedSwHeuristic = true
extractHierarchical = false
standard.maxSourceLength = 6
standard.maxTargetLength = 10
filterInconsistentCategs = true
alignmentFile = Alignment
additionalModels = ""

[Jane.scalingFactors]
s2t = 0.1
t2s = 0.1
ibm1s2t = 0.05
ibm1t2s = 0.05
phrasePenalty = 0
wordPenalty = -0.1
LM = 0.25
reorderingJump = 0.1

In the following we will explain these parameters. The standard parameters for translation are still applicable.

6.3.1 Operation mode

runMode set to **forcedAlignment** to restrict the decoder to a reference translation **decoder** so far only the phrase-based **forcedAlignmentScss** decoder is available

6.3.2 Input/Output

forcedAlignment.{fileIn,fileOut,referenceFileIn,phraseOutputFilePrefix} specify the source and target files and a prefix for the phrase counts, but are overridden by **trainHierarchical.sh**.

forcedAlignment.phraseCountNBestSizes the size of the \(n \)-best list from which the phrases are counted (the decoder supports a list, but **trainHierarchical.sh** does not).

forcedAlignment.phraseCountScalingFactors the scaling factor for weighting the items of the \(n \)-best list. 0 means all items are weighted equally. 1 means, all
items are weighted by their posterior probability given by the decoder score, which usually gives a too strong preference to the topmost items. Values in between will scale down the posterior probabilities. We suggest to use very low values (≤ 0.001) or 0 for good results. Here also the decoder supports a list with the same number of items as phraseCountNBestSizes, but trainHierarchical.sh does not.

forcedAlignment.phraseOutput.{sourceMarginals,targetMarginals,out} specify postfixes for the output of marginals and phrase counts, but are overridden by trainHierarchical.sh.

classifiedAlignment.phraseOutput.size specifies the buffer size for storing the phrase counts in memory. If the number of phrases grows beyond this number, they are dumped to disk.

forcedAlignment.backoffPhrasesFileIn If ForcedAlignmentSCSS.backoffPhrases is set to (3), this specifies the file, in which the backoff phrases are written. The format is one line per sentence, in the following format:

```
src1 # tgt1 [ ## src2 # tgt2 [ ## src3 # tgt3 [ ... ] ] ]
```

6.3.3 ForcedAlignmentSCSS decoder options

backoffPhrases specifies whether we generate no backoff phrases (0), only for source phrases for which there are no target candidates (1) or for all source phrases (2). (3) allows the user to specify the backoff phrases directly in a separate file. For details, on how to specify the filename and its format, see above. The first item of this list is applied in standard search. If no alignment is found, a fallback run is performed, where the second item of this list applies, and so on.

backoffPhrasesMaxSourceLength,backoffPhrasesMaxTargetLength specifies the maximum length for backoff phrases at each fallback run.

backoffPhrasesCostsPerSourceWord,backoffPhrasesCostsPerTargetWord,backoffPhrasesGeneralCosts specify the costs for backoff phrases. The list corresponds to rules.whichCosts and rules.costsNames.

backoffPhrasesIBM1s2tFactors,backoffPhrasesIBM1t2sFactors specifies for which model costs and with what factor (corresponding to rules.whichCosts and rules.costsNames) the lexical smoothing scores should be added.

finalUncoveredCostsPerWord specifies the penalty for unfinished translations per target word.

leaveOneOutCrossValidationMode specifies whether to apply leave-one-out (1), cross-validation (2), or none of the two (0).
leaveOneOutCrossValidationPenaltyPerSourceWord,
leaveOneOutCrossValidationPenaltyPerTargetWord,
leaveOneOutCrossValidationPenaltyPerPhrase specify the penalty for phrases which get a count of 0 after application of the leave-one-out or cross-validation heuristic.

backoffPhraseWordLexicon.{s2t.file,t2s.file} word lexica for backoff phrases. Overridden by trainHierarchical.sh.

backoffPhraseWordLexicon.IBM1NormalizeProbs make sure this is identical to the corresponding option in the extraction config.

leaveOneOut.* make sure these are identical to the corresponding options in the extraction config.

The following options are relevant for the relaxed forced alignment mode, which could for example be useful to integrate user feedback into the decoding process.

Note
You will probably want to use the following options for free translation, rendering the automated pipeline (trainHierarchical.sh) unusable. You have to call the jae binary directly. Note that there is no automated support for distributed translation with the forced alignment decoder, yet.

useLM specifies whether the decoder uses the language model. For real forced decoding this makes no sense, but if forcedAlignment.referenceFileIn is only considered a hint from the user, we do need the LM.

relaxedTargetConstraint if set to true, the decoder basically runs free translation, where the words from the forcedAlignment.referenceFileIn are encouraged to be used.

allowIncompleteTarget if set, the decoder is allowed to leave parts of forcedAlignment.referenceFileIn uncovered.

bagOfWords specifies whether forcedAlignment.referenceFileIn is interpreted as a bag-of-words, meaning that it can be visited in arbitrary order.

finalUncoveredCostsPerWord specifies the costs per uncovered target word when allowIncompleteTarget is set.

relaxedCoveredCostsPerWord specifies the costs for each covered target word. Negative values will encourage the decoder to use the specified words, positive values will discourage their usage.

useFinalUncoveredRestCosts specifies whether the decoder works with rest costs for uncovered target words.
6.3.4 Scaling factors

So far, `trainHierarchical.sh` only supports using the same scaling factors for all iterations. Re-optimizing the factors after each iteration can sometimes yield better results (but also worse). In the current version, you would have to run every iteration by hand, if you wish to try it.
Chapter 7

Optimization

In the log-linear approach, we model the a-posteriori probability of our translation directly, by using:

\[
p(e_1^f | f_1^f) = \frac{\exp \left(\sum_{m=1}^{M} \lambda_m h_m(f_1^f, e_1^f) \right)}{\sum_{e_1^f} \exp \left(\sum_{m=1}^{M} \lambda_m h_m(f_1^f, \tilde{e}_1^f) \right)}.
\]

(7.1)

The \(h_m(f_1^f, e_1^f) \) in Equation 7.1 constitute a set of \(M \) feature functions, each of which has an associated scaling factor \(\lambda_m \).

When we want to optimize our log-linear model, we note that the error measures are neither linear functions nor differentiable, and we cannot use a gradient optimization method.

However, there are some well-studied algorithms for gradient-free parameter optimization, e.g. the Downhill-Simplex method invented by [Nelder & Mead 65] or Powell’s algorithm [Fletcher & Powell 63]. In Jane, we have two well-established Minimum Error Rate Training (MERT) methods, as well as some experimental gradient-free optimization methods installed.

7.1 Implemented methods

Och’s MERT The recommended method in Jane is the method described in [Och 03]\(^1\).

Och’s MERT works on the \(n \)-best hypothesis that is produced in one decoder run and optimizes one scaling factor at a time, in a random order. The method exploits the fact that when changing only one scaling factor \(\lambda_k \) and keeping the others fixed, the translation score \(\sum_{m=1}^{M} \lambda_m h_m(e_1^f, f_1^f) \) of one hypothesis is a linear function of one variable \(\lambda_k \):

\(^1\)We will denote it as Och’s MERT, although in the literature this method is usually simply called MERT. However, we find the term misleading since all optimization methods are computed with the goal of finding the minimal error.
\[f(\lambda_k) = \lambda_k h_k(e^I_1, f^I_1) + \sum_{m=1, m \neq k}^{M} \lambda_m h_m(e^I_1, f^I_1) \] (7.2)

Since we are only interested in the best translation within the n-best list, given a tuple of scaling factors, we note that the hypothesis only changes for the intersection points of the upper envelope, which can be effectively computed by the sweep line algorithm [Bentley & Ottmann 79]. Computing the error measure for this limited set of intersection points, we select in each iteration the scaling factor with the lowest error.

The output of this form of optimization are only the optimized scaling factors for the current n-best list. To get an optimization for a larger search space, we start different iterations of n-best list generation and optimization. In each iteration we merge the generated n-best lists with the one of the previous iterations and optimize our scaling factors on this larger search space.

The amount a scaling factor can change in one iteration is limited by the stepSize parameter. If you want to restart more than once, you can use the randomStarts parameter. When the grid engine is available, you can also run multiple random iterations on parallel machines. The iteration parameter for the increasing job ID ensures that you will always have a different random seed for the internal permutation, even if you keep randomType fixed. In each run, Och’s MERT will perform randomPermutations iterations through all scaling factors.

Downhill-Simplex This optimization method spans a simplex of size \(N + 1\) scaling factor tuples. The points of this simplex are computed by taking the given start values and then disturbing each scaling factor independently, one for each tuple, by a given value distortion. After this, we always try to improve the worst tuple in our simplex, by either reflecting, expanding or contracting towards the gravity center of the other tuples. With this technique, we sort-of simulate a gradient towards the center of the simplex, and we cool this process down by contracting all points whenever we can get no improvement with the above mentioned methods. The algorithm aborts when no improvement above tolerance can be made.

Downhill-Simplex works for single-best optimization as well as n-best optimization, but is known to be more unstable in its performance. Moreover, if one measure point is faulty and thus valued better than it should, the simplex is often unable to get rid of this point, leading to bad local optima. We therefore consider Downhill-Simplex to be deprecated.

SPSA The Simultaneous Perturbation Stochastic Approximation Algorithm (SPSA) tries to simulate the gradient in a certain point by disturbing it infinitesimal into two random directions and taking the scoring difference by these two points. It is quite fast at the beginning, but in our experiments typically has worse scores than Downhill-Simplex or MERT. Readers caution is advised.
7.1. IMPLEMENTED METHODS

MIRA Both Downhill Simplex and Och’s method have problems with large amounts of scaling factors ([Chiang & Marton+ 08]). [Watanabe & Suzuki+ 07] first used the Margin Infused Relaxed Algorithm (MIRA) in machine translation which the authors claim to work well with a huge amount of features. [Chiang & Knight+ 09] get a significant improvement with an extremely large amount of features optimized by MIRA.

The entries of one \(n \)-best list can not only be sorted by their translation score but also by their error. The main idea of MIRA is to change the scaling factors to a point such that the order of both sorted lists is the same. The margin of two different numbers \(x \) and \(y \) is the value how much \(x \) is higher than \(y \). Furthermore, the margin between the translation scores and the error of two entries should be the same. That means for example, that two translations with the same error should be given the same translation score, and that if a sentence has an error twice as low as a second one, the first translation score should also be twice as high as the second one. This idea implies that the translation with the lowest error will be the translation with the highest translation score.

Our implementation differs in some details to the original one of MIRA. Nevertheless, it can handle thousand of features and additionally it has similar performance compared to Och’s MERT with a small set of feature functions.

7.1.1 Optimization via cluster

To speed up the optimization process, you can paralyze your decoding and optimization process. For that in the binary folder the shell script nBestOptimize.sh is given. Maybe you need to adapt some parameters for your cluster environment. You can set the parameters for the running time of both decoding and optimization as well as the memory requirement. Some parameters are only for Och’s MERT or MIRA. For Och’s method you can run parallel optimizations. Because of the random restarts and random permutations of the parameters the results of each parallel optimization differs. Finally, we take the optimized values with the best error score. We normally take 20 parallel jobs to keep the impact of the random parameters as small as possible. The standard values for the number of random restarts as well as the number of random parameters should be appropriate for most tasks.

It is necessary to specify your reference file, an init file as well as your dev file. If you set your test file, it will be translated at the end of your optimization, too.

An example init configuration of your lambda file is given:
s2t 0.1
t2s 0.1
ibm1s2t 0.1
ibm1t2s 0.1
phrasePenalty 0.1
wordPenalty -0.1
s2tRatio 0.1
t2sRatio 0.1
isHierarchical 0.1
isPaste 0.1
glueRule 0.1
LM 0.2

An example call could be:

```
bin/nBestOptimize.sh --janeConfig jane.base.config --test TESTFILE
--dev DEVFILE --init INITFILE --optDir .
--baseName myOpt --janeMem 20 --janeTime 4:00:00 --janeArraySize 20
--optMem 2 --optTime 4:00:00 --maxIter 30 --method mert
--optArraySize 20 --reference REFERENCEFILE --singleBest
--singleBestParam '--CubePrune.recombination LM'
```

After the first iteration of your optimization, your folder should include at least the following files:

```
distributedTrans.myOpt.trans.1.log
distributedTrans.myOpt.trans.1.master
init
jane.base.config
jane.myOpt.trans.1.4901683.*.log
j.myOpt.filterLambda.o490289
j.myOpt.nbest.1.o4901683.*
j.myOpt.opt.1.o4901684.*
lambda.0
lambda.1
lambda.1.*
mert.baseConfig
nBestOptimize.1.*.log
nBestOptimize.1.log
```

A part of all options of nBestOptimize is given:
7.1. IMPLEMENTED METHODS

bin/nBestOptimize.sh --help
nBestOptimize.sh [options]

Options:

--baseName base name for jobs submitted
--dev dev file to optimize on
--errorScorer on which error score you want to optimize on (bleu,extern)
--init initial lambda file for nBestOptimizer
--jane jane binary
--janeArraySize jane job-array size
--janeConfig jane config file
--janeMem memory for jane jobs (n-best generation)
--janeTime time for jane jobs
--maxIter maximum number of iterations
--method method mert/mira/simplex
 (default: simplex)
--nBestOptimizer n-best optimizer binary
--nBestPostproc general nbest postprocessing
--optArraySize opt job-array size
--optDir optimization directory
--optMem memory for optimization
--optTime time for optimization
--plainPostproc postprocessing script
 (filter, plain format)
--reference reference file
--scriptFollowing any script which should be started at the end of the optimization
--test test files of your corpus
--nBestListInput nBestList input
--randomPermutations amount of random permutations
 (only for MERT)
--randomRestarts random Restarts per job-array
 (only for MERT)
--randomTests amount of random restart tests
--randomType randomType = 1 for same randomRestarts
--referenceLength which referenceLength the error scorer takes
 (average,bestMatch)
--singleBest generate singleBest hypotheses
--singleBestParam extra Jane Parameter for singleBest translation
--stepSize stepSize (only for MERT)
--optSequenceSize how many sentences should be optimized on the same time (default 50, ONLY MIRA)
--description description of your system
-h,--help Show this help message
Chapter 8

Additional features

This chapter is not yet finished.
Do not hesitate to send questions to jane@i6.informatik.rwth-aachen.de.

8.1 Alignment information in the rule table

Some of the features that are presented in this chapter require the entries of the rule table to be equipped with additional word alignment information. This information needs to be stored with each rule during phrase extraction.

By adding alignment to the additionalModels parameter string (cf. Section 4.2), the extraction pipeline will be configured to store the most frequently seen word alignment as additional information with each extracted phrase. Alignment information has the form A <sourceIndex> <targetIndex> ...

8.2 Extended lexicon models

Jane includes functionality for scoring hypotheses with discriminative and trigger-based lexicon models as described in [Mauser & Hasan+ 09], and [Huck & Ratajczak+ 10]. These models are capable of predicting context-specific target words by taking global source sentence context into account. Both types of extended lexicon models are implemented as secondary models (cf. Section 5.8).

Note that the training for the models is not distributed together with Jane.

8.2.1 Discriminative word lexicon models

The first of the two types of extended lexicon models is denoted as discriminative word lexicon (DWL) and acts as a statistical classifier that decides whether a word from the target vocabulary should be included in a translation hypothesis. For that purpose, it considers all the words from the source sentence, but does not take any position information into account.
To introduce a discriminative word lexicon into Jane’s log-linear framework, the secondary model with the name `DiscriminativeWordLexicon` has to be activated and the DWL model file has to be specified as a parameter:

```plaintext
file  File to load the discriminative word lexicon model from
```

The scaling factor for the model is `dwl`.

The file format of DWL models is as follows: All features that belong to one target word are represented in exactly one line. The first token of a line in the model file is the target word `e`. The rest of the line is made up of pairs of feature identifiers and the associated feature weights. A source sentence word feature for a source word `f` with its weight `λ_{ef}` is indicated with the token pair `0_{f} \lambda_{ef}`. A bias `λ_e` towards the target word may be comprised with the identifier `**BIAS**`, i.e. by included the two tokens `**BIAS** λ_e`.

Here is an example from a French-English DWL model:

```plaintext
European **BIAS** -5.53222 0_trésor -3.86704 0_européen 7.05273 ... Council **BIAS** -7.92597 0_passé 1.64709 0_décider 1.41725 ...
```

8.2.2 Triplet lexicon models

The second type of extended lexicon model, the `triplet lexicon model`, is in many aspects related to IBM model 1 [Brown & Della Pietra 93], but extends it with an additional word in the conditioning part of the lexical probabilities. This introduces a means for an improved representation of long-range dependencies in the data. Jane implements the so-called inverse triplet lexicon model \(p(e|f,f') \) with two source words `f` and `f'` triggering a target word `e`.

Apart from the unconstrained variant of the triplet lexicon model where the two triggers are allowed to range arbitrarily over the source sentence, Jane also comprises scoring for a variant of the triplet lexicon model called the `path-constrained` (or `path-aligned`) triplet model. The characteristic of path-constrained triplets is that the first trigger `f` is restricted to the aligned target word `e`. The second trigger `f'` is allowed to range over all remaining words of the source sentence. To be able to apply the model with this restriction in search, Jane has to be run with a phrase table that contains word alignment for each phrase (cf. Section 8.1). Jane’s phrase extraction can optionally supply this information from the training data (cf. Chapter 4 for more information).

To introduce an unconstrained triplet lexicon into Jane’s log-linear framework, the secondary model with the name `UnconstrainedTripletLexicon` has to be activated. The secondary model for the path-constrained triplet lexicon is called `PathAlignedTripletLexicon`.

Parameters for the triplet lexicon models are

```plaintext
file  File to read the triplet lexicon model from
```
floor Floor value for the triplet lexicon model (default: 1e-10)

symmetric Symmetrize the triplet lexicon model (default: true)

maxDistance Maximum distance of triggers. A value of 0 (default) means there is no
maximum distance restriction

useEmptyWord Use empty words (default: true). Empty words are denoted as NULL in
the triplet lexicon model file

useCaching Use sentence-level caching of triplet scores (default: true)

The scaling factor for unconstrained triplets is triplet, the one for path-constrained
triplets is pathAlignedTriplet.

A triplet lexicon model file contains one triplet in each line. Thus the file format
specifies four fields per line, separated by whitespace: The first trigger f (first token), the
second trigger f' (second token), the triggered word e (third token), and the probability
$p(e|f,f')$ (fourth token) of a triplet, e.g.

activité	adapter activity	1.000000
activité	cette work	0.027601
activité	cette activities	0.000155
activité	cette activity	0.864312
activité	cette started	0.107932
activité	nouvelle activity	0.000204
activité	nouvelle industry	0.013599
activité	nouvelle business	0.986197
activité	mais activity	0.998449
activité	mais career	0.000002
activité	mais business	0.000006
activité	mais job	0.000116
activité	mais started	0.001410
activité	mais richly	0.000003

Alpha numerical sorting of the entries is not required.

8.3 Reordering extensions for hierarchical translation

In hierarchical phrase-based machine translation, reordering is modeled implicitly as
part of the translation model. Hierarchical phrase-based decoders conduct phrase re-
orderings based on the one-to-one relation between the non-terminals on source and tar-
get side within hierarchical translation rules. Recently, some authors have been able to
improve translation quality by augmenting the hierarchical grammar with more flexible
reordering mechanisms based on additional non-lexicalized reordering rules [He & Meng+ 10a, Sankaran & Sarkar 12]. Extensions with lexicalized reordering models have also been presented in the literature lately [He & Meng+ 10a, He & Meng+ 10b].

Jane offers both the facility to incorporate grammar-based mechanisms to perform reorderings that do not result from the application of hierarchical rules [Vilar & Stein+ 10] and the optional integration of a discriminative lexicalized reordering model [Zens & Ney 06, Huck & Peitz+ 12]. Jane furthermore enables the computation of distance-based distortion.

8.3.1 Non-lexicalized reordering rules

In the hierarchical model, the reordering is already integrated in the translation formalism. But there are still cases where the required reorderings are not captured by the hierarchical phrases alone. The flexibility of the grammar formalism allows us to add additional reordering capabilities without the need to explicitly modify the code for supporting them.

In the standard formulation of the hierarchical phrase-based translation model two additional rules are added:

$$
\begin{align*}
0 0 0 0 0 0 0 1 0 & \# S \# X^0 \# X^0 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 1 & \# S \# S^0 X^1 \# S^0 X^1 \# 1 1 1 1 1 \\
\end{align*}
$$

The first of the two additional rules is denoted as initial rule, the second as glue rule. This allows for a monotonic concatenation of phrases, very much in the way monotonic phrase-based translation is carried out.

To model phrase-level IBM reorderings [Zens & Ney+ 04b] with a window length of 1 as suggested in [Vilar & Stein+ 10], it is sufficient to replace the initial and glue rule in the phrase table with the following rules:

$$
\begin{align*}
0 0 0 0 0 0 0 1 0 & \# S \# M^0 \# M^0 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 1 & \# S \# M^0 S^1 \# M^0 S^1 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 0 & \# S \# B^0 M^1 \# M^1 B^0 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 0 & \# M \# X^0 \# X^0 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 1 & \# M \# M^0 X^1 \# M^0 X^1 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 0 & \# B \# X^0 \# X^0 \# 1 1 1 1 1 \\
0 0 0 0 0 0 0 1 0 & \# B \# B^0 X^1 \# X^1 B^0 \# 1 1 1 1 1 \\
\end{align*}
$$

In these rules we have added two additional non-terminals. The M non-terminal denotes a monotonic block and the B non-terminal a back jump. Actually both of them represent monotonic translations and the grammar could be simplified by using only one of them. Separating them allows for more flexibility, e.g. when restricting the jump width, where we only have to restrict the maximum span width of the non-terminal B. These rules can be generalized for other reordering constraints or window lengths.

The application of a span width constraint to the non-terminal M is usually not desired here:
To gain some more control on the application of the back jump rules, a binary feature may be added to mark them:

0 0 0 0 0 0 1 0 0 # S # M~0 # M~0 # 1 1 1 1 1
0 0 0 0 0 0 1 1 0 # S # M~0 S~1 # M~0 S~1 # 1 1 1 1 1
0 0 0 0 0 0 1 0 1 # S # B~0 M~1 # M~1 B~0 # 1 1 1 1 1
0 0 0 0 0 0 1 0 0 # M # X~0 # X~0 # 1 1 1 1 1
0 0 0 0 0 0 1 1 0 # M # M~0 X~1 # M~0 X~1 # 1 1 1 1 1
0 0 0 0 0 0 1 1 0 # M # X~0 # X~0 # 1 1 1 1 1
0 0 0 0 0 0 1 1 1 # B # B~0 X~1 # X~1 B~0 # 1 1 1 1 1

Note that all other rules in the phrase table have to be augmented with the additional feature (at a value of 0) as well. Jane has to be notified of the additional feature in the phrase table via the configuration file:

```
[Jane.CubePrune.rules]
file = f-devtest.scores.jump.bin
whichCosts = 0:9
costsNames = s2t,t2s,ibm1s2t,ibm1t2s,isHierarchical,isPaste,
             wordPenalty,phrasePenalty,glueRule,jump
```

The cost name is to be defined by the user and determines the identifier of the scaling factor for this feature.

To ease experimentation with several reordering rules without having to store the whole phrase table several times, Jane provides an option to load a separate text file with additional rules. The actual phrase table may thus be restricted to the rules extracted from the training corpus, while any special additional rules like the initial and glue rule or the IBM reordering rules are stored in small text files. Setups with IBM reorderings and with the standard initial and glue rule can employ the same phrase table file, e.g.

```
[Jane.CubePrune.rules]
file = f-devtest.scores.jump.onlyRules.bin
additionalFile = f-devtest.scores.ibmReorderings.txt
whichCosts = 0:9
costsNames = s2t,t2s,ibm1s2t,ibm1t2s,isHierarchical,isPaste,
             wordPenalty,phrasePenalty,glueRule,jump
```

and
8.3.2 Distance-based distortion

Jane allows for the computation of a distance-based distortion during hierarchical decoding (jump width model). This functionality is implemented as a secondary model which is based on additional information from the phrase table. To be able to make use of it, the rules which are to be considered by the jump width model have to be marked in the phrase table:

```
0 0 0 0 0 0 1 0 0 # S # M~0 # M~0 # 1 1 1 1 1
0 0 0 0 0 0 1 1 0 # S # M~0 S~1 # M~0 S~1 # 1 1 1 1 1
0 0 0 0 0 0 1 0 1 # S # B~0 M~1 # M~1 B~0 # 1 1 1 1 1 # jump 1
0 0 0 0 0 0 1 0 0 # M # X~0 # X~0 # 1 1 1 1 1
0 0 0 0 0 0 1 1 0 # M # M~0 X~1 # M~0 X~1 # 1 1 1 1 1
0 0 0 0 0 0 1 0 1 # B # X~0 # X~0 # 1 1 1 1 1
0 0 0 0 0 0 1 0 1 # B # B~0 X~1 # X~1 B~0 # 1 1 1 1 1 # jump 1
```

To introduce the jump width model into Jane’s log-linear framework, the secondary model with the name `JumpWidth` has to be activated. The jump width is computed as the sum of the width of the spans covered by source-side non-terminals within the current rule. The model only accounts for non-terminals of the types specified by the user:

```
nonTerminals = B,M,X
```

The scaling factor for the model is `JumpWidth`.

8.3.3 Discriminative lexicalized reordering model

Jane’s discriminative lexicalized reordering model [Huck & Peitz+ 12] tries to predict the orientation of neighboring blocks. The two orientation classes `left` and `right` are used, in the same manner as described by [Zens & Ney 06]. The reordering model is applied at the phrase boundaries only, where words which are adjacent to gaps within hierarchical phrases are defined as boundary words as well. The orientation probability is modeled in a maximum entropy framework [Berger & Della Pietra+ 96]. The feature set of the model may consist of binary features based on the source word at the current source position, on the word class at the current source position, on the target word
8.3. REORDERING EXTENSIONS FOR HIERARCHICAL TRANSLATION

at the current target position, and on the word class at the current target position. A
gaussian prior [Chen & Rosenfeld 99] may be included for smoothing.

Training

Jane contains a reordering event extractor and a wrapper script which trains the reordering
model with the generalized iterative scaling (GIS) algorithm [Darroch & Ratcliff 72].
The wrapper script relies on the YASMET GIS implementation, i.e. it requires an executable YASMET binary.¹

A typical call of the GIS training wrapper script looks like this:

```bash
$ export YASMETBIN=~/bin/YASMET
$ bin/trainMaxEntReorderingModel.sh --feat p+s\_0+S\_0+t\_0+T\_0 \n--scls f.mkcls.classes.gz --tcls e.mkcls.classes.gz \n--f f.gz --e e.gz --a Alignment.gz
```

The shell variable `YASMETBIN` should have been set to point to the YASMET executable before, for example:

```bash
$ export YASMETBIN=~/bin/YASMET
```

In addition, the shell variable `TMPDIR` should point to a directory for temporary storage.
The model will be written to a file `fe.md1.p+s_0+S_0+t_0+T_0.gis.lambda.gz`.

The important command line parameters of `trainMaxEntReorderingModel.sh` are:

```
--md <int> number of classes (default: 1)
--feat <string> feature string (default: p+s_0)
--f <file> source corpus file (default: f)
--e <file> target corpus file (default: e)
--a <file> alignment file (default: Alignment)
--scls <file> source-side mkcls word class mappings file
--tcls <file> target-side mkcls word class mappings file
```

The syntax for the feature string is the following:

- each feature type: `TYPE[OFFSET[OFFSET]]`
- multiple features: `feat1+feat2+feat3+...`
- feature types for words:
 - `p` prior
 - `s_OFFSET` source word with offset

¹ YASMET is available under the GNU General Public License. http://www.hltp.rwth-aachen.de/web/Software/YASMET.html
CHAPTER 8. ADDITIONAL FEATURES

Figure 8.1: Illustration of an embedding of a lexical phrase (light) in a hierarchical phrase (dark), with orientations scored with the neighboring blocks.

- t_{OFFSET} target word with offset
- $st_{\text{OFFSET OFFSET}}$ source / target word pair with offset
- f feature types for word classes:
 - S_{OFFSET} source word class with offset
 - T_{OFFSET} target word class with offset
 - $ST_{\text{OFFSET OFFSET}}$ source / target word class pair with offset

- OFFSET (typically 0; search supports offsets -1,0,+1):
 - $-9 \ldots 9$ offset of current phrase
 - char(offset-'a') offset of next phrase, e.g. $a=0, b=1, c=2$ etc.

In the example call above (`--feat p+s_0+S_0+t_0+T_0`), we thus train with a prior, source word and target word at the end of the current phrase, and source word class and target word class at the end of the current phrase.

If you intend to apply a different training algorithm, you might want to have a look at the reordering event extractor `extractMaxEntReorderingEvents`, which enables you to obtain the training instances.

Decoding

For each rule application during hierarchical decoding, the reordering model is applied at all boundaries where lexical blocks are placed side by side within the partial hypothesis. For this purpose, we need to access neighboring boundary words and their aligned source words and source positions. Note that, as hierarchical phrases are involved, several block joinings may take place at once during a single rule application. Figure 8.1 gives an illustration with an embedding of a lexical phrase (light) in a hierarchical phrase (dark).
8.4. SYNTACTIC FEATURES

The gap in the hierarchical phrase \(\langle f_1 f_2 X^{\sim 0}, e_1 X^{\sim 0} e_3 \rangle \) is filled with the lexical phrase \(\langle f_3, e_2 \rangle \). The discriminative reordering model scores the orientation of the lexical phrase with regard to the neighboring block of the hierarchical phrase which precedes it within the target sequence (here: right orientation), and the block of the hierarchical phrase which succeeds the lexical phrase with regard to the latter (here: left orientation).

To introduce a discriminative reordering model into the decoder’s log-linear framework, the secondary model with the name \texttt{MaxEntReordering} has to be activated. The only relevant parameter for the model is

\texttt{file} Model lambda file

Note that if word class features are to be used, the mkcls word class mappings files need to be available. Jane tries to read them from files having the same name as the model lambda file plus an additional suffix .scis and .tcis (for the source-side and target-side mappings file, respectively).

To be able to apply the model in search, the decoder has to be run with a rule table that contains word alignment for each phrase (cf. Section 8.1).

The scaling factor for the discriminative reordering model is \texttt{mero}.

8.4 Syntactic features

The following two additional features try to integrate syntactic information of the source and target language into the translation process. The motivation is to get a more grammatically correct translation. Jane supports two different features using syntactic information obtained from syntax parser e.g. the Stanford parser. All features were evaluated within the Jane framework in [Stein & Peitz+ 10].

8.4.1 Syntactic parses

Both features use the information extracted from syntax trees. These trees are provided by e.g. the Stanford Parser. The provided syntax trees have the following format:

```plaintext
(ROOT (S (NP (DT the) (NN light)) (VP (VBD was) (ADJP (JJ red))) )))
```

The trees are extracted with this command:

```
java -mx1500m -Xmx1500m -cp stanford-parser.jar \
edu.stanford.nlp.parser.lexparser.LexicalizedParser \
-maxLength 101 -sentences newline \
-outputFormat “oneline” \
-outputFormatOptions “basicDependencies” \
-tokenized \
-escaper edu.stanford.nlp.process.PTBEscapingProcessor \
englishPCFG.ser.gz $fileToParse | gzip > $fileOutput
```
8.4.2 Parse matching

This simple model based on [Vilar & Stein+ 08] and measures how much a phrase corresponds to the given syntax tree. Two features are derived from this procedure. The first one measures the relative frequency with which a given phrase did not exactly match the yield of any node. The second feature measures the relative distance to the next valid node, i.e. the average number of words that have to be added or deleted to match a syntactic node, divided by the phrase length.

Feature extraction

To extract the features for parse matching, the extraction configuration has to be changed:

```plaintext
additionalModels="parcematch"
extractOpts="[...] \n--parcematch.targetParseFile syntaxTree.gz \n[...]
```

Decoding

For decoding, the secondary model ParseMatch and the corresponding features parseNonMatch, parseRelativeDistance and invalidLogPercentage have to be added to the configuration:

```plaintext
[Jane.<decoder>]
secondaryModels=ParseMatch

[Jane.scalingFactors]
...  
parseNonMatch = 0.1
parseRelativeDistance = 0.1
invalidLogPercentage = 0.1
```

8.4.3 Soft syntactic labels

The soft syntactic labels was first described in [Venugopal & Zollmann+ 09], where the generic non-terminal of the hierarchical system is replaced by a syntactic label.

Feature extraction

The feature extraction for soft syntactic labels is done with this configuration:
8.5. SOFT STRING-TO-DEPENDENCY

Decoding

The secondary model Syntax employs soft syntactic labels in the translation process. It is evoked with Syntax@yourname and reserves the scaling factors yourname and yournamePenalty. yourname specifies how the additional information is named within the phrase table. The default value is syntax, but you might want to change this for e.g. poor man syntax. Keep in mind that different names have to be registered as valid additional rule info in the code.

```plaintext
[Jane.<decoder>]
secondaryModels=Syntax@syntax

[Jane.scalingFactors]
...
syntax = 0.1
syntaxPenalty = 0.1
```

8.5 Soft string-to-dependency

String-to-dependency hierarchical machine translation [Shen & Xu+ 08, Shen & Xu+ 10] employs target-side dependency features to capture syntactically motivated relations between words even across longer distances. It implements enhancements to the hierarchical phrase-based paradigm that allow for an integration of knowledge obtained from dependency parses of the training material. Jane realizes a non-restrictive approach that does not prohibit the production of hypotheses with malformed dependency relations [Stein & Peitz+ 10]. Jane includes a spectrum of soft string-to-dependency features: invalidity markers for extracted phrase dependency structures, penalty features for construction errors of the dependency tree assembled during decoding, and dependency LM features. Dependency trees over translation hypotheses are built on-the-fly during the decoding process from information gathered in the training phase and stored in the phrase table. The soft string-to-dependency features are applied to rate the quality of the constructed tree structures. Since version 2 of Jane, dependency LM scoring is—like the other features—directly integrated into the decoder [Peter & Huck+ 11].
8.5.1 Basic principle

Dependency structures in translation

A dependency models a linguistic relationship between two words, like e.g. the subject of a sentence that depends on the verb. String-to-dependency machine translation demands the creation of dependency structures over hypotheses produced by the decoder. This can be achieved by parsing the training material and carrying the dependency structures over to the translated sentences by augmenting the entries in the phrase table with dependency information. However, the dependency structures seen on phrase level during phrase extraction are not guaranteed to be applicable for the assembling of a dependency tree during decoding. Dependency structures over extracted phrases which can be considered uncritical in this respect are called valid. Valid dependency structures are of two basic types: fixed on head or floating with children. An example and a counterexample for each type are shown in Figures 8.2 and 8.3, respectively. In an approach without hard restrictions, all kinds of structures are allowed, but invalid ones are penalized. Merging heuristics allow for a composition of malformed dependency structures.

A soft approach means that we will not be able to construct a well-formed tree for all translations and that we have to cope with merging errors. During decoding, the previously extracted dependencies are used to build a dependency tree for each hypothesis. While in the optimal case the child phrase merges seamlessly into the parent phrase, often the dependencies will contradict each other and we have to devise strategies for these errors. An example of an ideal case is shown in Figure 8.4, and a phrase that breaks the previous dependency structure is shown in Figure 8.5. As a remedy, whenever the direction of a dependency within the child phrase points to the opposite direction of the parent phrase gap, we select the parental direction, but penalize the merging error. In a restrictive approach, the problem can be avoided by requiring the decoder to always obey the dependency directions of the extracted phrases while assembling the dependency tree.

Dependency language model

Jane computes several language model scores for a given tree: for each node as well as for the left and right-hand side dependencies of each node. For each of these scores, Jane also increments a distinct word count, to be included in the log-linear model, for a total of six features. Note that, while in a well-formed tree only one root can exist,
Figure 8.4: Merging two phrases without merging errors. All dependency pointers point into the same directions as the parent dependencies.

we might end up with a forest rather than a single tree if several branches cannot be connected properly. In this case, the scores are computed on each resulting (partial) tree but treated as if they were computed on a single tree.

8.5.2 Dependency parses

Jane supports the dependency format provided by the Stanford Parser and the Berkeley Parser. The following instructions refer to the Stanford Parser. The Stanford Parser dependencies have the following format:

\[
\begin{align*}
nn & (mediators-2, Republic-1) \\
nsbjj & (attended-14, mediators-2) \\
prep & (mediators-2, from-3) \\
dep & (than-5, more-4) \\
quantmod & (eighteen-6, than-5) \\
nm & (states-13, eighteen-6) \\
nn & (states-13, Arab-7) \\
amod & (Arab-7, European-9) \\
cc & (Arab-7, and-11) \\
conj & (Arab-7, American-12) \\
pobj & (from-3, states-13) \\
det & (seminar-16, the-15) \\
dobj & (attended-14, seminar-16)
\end{align*}
\]

Moreover, we work with basic dependency trees, i.e., the option basicDependencies (resp. basic) has to be set in order to extract trees only. Different options will allow also more general graph structures and collapsed dependencies. Then a proper working of the tools is not guaranteed.

Large corpora should be split first in order to run the parser quickly in parallel on the data. Usually, files each containing 1000 sentences can be parsed within 4 hours each using a little less than 4GB of memory.
If you have already data in Penn Treebank style, you can extract dependency trees only. This takes just a couple of minutes and can be done on your local computer. Be aware of tree formats that are different and also of nonterminals which the Stanford parser does not know.

Note: Apparently our Dependency LM tools cannot handle only-dependency-files. You need to pretend to also have phrase-structure trees in your file, e.g., with

```
sed 's/^S/
(ROOT
/g'
```

8.5.3 Extracting dependency counts

Remember to substitute i686 by x86_64 in the following commands if you work on a 64bit system.

```
bin/i686/extractDependencyCounts.i686-standard --help
extractDependencyCounts.i686-standard [OPTIONS]
```

- dependencyTree: dependency tree file
- headOut: head output file
- leftOut: left output file
- rightOut: right output file
- headMarker: head marker
- ngramMax: n in ngram (default: 3)
- startSentence: start sentence
- endSentence: end sentence

An example call could be:

```
bin/i686/extractDependencyCounts.i686-standard \ 
--dependencyTree e.parsed.gz --leftOut e.counts.left.3gram.gz \ 
--rightOut e.counts.right.3gram.gz --headOut e.counts.head.gz
```
8.5. **SOFT STRING-TO-DEPENDENCY**

If you want to extract from specific sentences in your data only, you can use the convenient Jane options –startSentence and –endSentence also here.

Make Ngrams from Counts with SRILM
The default method would be:

```bash
sriLM/bin/i686/ngram-count -order 3 \
-read e.counts.left.3gram.gz -lm e.left.3gram.gz
sriLM/bin/i686/ngram-count -order 3 \
-read e.counts.right.3gram.gz -lm e.right.3gram.gz
sriLM/bin/i686/ngram-count -order 1 \
-read e.counts.head.gz -lm e.head.1gram.gz
```

We did not try different options, so this should be better elaborated and tested.

8.5.4 **Language model scoring**

To score sentences with the dependency LM created above, you need to parse your sentences first and then run the following binary:

```bash
bin/i686/dependencyLMScorer.i686-standard --help
dependencylmscorer: dependency language model scorer
```

Options:
- `input` file to calculate language model score
- `dependencyFormat` format the dependency tree is given (simple, stanford*)
- `out` output file
- `startSentence` start sentence
- `endSentence` end sentence
- `headMarker` head marker
- `calculateSum` calculate also the sum of headLM, rightLM, leftLM and headWP, rightWP, leftWP

And for each language model out of [headLM, leftLM, rightLM]
- `order` language model order
- `file` language model file
- `penaltyNotFound` penalty for entries unknown (default: -20)
- `penaltyNoEntry` penalty for entries not found in the LM (default: -100)

An example call could be:
Again, specific sentences can be scored using –startSentence and –endSentence. The output for each sentence will look like that:

```
depLM 8.4572 parseDiff 2
```

The first number is the dependency LM score and the second is the number of words in which the parser sentence differs from the real sentence (e.g., parenthesis, commas, etc. are not considered for dependency trees).

8.5.5 Phrase extraction with dependencies

Create a config file for trainHierarchical.sh as usual and add to the extractOpts:

```
--dependency.parseFile ../data/e.dependency.parseAll.gz
```

and to additionalModels:

```
dependency
```

So for example with other options:

```
[...]
additionalModels="dependency,syntax,parsematch,alignment"
[...]
extractOpts="--standard.nonAlignHeuristic=true \n--standard.swHeuristic=true \n--hierarchical.allowHeuristics=false \n--dependency.parseFile ../data/e.dependency.parseAll.gz \n--hierarchical.distributeCounts true \n--parsematch.targetParseFile ../data/parseTree.gz \n--syntax.targetParseFile ../data/parseTree.gz"
[...]
```

8.5.6 Configuring the decoder to use dependencies

Options to add to the jane config config file under the according section.
8.6. More phrase-level features

The Jane decoder has a flexible mechanism to employ any kind of real-valued phrase-level scores which are given to it in the rule table as features in its model combination. Cost columns other than those comprised in standard model sets can thus be added to the rule table. The decoder configuration allows for switching individual phrase-level models on or off as desired. The user is able to specify the score columns in the table which he wants the decoder to employ as features, and to give each of them a name of his choice (provided that this name is not in use already).

8.6.1 Activating and deactivating costs from the rule table

Assume you have some baseline rule table, which may e.g. look like this for an English→French translation task:
This rule table comprises eight phrase-level model costs (the columns prior to the first # separator symbol). The decoder configuration file for the baseline system instructs Jane to make use of all the eight model costs from the rule table, and devises names and scaling factors for them:

```
examples/somePhrases.phrase-based.en-fr

...  
1.05175 0.418115 2.93458 1.35779 1 2 0.5 2 # X # research # la recherche # 5210.52 6516.38 14916 9899 6884 # alignment A 0 0 1
1.22394 1.00471 1.12499 0.955367 1 1 1 1 # X # recherche # 4386.34 6325.62 14916 17276 12508 # alignment A 0 0
1.27172 0.411582 1.72355 0.937994 1 1 1 1 # X # recherche # recherches # 89.151 104.691 318 158 114 # alignment A 0 0
1.38278 1.13299 1.37919 1.36015 1 1 1 1 # X # recherche # recherche # 79.7795 109.503 318 340 169 # alignment A 0 0
10.0257 2.08949 6.52176 1.23081 1 2 0.5 2 # X # recherche # aux recherches # 0.66 1.98 14916 16 2 # alignment A 0 1
10.0257 2.08949 7.32252 3.2433 1 2 0.5 2 # X # recherche # chercheurs dans # 0.66 1.98 14916 16 2 # alignment A 0 0
10.0257 2.40795 8.49507 1.64851 1 3 0.333333 3 # X # recherche # institutions de recherche # 0.66 1.98 14916 22 2 #
alignment A 0 2
...
```

```
...  

[Jane.SCSS.rules]  
file = rules.bin  
whichCosts = 0:7  
costsNames = phraseS2T,phraseT2S,lexS2T,lexT2S,PP,WP,stt,tts

[Jane.scalingFactors]  
phraseS2T = 0.0340353073565179  
phraseT2S = 0.022187694641007  
lexS2T = -0.00354933208145531  
lexT2S = 0.0222661179265212  
PP = 0.148838834140851  
WP = -0.0440526658369384  
stt = 0.0780279992336806  
tts = 0.00801751621991477  
LM = 0.0902998425558117  
reorderingJump = 0.0140927411775162
```
The rule table has been binarized with the command:

```
$ bin/rules2Binary.x86_64-standard --file rules.gz --out rules.bin --whichCosts 0:7 --writeDepth 4
```

Now maybe you have a promising model which gives you two more phrase-level scores, and you want to test it. First add the two cost columns to the rule table:

When binarizing the rule table, you want to include the two additional costs:

```
$ bin/rules2Binary.x86_64-standard --file rules.withMyModels.gz --out rules.withMyModels.bin --whichCosts 0:9 --writeDepth 4
```

You can then activate the two new features in the decoder:
To optimize the scaling factors, add

myM1 0.05
myM2 0.05

to your initial lambda file.

The decoder can be configured to ignore some cost columns if not all of the phrase-level model costs from the rule table are to be used during search. The value of the `whichCosts` configuration parameter in the `rules` section of Jane’s configuration is an ascending list of cost column indices, starting with index 0. An index sequence starting at x and ending at y can be denoted by `x:y`, and indices and index sequences in the list are separated by the comma (,) symbol. The number of names (separated by commas) in the `costsNames` list needs to equal the number of indices specified in `whichCosts`. In the example, if you wish to omit the features `lexS2T`, `stt` and `tts`, you can change the configuration in the following way:
8.6. MORE PHRASE-LEVEL FEATURES

...

[Jane.SCSS.rules]
file = rules.withMyModels.bin
whichCosts = 0,1,3:5,8,9
costsNames = phraseS2T,phraseT2S,lexT2S,PP,WP,myM1,myM2

[Jane.scalingFactors]
phraseS2T = 0.0340353073565179
phraseT2S = 0.022187694641007
lexT2S = 0.0222661179265212
PP = 0.148838834140851
WP = -0.0440526658369384
myM1 = 0.05
myM2 = 0.05
LM = 0.0902998425558117
reorderingJump = 0.0140927411775162

8.6.2 The phraseFeatureAdder tool

The Jane package contains a tool that is capable of adding more phrase-level scores to existing phrase tables: Jane’s phraseFeatureAdder implements scoring functions for several interesting phrase-level features. These include:

- Phrase-level word lexicon scores with several different scoring techniques [Huck & Mansour+ 11].
 Word lexicons can be either IBM model 1 [Brown & Della Pietra+ 93], e.g. trained with GIZA++ [Och & Ney 03], or lexicons extracted from word-aligned parallel data [Koehn & Och+ 03], e.g. with Jane’s extractLexicon tool.

- Phrase-level discriminative word lexicon scores.

- Phrase-level triplet lexicon scores.

- Insertion and deletion models [Huck & Ney 12].

- Count-based features, e.g. binary indicators obtained by count thresholding.

- Unaligned word counts.

- A binary feature marking reordering hierarchical rules.

In the next sections, we will present some typical command lines with the phraseFeatureAdder tool. We refer the reader to [Huck & Mansour+ 11] and [Huck & Ney 12] for a description of most of the scoring functions, in particular the various types of lexical scoring with different kinds of models and insertion and deletion scoring.
Adding phrase-level word lexicon scores

Given a source-to-target lexicon $s2t.\text{lexCounts.gz}$ and a target-to-source lexicon $t2s.\text{lexCounts.gz}$, both in the format as produced by Jane’s lexicon extraction tool extractLexicon, and an existing rule table rules.gz, a simple phraseFeatureAdder call outputs a rule table rules.s2tLex.t2sLex.gz which is augmented with lexical scores of these two models:

```
$ bin/phraseFeatureAdder.x86_64-standard \
--in rules.gz --out rules.s2tLex.t2sLex.gz \
--s2t.file s2t.\text{lexCounts.gz} --t2s.file t2s.\text{lexCounts.gz}
```

This command produces costs based on the scoring variant denoted as $t_{\text{Norm}}(\cdot)$ in [Huck & Mansour+ 11]. To score according to $t_{\text{NoNorm}}(\cdot)$, i.e. without length normalization, use:

```
$ bin/phraseFeatureAdder.x86_64-standard \
--in rules.gz --out rules.s2tLexNoNorm.t2sLexNoNorm.gz \
--s2t.file s2t.\text{lexCounts.gz} --t2s.file t2s.\text{lexCounts.gz} \
--IBM1NormalizeProbs false
```

Noisy-or scoring $t_{\text{NoisyOr}}(\cdot)$ as proposed by [Zens & Ney 04a] is conducted with:

```
$ bin/phraseFeatureAdder.x86_64-standard \
--in rules.gz --out rules.s2tLexNoisyOr.t2sLexNoisyOr.gz \
--s2t.file s2t.\text{lexCounts.gz} --t2s.file t2s.\text{lexCounts.gz} \
--IBM1ScoringMethod noisyOr
```

Moses-style scoring $t_{\text{Moses}}(\cdot)$ [Koehn & Och+ 03] requires the rules to comprehend word alignment information. The command is:

```
$ bin/phraseFeatureAdder.x86_64-standard \
--in rules.gz --out rules.s2tLexMoses.t2sLexMoses.gz \
--s2t.file s2t.\text{lexCounts.gz} --t2s.file t2s.\text{lexCounts.gz} \
--IBM1ScoringMethod moses
```

Some further noteworthy parameters for lexical scoring with the phraseFeatureAdder are:

- floor (float) The floor value for unseen pairs (default: 1e-6)
- emptyProb (float) Probability for an empty word, i.e. a word that was not seen in the lexicon (default: 0.05)
- useEmptyProb (bool) Use the value of the emptyProb parameter for probabilities with the empty word (default: activated)
- emptyString (string) The string that represents the empty word (default: NULL)
- format (\{giza,pbt,binary\}) Format of the word lexicon (default: pbt)
8.6. MORE PHRASE-LEVEL FEATURES

`doNotNormalizeGizaLexicon` *(bool)* Disable normalization for word lexicon in GIZA++ format. Load fourth field instead of first field from the model file (default: false)

For an IBM model 1 lexicon in four-field GIZA++ format, we would e.g. recommend setting the parameters:

```bash
--(s2t,t2s).format giza --(s2t,t2s).useEmptyProb false
```

Note that `useEmptyProb` should be deactivated in this case as the GIZA++ IBM model 1 contains trained probabilities with a NULL word which we would prefer to use instead of some fixed value as determined by `emptyProb`.

Adding phrase-level discriminative word lexicon scores

Given a source-to-target discriminative word lexicon model `dwl.s2t.model.gz` and a target-to-source discriminative word lexicon model `dwl.t2s.model.gz` similar to those described in Section 8.2.1, `phraseFeatureAdder` can be used to augment an existing rule table `rules.gz` phrase-level discriminative word lexicon scores and output a new rule table `rules.s2tDWL.t2sDWL.gz`:

```bash
$ bin/phraseFeatureAdder.x86_64-standard \
--in rules.gz --out rules.s2tDWL.t2sDWL.gz \
--s2tDWL.file dwl.s2t.model.gz --t2sDWL.file dwl.t2s.model.gz
```

Adding phrase-level triplet lexicon scores

Given a source-to-target unconstrained triplet lexicon model `triplet.s2t.model.gz` and a target-to-source unconstrained triplet lexicon model `triplet.t2s.model.gz` similar to those described in Section 8.2.2, `phraseFeatureAdder` can be used to augment an existing rule table `rules.gz` phrase-level unconstrained triplet lexicon model scores and output a new rule table `rules.s2tTriplet.t2sTriplet.gz`:

```bash
$ bin/phraseFeatureAdder.x86_64-standard \
--in rules.gz --out rules.s2tTriplet.t2sTriplet.gz \
--s2tUnconstrainedTriplet.file triplet.s2t.model.gz \
--t2sUnconstrainedTriplet.file triplet.t2s.model.gz \
--t2sUnconstrainedTriplet.symmetric true \
--t2sUnconstrainedTriplet.floor 1e-10
```

The `symmetric` parameter should be activated for unconstrained triplet models, the `floor` parameter can be used to change the standard floor value for unseen events.

For scoring with path-constrained triplets, `symmetric` should be deactivated, and the rules need to comprehend word alignment information:
Adding phrase-level insertion and deletion scores

Insertion and deletion models in Jane are basically thresholded lexical scores. The `phraseFeatureAdder` thus needs to load lexicon models to be able to compute insertion and deletion costs.

The command

```bash
$ bin/phraseFeatureAdder.x86_64-standard \
  --in rules.gz --out rules.s2tPATriplet.t2sPATriplet.gz \
  --s2tPathAlignedTriplet.file patriplet.s2t.model.gz \
  --s2tPathAlignedTriplet.symmetric false \
  --s2tPathAlignedTriplet.floor 1e-10 \
  --t2sPathAlignedTriplet.file patriplet.t2s.model.gz \
  --t2sPathAlignedTriplet.symmetric false \
  --t2sPathAlignedTriplet.floor 1e-10
```

adds source-to-target and target-to-source insertions costs with respect to the source-to-target and target-to-source lexicon models `s2t.lexCounts.gz` and `t2s.lexCounts.gz`.

Correspondingly, deletion costs are computed by the command:

```bash
$ bin/phraseFeatureAdder.x86_64-standard \
  --in rules.gz --out rules.s2tIns.t2sIns.gz \
  --s2tInsertion.file s2t.lexCounts.gz --t2sInsertion.file t2s.lexCounts.gz
```

Jane allows for a couple of thresholding methods for insertion and deletion models. The parameter `insertionDeletionThresholdingType` is available for the `s2tInsertion`, `t2sInsertion`, `s2tDeletion` and `t2sDeletion` components.

Assume you want to set thresholds τ_f for source-to-target insertion or deletion scoring with a lexicon model $p(e|f)$. Then you may choose one of the following values for `insertionDeletionThresholdingType`:

fixed Fixed constant thresholding value

computeIndividual τ_f is a distinct value for each f, computed as the arithmetic average of all entries $p(e|f)$ of any e with the given f in the lexicon model

computeGlobal The same value $\tau_f = \tau$ is used for all f. We compute this global threshold by averaging over the individual thresholds

computeIndividualMedian τ_f is a median-based distinct value for each f, i.e. it is set to the value that separates the higher half of the entries from the lower half of the entries $p(e|f)$ for the given f

computeIndividualHistogram τ_f is a distinct value for each f. τ_f is set to the value of the $n + 1$-th largest probability $p(e|f)$ of any e with the given f
Target-to-source scoring provides analogous thresholding parameters.

Parameters for the \texttt{s2tInsertion}, \texttt{t2sInsertion}, \texttt{s2tDeletion} and \texttt{t2sDeletion} components which allow establishing the values of constant thresholds and the histogram size, respectively, are:

\begin{itemize}
\item \texttt{deletionThreshold} (float) Fixed thresholding value for the deletion model
\item \texttt{insertionThreshold} (float) Fixed thresholding value for the insertion model
\item \texttt{insertionDeletionHistogramSize} (int) Histogram size for histogram-based insertion and deletion model (default: 2147483647)
\end{itemize}

Adding phrase-level count-based scores

Simple count-based binary features fire if a rule has been seen more often than a specific given value during extraction. Such features can easily be added subsequently to the actual rule extraction, as Jane’s rule table contains the absolute counts as seen at extraction time. To add four binary features which are 1 iff the joint count of the rule is larger than 1, 2, 3, or 5, respectively, execute the following command:

\begin{verbatim}
$ bin/phraseFeatureAdder.x86_64-standard \\
--in rules.gz --out rules.counts.gz \\
--count.countVector 1,2,3,5
\end{verbatim}

By setting the parameters \texttt{--count.sourceCountVector 1,2,3,5} or \texttt{--count.targetCountVector 1,2,3,5}, you achieve the very same with respect to source and target rule counts, respectively. Thresholds in the count vector are not restricted to be whole numbers.

The parameter \texttt{--count.extendedCount true} computes an extended count of the form $\frac{1}{count}$.

Adding unaligned word counts

If word alignment information is available in the rule table, the number of words which are not aligned to anything in a rule can be counted, each on source and on target side.

The command

\begin{verbatim}
$ bin/phraseFeatureAdder.x86_64-standard \\
--in rules.gz --out rules.unaligned.gz \\
--unaligned.active true
\end{verbatim}

adds these two features: Number of unaligned words on source side and number of unaligned words on target side.

Adding a binary feature marking reordering hierarchical rules

A binary feature marking reordering hierarchical rules can be added with the command:
CHAPTER 8. ADDITIONAL FEATURES

Note that the functionality to add a binary feature marking reordering hierarchical rules does currently not generalize to rules with more than two non-terminals.

8.7 Lexicalized reordering models for SCSS

8.7.1 Training

To train lexicalized reordering models, you have to specify the corresponding extraction options 4.3.3 and normalization options 4.4. The lexicalized reordering scores will be stored in the phrase table.

Extraction options, additionalModels [lrm] or [hrm]

These modules are responsible for extracting lexical reordering information for phrase-based translation. [lrm] models phrase orientations based on neighbouring phrases [Tillmann 04], while [hrm] models orientation relative to hierarchical blocks of phrases [Galley & Manning 08].

\{hrm,lrm\}.bidirectional false: Use left-to-right model only. true: Use left-to-right and right-to-left model. (default: true)

lrm.maxSourceLength Maximum source length of phrases, for which reordering model information is extracted. Make sure to match standard.maxSourceLength. (default: 10)

lrm.maxTargetLength Maximum target length of phrases, for which reordering model information is extracted. Make sure to match standard.maxTargetLength. (default: 10)

Normalization

Use the tool normalizeLRMScores. See section 4.5.6 for details.

8.7.2 Decoding

For decoding, the secondary model LocalLexReordering or HierarchicalLexReordering has to be added to the configuration. As the scores are stored in the phrase table, you do not have to specify an extra file:
secondaryModels Choose LocalLexReordering or HierarchicalLexReordering to add to the list of secondary models. You should have corresponding orientation scores in the phrase table.

{HierarchicalLexReordering,LocalLexReordering}.useSingleScalingFactor specifies whether to use a single scaling factor for the reordering model in each direction, or whether one scaling factor is used for each orientation class (M,S,D) and for each direction. A single scaling factor per direction is specified like e.g. hrmLeft, while separate scaling factors are specified like e.g. hrmLeftS.

{HierarchicalLexReordering,LocalLexReordering}.bidirectional specifies whether to use only left-to-right direction (false) or both directions (true). (default: false)

{HierarchicalLexReordering,LocalLexReordering}.costIndicatorName Specify the tag for the orientation scores in the phrase table as well as the prefix for the scaling factors. For example, if you choose value x here, the scaling factors are named xLeft... or xRight... respectively.

HierarchicalLexReordering.useSRParser specifies whether to use the coverage vector approximation (false) [Cherry & Moore+ 12] or the SR-parser (true) [Galley & Manning 08] in decoding. (default: false)
As these models (especially the bidirectional variant) considerably blows up the search space, you should consider increasing the pruning parameters \((\text{reorderingHistogramSize}, \text{lexicalHistogramSize})\) when using these models.

8.8 Word class language model

The secondary model \texttt{WordClassLM} allows the decoder to use a word class based language model. Here is an example for the configuration options:

```plaintext
[Jane.<decoder>]
secondaryModels = WordClassLM,

[Jane.<decoder>.WordClassLM]
file = lm.7gram.classes.gz
order = 7
classMapFile = data.classes

[Jane.scalingFactors]
WordClassLM = 0.05
```

The word classes can e.g. be trained with the tool \texttt{mkcls} [Och 00]:

```
mkcls -n10 -c100 -pdata.gz -Vdata.classes
```

This will train a clustering of the vocabulary in the corpus \texttt{data.gz} into 100 classes and write the class labels to \texttt{data.classes}. With the \texttt{wordClassReplacer.py} tool provided by Jane you can then build a corpus, where each word is replaced by its class label:

```
python wordClassReplacer.py -c data.classes data.gz | gzip >data.classLabels.gz
```

The resulting corpus \texttt{data.classLabels.gz} can then be used to build a word class language model, e.g. with the SRI toolkit. For decoding you need to specify the correct \texttt{classMapFile}, in the example above this would be \texttt{data.classes}.
Chapter 9

System Combination

In this chapter, we will describe the main parameters of our system combination implementation. As usual all scripts have a help file and can be started with the –help flag for further information.

9.1 Preprocessing

Before doing system combination, it can be helpful to preprocess your input hypotheses. Mainly system combination is done with hypotheses generated by different decoders. Try to modify the system outputs to the same tokenization. Additionally, you have to escape the # symbol in your source file, as the # symbol is used in RWTH’s nbest list format as separator.

9.2 Alignment and Language Model

For generating the pairwise alignment information we use METEOR. Possible languages are: en cz de es fr ar. The step is separated from the decoding and optimization step. You could also use your own aligner and adapt the files to our format. If you want to use METEOR, you can generate the pairwise alignment with the following commands:
mkdir meteor_dev; cd meteor_dev
$janeBin/scripts/prepareMETEOR.sh --lan en
 --ngramcount /usr/local/bin/ngramcount
 --ngramread /usr/local/bin/ngramread
 --ngrammerge /usr/local/bin/ngrammerge
 --ngram $SRILMPATH/srilm/bin/$ARCH/ngram
 --ngramcount $SRILMPATH/srilm/bin/$ARCH/ngram-count
 --fstprint /usr/local/bin/fstprint
 --meteor $METEORPATH/meteor-1.4/meteor-1.4.jar
 $YOUR_PREPROCESSED_DEV_HYPS
$.

cd ..

mkdir meteor_test; cd meteor_test
$janeBin/scripts/prepareMETEOR.sh --lan en
 --ngramcount /usr/local/bin/ngramcount
 --ngramread /usr/local/bin/ngramread
 --ngrammerge /usr/local/bin/ngrammerge
 --ngram $SRILMPATH/srilm/bin/$ARCH/ngram
 --ngramcount $SRILMPATH/srilm/bin/$ARCH/ngram-count
 --fstprint /usr/local/bin/fstprint
 --meteor $METEORPATH/meteor-1.4/meteor-1.4.jar
 $YOUR_PREPROCESSED_TEST_HYPS
$.

cd ..

As result you should get the following files: meteor.alignment, openFST.3gram.lm, lm.sym and seg. The meteor.alignment is the main result and represents the alignment information. The language model trained on the input hypotheses is saved in openFST.3gram.lm. Additionally, all words are saved as integers and the mapping is saved in lm.sym.

Important options for prepareMETEOR.sh are:

- **meteor** path to meteor jar file
- **lan** target language
- **prep** use preprocessing on your input hyps (0/1) (default 0)
- **nBestSize** how many nbest lists entries so you have? separates with # (default 1)
- **bigLM** ARPRA adittional language model
- **ngramcount** ngram-count (SRILM) binary file
- **ngramread** ngramread (OpenGrm) binary file
- **ngrammerge** ngrammerge (OpenGrm) binary file
9.3. **LAMBDA FILE**

ngram ngram (SRILM) binary file

fstprint fstprint (OpenFst) binary file

ngramOrder ngram order of your target trained lm (default 3)

9.3 Lambda File

We need to create an initial lambda file. An example lambda file for five input hypotheses is given below. If you have more than five systems, you need to add the suitable amount of sys features.

```text
primary 0.01
WP -0.2
LM 0.15
EPS 0.15
sys1 0.1
sys2 0.1
sys3 0.1
sys4 0.1
sys5 0.1
```

9.4 Optimization

We use MERT to find appropriate scaling factors. You can vary the number of threads and nBestListSize. For more details try –help.

```bash
mkdir opt; cd opt
$janeBin/startMERToptSystemCombination.sh
--lambda ../lambda.init
--alignmentInput ../meteor_dev/meteor.alignment
--segInput ../meteor_dev/seg
--lm ../meteor_dev/openFST.3gram.lm
--symTable ../meteor_dev/lm.sym
--amountSingleSystems 3
--reference $YOUR_REF
```

Important options for `startMERToptSystemCombination.sh` are:

lambda start lambda file

nBestListSize nBest list size you want to optimize on
threads number of threads you want to use
alignmentInput alignment input file
segInput segment input file of the alignment training
lm openFST lm
biglm openFST big lm
symTable symTable of the openFST lm
amountSentences amount sentences of the dev file
reference reference of the dev file
lmTest openFST lm
amountSingleSystems amount single systems used for syscomb
reorderingLevel reordering level for unaligned words (0 = no reordering)
errorScorer bleu / bleu-ter / bleu-terp
bleuFactor bleuFactor for bleu-ter optimization
originalSource file of your original source sentence
nBestPostproc general nbest postprocessing
plainPostproc postprocessing script (filter, plain format)
ibmS2T ibm1 S2T source file
ibmT2S ibm1 T2S source file
clean if clean, all nbest lists are deleted

9.5 Single-Best Decoding

If you have additional dev sets, you can take the above optimized scaling factors and generate the system combination output for other dev sets. It should be mentioned that the output need to be post processed. Especially the # and $ symbols were mapped to <hash> and <dollar-symbol> before starting the system combination.
9.6 \textit{n}-Best Rescoring

One option to use more than the standard set of models is to generate an \textit{n}-best list, add some new models and reoptimize the whole \textit{n}-best list. For resoring it could be helpful to put the real source into the \textit{n}best list. You can add it via \texttt{--originalSource} to your output. To generate an \textit{n}-best list, you should use the following command.

\begin{verbatim}
mkdir rescoring
$\text{janeBin/ARCH/alignSystemCombination.Arch-standard}
 --nBestListSize 1000
 --nBestListFolder rescoring
 --alignmentInput ../meteor_dev/meteor.alignment
 --segInput ../meteor_dev/seg
 --lm ../meteor_dev/openFST.3gram.lm
 --symTable ../meteor_dev/lm.sym
 --amountSingleSystems 16
 --originalSource $originalSourceDevFile
\end{verbatim}

9.7 Additional Language Model

One possibility to improve your system combination output is to include an additional language model in the decoding process. The language model should be in an ARPA plain format. You can simply add it with the following command:

\begin{verbatim}
mkdir rescoring
$\text{janeBin/ARCH/alignSystemCombination.Arch-standard}
 --nBestListSize 1000
 --nBestListFolder rescoring
 --alignmentInput ../meteor_dev/meteor.alignment
 --segInput ../meteor_dev/seg
 --lm ../meteor_dev/openFST.3gram.lm
 --symTable ../meteor_dev/lm.sym
 --amountSingleSystems 16
 --originalSource $originalSourceDevFile
\end{verbatim}
Your additional language model will be pruned on the input hypotheses and converted into the openFST format. For optimization, you need to add one additional feature in your lambda file:

```
primary 0.01
WP -0.2
LM 0.15
 .
 .
bigLM 0.1
```

For the optimization process, you just need to add it as additional parameter:

```
mkdir opt; cd opt
$janeBin/startMERToptSystemCombination.sh
--lambda ../lambda.init
--alignmentInput ../meteor_dev/meteor.alignment
--segInput ../meteor_dev/seg
--lm ../meteor_dev/openFST.3gram.lm
--symTable ../meteor_dev/lm.sym
--amountSingleSystems 3
--reference $YOUR_REF
--biglm ../meteor_dev/openFST.bigLM.lm
```

9.8 IBM1 Lexical Propabilities

As additional source features, you can simply use the IBM1 propability tables (normal and inverse) of your single systems (if the alignment was trained via GIZA++) or train it with GIZA++ on a bilingual data set. An example head of an IBM1 file is given
As additional features, you need to add the following names to your lambda files:

- `primary 0.01`
- `WP -0.2`
- `LM 0.15`
- `ibmS2T 0.1`
- `ibmT2S 0.1`

For the optimization process, you just need to add two additional parameters:

```
mkdir opt; cd opt

$janeBin/startMERToptSystemCombination.sh
   --lambda ..;/lambda.init
   --alignmentInput ../meteor_dev/meteor.alignment
   --segInput ../meteor_dev/seg
   --lm ../meteor_dev/openFST.3gram.lm
   --symTable ../meteor_dev/lm.sym
   --amountSingleSystems 3
   --reference $YOUR_REF
   --ibmS2T $IBM1_TABLE_NORMAL
   --ibmT2S $IBM1_TABLE_INV
```

It is also possible to just add either only the `ibmS2T` or either only the `ibmT2S` propabilities to your setup.
Appendix A

Jane - The RWTH Aachen University Translation Toolkit License

This license is derived from the Q Public License v1.0 and the Qt Non-Commercial License v1.0 which are both Copyright by Trolltech AS, Norway.

The aim of this license is to lay down the conditions enabling you to use, modify and circulate the SOFTWARE, use of third-party application programs based on the Software and publication of results obtained through the use of modified and unmodified versions of the SOFTWARE.

However, RWTH remain the authors of the SOFTWARE and so retain property rights and the use of all ancillary rights.

The SOFTWARE is defined as all successive versions of RWTH JANE software and their documentation that have been developed by RWTH.

When you access and use the SOFTWARE, you are presumed to be aware of and to have accepted all the rights and obligations of the present license:

1. You are granted the non-exclusive rights set forth in this license provided you agree to and comply with any and all conditions in this license. Whole or partial distribution of the Software, or software items that link with the Software, in any form signifies acceptance of this license for non-commercial use only.

2. You may copy and distribute the Software in unmodified form provided that the entire package, including - but not restricted to - copyright, trademark notices and disclaimers, as released by the initial developer of the Software, is distributed.

3. You may make modifications to the Software and distribute your modifications, in a form that is separate from the Software, such as patches. The following restrictions apply to modifications:

 - Modifications must not alter or remove any copyright notices in the Software.
APPENDIX A. LICENSE

When modifications to the Software are released under this license, a non-exclusive royalty-free right is granted to the initial developer of the Software to distribute your modification in future versions of the Software provided such versions remain available under these terms in addition to any other license(s) of the initial developer.

You may use the original or modified versions of the Software to compile, link and run application programs legally developed by you or by others.

4. You may reproduce and interface all or part of the Software with all or part of other software, application packages or toolboxes of which you are owner or entitled beneficiary in order to obtain COMPOSITE SOFTWARE.

5. RWTH authorize you, free of charge, to circulate and distribute for no charge, for purposes other than commercial, the source and/or object code of COMPOSITE SOFTWARE on any present and future support, providing:
 - the following reference is prominently mentioned: "composite software using Jane (c) RWTH functionality ";
 - the SOFTWARE included in COMPOSITE SOFTWARE is distributed under the present license ;
 - recipients of the distribution have access to the SOFTWARE source code;
 - the COMPOSITE SOFTWARE is distributed under a name other than RWTH JANE.

6. Any commercial use or distribution of COMPOSITE SOFTWARE shall have been previously authorized by RWTH.

7. You may develop application programs, reusable components and other software items, in a non-commercial setting, that link with the original or modified versions of the Software. These items, when distributed, are subject to the following requirements:
 - You must ensure that all recipients of machine-executable forms of these items are also able to receive and use the complete machine-readable source code to the items without any charge beyond the costs of data transfer.
 - You must explicitly license all recipients of your items to use and re-distribute original and modified versions of the items in both machine-executable and source code forms. The recipients must be able to do so without any charges whatsoever, and they must be able to re-distribute to anyone they choose.
 - If an application program gives you access to functionality of the Software for development of application programs, reusable components or other software components (e.g. an application that is a scripting wrapper), usage of the application program is considered to be usage of the Software and is thus bound by this license.
- If the items are not available to the general public, and the initial developer of the Software requests a copy of the items, then you must supply one.
- Users must cite the authors of the Software upon publication of results obtained through the use of original or modified versions of the Software by referring to the following publication:

8. In no event shall the initial developers or copyright holders be liable for any damages whatsoever, including - but not restricted to - lost revenue or profits or other direct, indirect, special, incidental or consequential damages, even if they have been advised of the possibility of such damages, except to the extent invariable law, if any, provides otherwise.

9. The Software and this license document are provided "AS IS" with NO EXPLICIT OR IMPLICIT WARRANTY OF ANY KIND, INCLUDING WARRANTY OF DESIGN, ADAPTATION, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

10. You assume all risks concerning the quality or the effects of the SOFTWARE and its use. If the SOFTWARE is defective, you will bear the costs of all required services, corrections or repairs.

11. This license has the binding value of a contract.

12. The present license and its effects are subject to German law and the competent German Courts.
Appendix B

The RWTH N-best list format1

B.1 Introduction

The usage of n-best lists in machine translation has several advantages. It alleviates the effects of the huge search space which is represented in word graphs by using a compact excerpt of the n best hypotheses generated by the system. Especially for small tasks, such as the IWSLT05 Evaluation Campaign (Supplied Data Track), the size of the n-best list can be rather small in order to obtain good oracle error rates (i.e. $n \approx 1000$), whereas for large tasks, such as the NIST 2005 Machine Translation Evaluation (MT-05), n around 10000 and more are quite common. In general, n-best lists should have an appropriate size such that the oracle error rate, i.e. the error rate of the best hypothesis with respect to an error measure (such as word error rate (WER) or position-independent word error rate (PER)) is approximately half the baseline error rate of the system. N-best lists are suitable for applying several rescoring techniques easily since the hypotheses are already fully generated. In comparison, word graph rescoring techniques need specialized tools which can traverse the graph accordingly. Additionally, since a node within a word graph allows for many histories, one can only apply local rescoring techniques, whereas for n-best lists, techniques can be used that consider properties of the whole sentence.

B.2 RWTH format

The RWTH format for n-best lists is rather simple. Each line of the file holds a hypothesis for a given source sentence together with the corresponding model scores. The format is the following (EBNF-like notation):

\begin{verbatim}
line := n n '#' source '#' target '#' targetcategs
 '#' (modelname score)*('#' informationname information)*
source := sentence
target := sentence
\end{verbatim}

1Thanks to Saša Hasan, the original author of this document.
APPENDIX B. THE RWTH N-BEST LIST FORMAT

targetcategs := sentence
modelname := token
score := '-'? 'n.n' | '-'? 'n' /* float */
informationname := token
information := [^#]* /* any string without a hash */
sentence := token+
token := [^ \+]* /* i.e. sequence of non-space chars */
n := \[0-9\]+ /* i.e. sequence of non-space chars */

The first number is the sentence number, whereas the second number is an error count (might be 0 if not needed). This error count can be used to hold the Levenshtein distance of the hypothesis to the best reference translation (e.g. for development lists). The delimiter between the entries is a hash (#). The items source, target and targetcategs are sentences in the common sense, i.e. any sequence of tokens. The targetcategs can contain additional informations about translated categories if enabled using the printCategs flag. The last item is a sequence of model names and their corresponding scores. In general, we use negative log-likelihoods, i.e. the scores denote costs (lower is better). Additional informations like the word or phrase alignment can be included using the following fields. Each informations starts with the hash symbol and its name followed by its output.

Example

The following example shows a small truncated excerpt from a Chinese-English n-best list. In this case, the Chinese sentences are UTF8-encoded.

```
1 0 # 载入 黛 妃 死 因 调查 资料 的 两 台 手 提 电 脑 遭 窃 # printed in the death of princess diana two taiwan notebook computers were stolen information # printed in the death of princess diana two taiwan notebook computers were stolen information # janecosts 4.04917 phraseS2T 21.2277 phraseT2S 33.0403 ibm1S2T 36.6907 ibm1T2S 43.1811 isHierarch 5 isPaste 2 WP 14 PP 11 glueRule 1

1 0 # 载入 黛 妃 死 因 调查 资料 的 两 台 手 提 电 脑 遭 窃 # in the death of princess two taiwan notebook computers were stolen information # in the death of princess two taiwan notebook computers were stolen information # janecosts 4.06525 phraseS2T 15.4594 phraseT2S 46.305 ibm1S2T 43.1811 ibm1T2S 45.1632 isHierarch 2 isPaste 1 WP 12 PP 12 glueRule 3

1 0 # 载入 黛 妃 死 因 调查 资料 的 两 台 手 提 电 脑 遭 窃 # printed in the death of princess diana two taiwan notebook computers were stolen in the survey data # printed in the death of princess diana two taiwan notebook computers were stolen in the survey data # janecosts 4.07298 phraseS2T 24.707 phraseT2S 25.2324 ibm1S2T 45.7666 ibm1T2S 40.5543 isHierarch 5 isPaste 2 WP 17 PP 11 glueRule 1
```
two taiwan notebook computers have been included in the death of princess diana investigation information stolen. # jane costs 4.07815 phraseS2T 25.7422 phraseT2S 29.7238 ibm1S2T 39.1475 ibm1T2S 38.4356 isHierarch 7 isPaste 4 WP 16 PP 12 glueRule 0

two taiwan notebook computers have been included in the death of princess estee investigation information stolen. # jane costs 4.08237 phraseS2T 27.4178 phraseT2S 29.2449 ibm1S2T 39.0836 ibm1T2S 37.9502 isHierarch 7 isPaste 4 WP 16 PP 12 glueRule 0

two taiwan notebook computers have been included in the death of princess diana investigation information stolen. # jane costs 1.2741 phraseS2T 12.0951 phraseT2S 14.8878 ibm1S2T 25.1299 ibm1T2S 13.8802 isHierarch 2 isPaste 2 WP 10 PP 5 glueRule 0

two taiwan notebook computers have been included in the death of princess estee investigation information stolen. # jane costs 1.4144 phraseS2T 6.07151 phraseT2S 14.337 ibm1S2T 8.69475 ibm1T2S 10.7624 isHierarch 1 isPaste 0 WP 5 PP 6 glueRule 1

two taiwan notebook computers have been included in the death of princess diana investigation information stolen. # jane costs 1.41814 phraseS2T 6.07151 phraseT2S 14.337 ibm1S2T 8.69475 ibm1T2S 10.7624 isHierarch 1 isPaste 0 WP 5 PP 6 glueRule 1

two taiwan notebook computers have been included in the death of princess estee investigation information stolen. # jane costs 1.46225 phraseS2T 7.35891 phraseT2S 11.8182 ibm1S2T 11.6852 ibm1T2S 12.0845 isHierarch 1 isPaste 0 WP 6 PP 6 glueRule 1

jane costs 7.33809 phraseS2T 49.3956 phraseT2S 71.3624 ibm1S2T 91.4002 ibm1T2S 91.94 isHierarch 9 isPaste 4 WP 39 PP 26 glueRule 4

jane costs 7.33809 phraseS2T 49.3956 phraseT2S 71.3624 ibm1S2T 91.4002 ibm1T2S 91.94 isHierarch 9 isPaste 4 WP 39 PP 26 glueRule 4
APPENDIX B. THE RWTH N-BEST LIST FORMAT

daily express pointed out that, two estee princess diana died in a car accident in Paris in 1997 notebook computers, information to the investigation by the office of the former city police chief stolen. # london daily express pointed out that, two estee princess diana died in a car accident in Paris in $number{1997}$ notebook computers, information to the investigation by the office of the former city police chief stolen. # janecosts 7.35087 phraseS2T 49.3956 phraseT2S 73.7603 ibm1S2T 87.3059 ibm1T2S 91.3647 isHierarch 9 isPaste 4 WP 38 PP 26 glueRule 4

30 # 伦敦 每日 快报 指出，two 台 计载 黛 安娜 王 妃 $number 年 巴黎 死亡 车 祸 调 查 资 料 的 手 提 电脑，被 从前 大 都 会 警察 总长 的 办公室 里 偷 走。 # london daily express pointed out that, two estee princess diana died in a car accident in Paris 1997 notebook computers, information to the investigation by the office of the former city police chief of stolen. # london daily express pointed out that, two estee princess diana died in a car accident in Paris $number{1997}$ notebook computers, information to the investigation by the office of the former city police chief of stolen. # janecosts 7.35419 phraseS2T 47.8589 phraseT2S 72.144 ibm1S2T 87.1557 ibm1T2S 91.4807 isHierarch 9 isPaste 4 WP 38 PP 27 glueRule 4

30 # 伦敦 每日 快报 指出，two 台 计载 黛 安娜 王 妃 $number 年 巴黎 死亡 车 祸 调 查 资 料 的 手 提 电脑，被 从前 大 都 会 警察 总长 的 办公室 里 偷 走。 # london daily express pointed out that, two loto princess diana died in a car accident in Paris 1997 notebook computers, information to the investigation by the office of the former city police chief of stolen. # london daily express pointed out that, two loto princess diana died in a car accident in Paris $number{1997}$ notebook computers, information to the investigation by the office of the former city police chief of stolen. # janecosts 7.36697 phraseS2T 47.8589 phraseT2S 74.5418 ibm1S2T 83.0614 ibm1T2S 90.9053 isHierarch 9 isPaste 4 WP 37 PP 27 glueRule 4

30 # 伦敦 每日 快报 指出，two 台 计载 黛 安娜 王 妃 $number 年 巴黎 死亡 车 祸 调 查 资 料 的 手 提 电脑，被 从前 大 都 会 警察 总长 的 办公室 里 偷 走。 # london daily express pointed out that, two loto princess diana died in a car accident in Paris 1997 notebook computers, information to the investigation by the office of the former city police chief of stolen. # london daily express pointed out that, two loto princess diana died in a car accident in Paris $number{1997}$ notebook computers, information to the investigation by the office of the former city police chief of stolen. # janecosts 7.36787 phraseS2T 48.1198 phraseT2S 71.5166 ibm1S2T 91.795 ibm1T2S 93.1748 isHierarch 9 isPaste 4 WP 39 PP 26 glueRule 4
Appendix C

External code

Jane includes following external code. We are grateful to the original authors to release their work under an open source license.

- The RandLM library [Talbot & Osborne 07], available under the GPL license from http://sourceforge.net/projects/randlm/
- KenLM [Heafield 11], available under the LGPL license from http://kheafield.com/code/kenlm/
- Suffix array implementation by Sean Quinlan and Sean Doward, available under a Plan 9 open source license
- Option parsing for shell scripts by David Vilar, available under the GPL license from https://github.com/davvil/shellOptions

If you find we have forgotten to include more software in this list, please contact the authors.
Appendix D

Your code contribution

You want to contribute to the code by adding your own classes, modules or corrections? Great! No, really! This is one of the reasons why we released Jane: to keep it alive.

However, please try to take the following coding guidelines into account. We tried hard to write code that is correct, maintainable and efficient. From our experiences with other decoders, a project of such a size gets hard to understand if a lot of different coding styles are merged carelessly.

As a rule of thumb, all the rules can be broken if it enhances the readability of the code.

- Always use descriptive variable names, even if the name can become quite long. We believe that, especially with auto-completion and monitors, a variable name of CubeGrowLanguageModelCoarseHeuristic is preferable over cg1mch or the like.

- Names representing variables or functions must be in mixed case starting with lower case. Classes and type definitions are similar but start with an upper case.

- Private members must have an appending underscore.

- Magic numbers should be avoided at all costs. We typically use enumerations for named constants.

Also, here are some general architecture suggestions:

- Try to shield internal modules as much from I/O routines as possible. To be able to use unit tests efficiently, we also try to pass streams to other modules rather than file names.

- If a couple of modules share similar functionality but differ in their implementation, try to define abstract classes whenever possible.

- Copy’n’paste might look cuddly first, but can become a hydra that even the heros don’t want to mess with.
• Every class should be documented at great length using the doxygen system (http://www.doxygen.org). The filling up of the missing parts is an ongoing effort.

• Sure, try to speed up the code and reduce memory consumption by implementing better algorithms. However, try to avoid “dark magic programming methods” and hard to follow optimizations are only applied in critical parts of the code. Document every such occurrence.
Bibliography

