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ABSTRACT
In this paper, we present an investigation on technical details
of the byte-level convolutional layer which replaces the con-
ventional linear word projection layer in the neural language
model. In particular, we discuss and compare the effective fil-
ter configurations, pooling types and the use of bytes instead
of characters. We carry out experiments on language packs
released by the IARPA Babel project and measure the perfor-
mance in terms of perplexity and word error rate. Introducing
a convolutional layer consistently improves the results on all
languages. Also, there is no degradation from using raw bytes
instead of proper Unicode characters, even on syllabic alpha-
bets like Amharic. In addition, we report improvements in
word error rate from rescoring lattices and evaluate keyword
search performance on several languages.

Index Terms— language modeling, convolutional neural
networks, speech recognition, keyword search

1. INTRODUCTION

Neural networks which process text on character-level have
become increasingly popular for natural language processing.
The motivation behind such an approach can be linguistic,
considering characters as the atomic units of text, or techni-
cal, e.g. for an open-vocabulary automatic speech recognition
(ASR). Another strong motivation is the success of neural
networks which operate on raw level signal in other fields,
such as image generation from pixels [1] or acoustic mod-
eling from raw waveform [2, 3]. This trend encourages text
related tasks to also operate on the level of characters or even
bytes. In fact, many successful examples of character-level
language processing with neural networks have been already
reported, both with convolutional neural networks (CNN)
[4] and with recurrent neural networks (RNN) such as long
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short-term memory (LSTM) [5]. Zhang et al. [6] have used
character-level convolutional neural networks for text clas-
sification. For language modeling, word embeddings based
on characters have been suggested: both the RNN-based ap-
proach by Ling et al. [7] and the CNN-based approach by
Kim et al. [8] have been shown to perform better than the
conventional word projection. These two architectures have
also been applied to machine translation [9, 10].

2. RELATED WORK

Kim et al. [8] introduced a CNN-based input layer for lan-
guage modeling, which builds the word feature from the char-
acter sequence representing the word. The corresponding fea-
ture is fed to an LSTM language model and the prediction is
done at word level. The effectiveness of such a technique has
been confirmed by Jozefowicz et al. [11]. In this paper, we de-
velop a convolutional layer over bytes. Certainly, characters
define the atomic units of text in many languages. However,
when the language uses characters outside ASCII, character-
level tokenization might require hand-crafted pre-processing.
In such a scenario, byte-level processing would be more at-
tractive. Previously Gillick et al. [12] has shown a byte-level
RNN to perform well for text labelling.

3. NEURAL LANGUAGE MODEL

3.1. Topology

The neural language model architecture we consider is based
on Kim et al.’s topology [8], as depicted in Figure 1. The
model consists of a byte-level 1D convolution layer, a pool-
ing layer which is optionally followed by highway layers, a
linear bottleneck layer and and an LSTM layer. The output
word-level softmax layer is factorized with word classes for
all models in this work. For the details of the LSTM language
model, we refer to [13].

3.2. Byte-level convolutional layer

In the first layer of a regular word-level neural language
model the input word represented as a one-hot vector is pro-



convolution

pooling

byte embeddings

highway

LSTM units

p(g | h) p(w | g, h)

w: word

g: class of w

h: history

Fig. 1. LSTM language model with CNN-based input layer.

jected on a continuous low-dimensional embedding. In the
model proposed by [8], the input word is first decomposed
into characters, which are then projected on a sequence of
low-dimensional character-embeddings. In this work we
define a convolution over the continuous byte-embeddings.
Again, the input and the output of the neural LM are defined
for full words. The convolutional layer merely serves the pur-
pose of internal word representation. The computations car-
ried out through the convolutional layer and the max-pooling
layer for a single filter are depicted in Figure 2. Similar to
the character-level convolution in [8], we consider the byte
vocabulary of size B. For each byte of index j (0 ≤ j < B),
we associate a byte vector embedding vj of dimension d. Any
input word is first represented as the sequence of byte-indices
(j1, j2, ..., jL) and then as the vector x formed by the con-
catenation of the byte embeddings: xᵀ = [vᵀj1 , v

ᵀ
j2
, ..., vᵀjL ],

resulting in a vector of dimension d · L where L is the length
of the word in bytes. A byte-ngram filter f has a weight
vector w(f) of size K = d · n and a bias scalar b(f). The
1D convolution between the word vector x and a byte-ngram
filter f is computed for all positions i (0 ≤ i < L−K) by

y
(f)
i = σ(

K∑
k=0

w
(f)
k xk+i·d + b(f)) (1)

where σ is an element-wise sigmoid function. Then the vector
y(f) is reduced to a single scalar h(f) via sub-sampling over
positions:

h(f) = max
0≤i<L−K

y
(f)
i (2)

These operations are carried out for all filters. Therefore, the
output of the max-pooling layer over positions has a dimen-
sion that is equal to the number of filters. We discuss the
technical details of these operations and the corresponding
experiments in Sec. 4. For an efficient implementation with
matrices, the byte-embedding is zero-padded to a fixed length
set to the maximal length over all words seen in training.

3.3. Highway layer for adaptive feature combination

Highway layers on top of convolution and pooling were
reported to be a key component for improvements in [8].
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Fig. 2. Illustration of byte-convolution for a single filter. In
this example, the length of the word is 5 bytes (L=5), each
byte embedding has a dimension 4 (d=4) and the filter covers
byte-bigrams (n=2, K=8). Pooling is carried out over all
positions within one word.

Though the highway network is originally designed for train-
ing deep networks, it can also be used as a layer which
adaptively interpolates the features across layers. For further
details, we refer to [8, 14, 15]. In this work, this is only used
in Sec. 4.6.

Table 1. Statistics of training and testing corpora.

ID Language

Set
Training Dev Lexicon

amount of running OOV size
speech [h] words [%]

104 Pashto 37.2 452k 108k 2.3 14k
306 Igbo 40.3 460k 110k 3.8 17k
307 Amharic 40.2 295k 65k 11.7 35k
403 Dholuo 41.4 372k 84k 5.3 18k

4. TEXT-BASED EXPERIMENTS

In this section, we discuss the technical details of the byte
convolution. Experiments are carried out on dev sets of 4 lan-
guages from the IARPA Babel Option Period 3 (OP3) data re-
lease: Pashto, Igbo, Amharic and Dholuo1. The correspond-
ing descriptions and data statistics are presented in Table 1.
The perplexities for the baseline single-layer LSTM language
models can be found in the first row of Table 8. The number
of LSTM units was optimized between 100 and 500 for each
language. The number of word classes is set to 100 for all
languages.

4.1. Bytes vs. characters

As mentioned in Sec. 2, processing bytes can be more attrac-
tive than characters for some languages. However, bytes do
not define a proper language unit. We might still expect the
CNN to discover patterns in the byte sequence, though this
needs to be verified experimentally. In this work, we present
experiments on Pashto and Amharic.

1Official data set identifiers: IARPA-babel104b-v0.4bY, IARPA-
babel306b-v2.0c, IARPA-babel307b-v1.0b, IARPA-babel403b-v1.0b



In the Pashto alphabet each of the 47 characters is encoded
with two bytes. Therefore, by mapping Pashto characters to
1-byte coded ASCII characters, we can evaluate a character-
level CNN and compare it to the byte-level model. The corre-
sponding byte-level CNN has the byte set size of 48. In both
cases we use 15-dimensional embeddings. The perplexity re-
sults are shown in Table 2. Both character and byte model
outperform the word-level baseline with the byte-level model
having a slightly better perplexity. The optimal configuration
is obtained with filters of size 3 for character and 6 for bytes
(which also corresponds to 3 characters).

Table 2. Bytes vs. characters. Perplexities for Pashto. Per-
plexity of the baseline LSTM: 130.5

Character Byte
Filter Number of filters Number of filters
Size 500 1000 2000 500 1000 2000

3 126.7 125.7 125.3 127.9 127.5 127.0
6 126.2 126.2 126.0 125.6 124.9 124.6

12 126.6 126.1 126.2 125.6 124.7 124.8

It is not straight-forward to perform the same text pre-
processing on Amharic, since there are 282 characters (con-
sonant+vowel pairs) which can not be encoded by one byte.
Therefore, to work on character-level we had to explicitly
code that each Amharic character is 3-byte long. The results
are shown in Table 3. Again, there is no degradation in work-
ing with raw Unicode bytes instead of characters.

For Igbo and Dholuo, all characters in the transcripts pro-
vided in the Babel project are encoded with one byte, so there
is no difference in convolving over bytes or characters.

Table 3. Bytes vs. characters. Perplexities for Amharic. Per-
plexity of the baseline LSTM: 202.7

Character Byte
Filter Number of filters Number of filters
Size 500 1000 2000 500 1000 2000

3 193.8 193.4 194.8 - - -
6 194.6 193.7 192.8 193.1 192.5 191.5
9 194.4 195.1 195.3 194.4 192.1 194.0

12 197.4 197.7 198.5 194.0 194.7 195.2

4.2. Filter size

In [8] the authors used filters of different sizes. In our ex-
periments, the perplexity results in Table 4 indicate that it is
sufficient to set the size of all filters to a single value.

Table 4. Comparison of using filters of mixed sizes vs. single
size. Perplexity results on Igbo. Perplexity of the baseline
LSTM: 103.4

Number of filters
Filter size 500 1000 2000

Mixed 2 - 8 96.9 96.1 95.7

Single
3 96.6 95.6 95.5
8 96.4 96.4 96.0

16 98.7 98.9 98.9

4.3. Dimension of byte embedding
We also compare different sizes of embeddings associated
with each byte. The perplexity results are shown in Table 5.
For both Igbo and Pashto, we found that higher dimensions
work better. In addition, we found that the number of filters
can be reduced if byte embedding dimension is higher.

Table 5. Perplexities for different byte embedding size. Filter
size is 3 for Igbo and 6 for Pashto.

Number of filters
Dim. 500 1000 2000

Igbo 15 96.6 95.6 95.5
30 96.2 94.8 95.1

Pashto 15 125.6 124.9 124.6
30 124.7 124.5 125.1

4.4. Pooling: max over positions vs. max over filters

The model described in Sec. 3.2 is a direct application of the
convolution and pooling to text, which has been proven useful
in other fields. It is therefore important to discuss the mean-
ing of such operations for language processing. By pool-
ing over positions, the CNN finds the byte-ngram patterns
which appear across different words, but totally ignores the
position within the word at which the pattern occurs. The
translation-invariance might be a useful property for some
sub-word units, but for others, especially longer words, the
position might matter. Therefore, it might make sense to con-
sider a pooling operation which preserves information on the
absolute position of the byte-level patterns. With this question
in mind, we evaluate a pooling which sub-samples its input
by taking the maximum over all filters at each position in the
word. The results for Igbo are shown in Table 6. The reason
for the bad perplexity might be the fact that by pooling over
filters only one filter per position is used and all others do not
get any feedback. For our future work, we plan to investigate
a combination of these two pooling strategies.

Table 6. Effect of pooling type. Perplexity results on Igbo

Pooling type Size Number of filters
500 1000 2000

Over positions 3 96.6 95.6 95.5

Over filters 3 140.2 130.8 139.8
6 127.9 128.4 137.0



4.5. Do improvements come from the CNN?

In order to verify whether the improvements come from the
CNN architecture and not from a larger word feature or an
additional non-linearity, we compare the convolutional layer
to a larger linear and sigmoid layer (up to 2000 nodes). The
results in Table 7 show that even though a larger input layer
leads to better perplexities, it does not reach the CNN.

Table 7. Effect of first layer type. PPLs for Igbo and Pashto
PPL

Input layer type Igbo Pashto
Baseline linear 103.4 130.5
Large linear 99.0 127.7
Large sigmoid 98.9 127.6
Convolutional 94.8 124.5

4.6. Effect of highway layer

The effect of adding a highway layer is shown in Table 8. In
our experiments, we found that its impact on the perplexity is
marginal if the filters of CNN are well configured.

Table 8. Effect of LM topology on perplexity

LM topology PPL
Pashto Igbo Amharic Dholuo

Baseline LSTM 130.5 103.4 202.7 144.8
+ CNN 124.5 94.8 191.5 136.9

+ Highway 125.2 95.9 194.4 135.8

5. ASR AND KEYWORD SEARCH EXPERIMENTS

5.1. Acoustic modeling setups

For acoustic modeling, we trained bidirectional LSTM neural
networks with 3 hidden layers using the RETURNN toolkit
[16]. There are 500 LSTM units in the hidden layers and
the output layer models generalized triphone state posterior
probabilities for 4500 CART labels. The input is a 115-
dimensional CMLLR transformed concatenation of Gam-
matone, pitch, voicedness and multilingual bottleneck fea-
tures [17]. The multilingual bottleneck feature extractor is
trained on 28 languages (1793 hours of audio) and fine-tuned
to the target language. The final acoustic models are sequence
discriminatively trained according to the MPE criterion.

The keyword search (KWS) performance is measured in
maximum term weighted value (MTWV), an accuracy mea-
sure for keyword spotting that uses a single global decision
threshold optimized on the dev set [18]. The higher the value,
the better.

According to the evaluation condition of the final Babel
project period, the pronunciation lexica are derived automati-
cally from text, assuming a one-to-one mapping from charac-
ters to phones. The corpus statistics are shown in Table 1.

5.2. Language modeling and lattice rescoring setups

Our baseline systems for speech recognition and keyword
search are based on Kneser-Ney smoothed bigram count
models. In fact, Knill et al. [19] has shown that the bigram
lattice topology offers a better, more diverse search space for
keyword search purposes. Therefore, our goal is to rescore
lattices with an RNN LM to replace the LM scores while
preserving the bigram lattice structure. For that we rescore
lattices with the replacement approximation suggested by
Sundermeyer et al. [20]: for each arc in the original lat-
tice, the new LM scores are taken from the best path in the
traceback tree which contains the corresponding arc. For
efficiency reasons we pre-compute and store the CNN-based
representations in a word-indexed lookup table. The training
of all neural language models and rescoring was done using
the toolkit rwthlm [21].

5.3. Results

First of all, we report the effect of standard LSTM rescoring
for low resource ASR and keyword search. The LSTM LM
were trained on the audio transcripts (cf. Table 1). The ASR
results obtained with CNNs are shown in Table 9. The byte-
level CNNs slightly improve the ASR performance on Igbo,
Dholuo and Amharic. For Igbo and Dholuo, KWS was also
carried out. Improvements in KWS are shown in Table 10.

Table 9. Word error rate results.
ID Language WER [%]

2gr +LSTM +CNN
104 Pashto 47.4 45.6 45.6
306 Igbo 56.8 56.0 55.9
307 Amharic 42.8 42.1 42.0
403 Dholuo 38.1 37.0 36.9

Table 10. Effect of rescoring for keyword search performance

ID Language MTWV
2gr +LSTM +CNN

306 Igbo 0.3759 0.3733 0.3801
403 Dholuo 0.6228 0.6245 0.6253

6. CONCLUSION AND FUTURE WORK

In this paper, we extended the notion of convolution on char-
acter level to the more simple setup based on raw Unicode
bytes. This approach slightly reduced the perplexity and al-
lowed to improve both the word error rate and the keyword
search accuracy on several difficult low-resource tasks. We
investigated the choice of parameters for the convolutional
layer (number and size of filters) and pooling operation (pool-
ing over position vs. pooling over filters). We found that a
highway layer did not consistently improve the perplexity,
and we were able to show that the convolution operation is
indeed more important than just a larger input layer. In the
future, we plan to further investigate different pooling strate-
gies and consider to predict bytes instead of words.
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