
Optimization of Discriminative Models for

Speech and Handwriting Recognition

Von der Fakultät für
Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Dipl.-Math. Simon Bernhard Wiesler
aus Ostfildern-Ruit

Berichter: Univ.-Prof. Dr.-Ing. Hermann Ney
Univ.-Prof. Dr.-Ing. Gerhard Rigoll

Tag der mündlichen Prüfung: 16. Dezember 2016

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Doktorarbeit selbstständig verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe. Alle Textauszüge
und Grafiken, die sinngemäß oder wörtlich aus veröffentlichten Schriften entnommen
wurden, sind durch Referenzen gekennzeichnet.

Aachen, March 14, 2017
Dipl.-Math. Simon Wiesler

iii

Abstract

Conventional speech recognition systems are based on Gaussian hidden Markov models.
These systems are typically first trained generatively, i.e. a model of the acoustic signal
is learned. In a subsequent discriminative training step, the models are fine-tuned to di-
rectly optimize the classifier. More recently, it has been found that neural network-based
speech recognition systems outperform Gaussian mixture systems. Neural networks as
considered in this work are discriminative models, i.e. they do not require a generative
training step. Learning their parameters from data is a high-dimensional optimization
problem. This optimization problem is the central topic of this thesis. Further contri-
butions cover different aspects of modeling and training, such as generalization ability,
model structure, and training criteria. The generality of our methods is confirmed by
transferring them from speech to handwriting recognition.

In the first part of this thesis, we study a sub-class of neural networks, known as log-
linear models. Because of their shallow structure, their training is a convex optimization
problem. Our experiments show that this conceptually simple approach already reaches
performance comparable to that of a discriminatively trained Gaussian mixture system.
Furthermore, a theoretical convergence analysis of log-linear training is presented.

The second part of the thesis deals with deep neural networks. First, the feasibility
of a recently proposed second-order batch optimization algorithm for large-scale tasks
is investigated. Motivated by these results, a novel stochastic second-order optimiza-
tion algorithm for neural network training is developed. This algorithm is capable of
optimizing bottleneck networks from scratch. This allows for reducing the size of the
models considerably, thereby accelerating both the training and evaluation of the net-
works. Furthermore, the bottleneck structure acts as a regularization method, thus the
accuracy of the models is improved. Another contribution of this thesis is an investiga-
tion of sequence-discriminative training of neural networks, which in particular confirms
the benefit of the bottleneck structure in combination with this method. Finally, we de-
scribe the neural network training tool, which has been implemented within the scope
of this work as part of the the publicly available RWTH Aachen speech recognition
toolkit.

v

Zusammenfassung

Konventionelle Spracherkennungssysteme basieren auf Gaußschen Hidden Markov Mo-
dellen. Diese Systeme werden typischerweise zuerst generativ trainiert, d.h. sie lernen
ein Modell des akkustischen Signals. In einem nachfolgenden diskriminativen Trainings-
schritt wird direkt der Klassifikator optimiert. Neuerdings ist bekannt, dass Spracher-
kennungssysteme basierend auf neuronalen Netzen konventionellen Systemen überlegen
sind. Neuronale Netze, so wie sie in dieser Arbeit verwendet werden, sind diskriminati-
ve Modelle, d.h. sie benötigen keinen generativen Trainingsschritt. Das Lernen der Mo-
dellparameter aus Daten ist ein hochdimensionales Optimierungsproblem, welches das
zentrale Thema dieser Arbeit ist. Weitere wissenschaftliche Beiträge beschäftigen sich
mit verschiedenen Aspekten von Modellierung und Training, insbesondere Generalisier-
barkeit, Modellstruktur und Trainingskriterium. Die Allgemeingültigkeit der Ergebnisse
dieser Arbeit wird durch deren Übertragung von Sprach- auf Handschrifterkennungspro-
bleme bestätigt.

Im ersten Teil dieser Arbeit werden log-lineare Modelle, eine Unterklasse der neurona-
len Netze, untersucht. Aufgrund ihrer flachen Struktur ist ihr Training ein konvexes Op-
timierungsproblem. Wie unsere Experimente zeigen, erreicht schon dieser einfache An-
satz die Resultate eines diskriminativ trainierten Gaußschen Mischverteilungssystems.
Des Weiteren wird eine theoretische Konvergenzanalyse des log-linearen Trainingspro-
blems hergeleitet.

Der zweite Teil der Arbeit behandelt tiefe neuronale Netze. Zunächst wird die Mach-
barkeit eines kürzlich vorgeschlagenen Optimierungsalgorithmus zweiter Ordnung un-
tersucht. Motiviert von diesen Ergebnissen wird ein neuer stochastischer Algorithmus
entwickelt. Mit diesem Algorithmus können neuronale Netze mit einer Flaschenhals-
struktur (engl. bottleneck) direkt trainiert werden. Dieser Ansatz ermöglicht eine star-
ke Reduktion der Modellgröße und somit eine Beschleunigung des Trainings und der
Auswertung des Modells in der Erkennung. Darüberhinaus wirkt die Modellstruktur als
Regularisierung, wodurch die Erkennungsfehlerrate des Modells verbessert wird. Ein
weiterer Beitrag dieser Arbeit ist eine Untersuchung des diskriminativem Trainings auf
Sequenzebene. Insbesondere bestätigt sich der Vorteil der Flaschenhalsstruktur auch in
Kombination mit diesem Verfahren.

Abschließend beschreiben wir eine Software für neuronale Netze, die im Rahmen
dieser Arbeit als Teil des frei verfügbaren Spracherkennungssystems der RWTH Aachen
implementiert wurde.

vii

Acknowledgment

At this point, I would like to express my gratitude to all the people who supported and
accompanied me during the progress of this work. In particular, I would like to thank
the following people:
Prof. Dr.-Ing. Hermann Ney for giving me the opportunity for doing research in this
interesting area as well as his advice and support.
Prof. Dr.-Ing. Gerhard Rigoll who kindly accepted to review this thesis.
Dr. Ralf Schlüter for his advice and many helpful discussions.
Jens Ackermann, Pavel Golik, and Albert Zeyer for proof-reading this thesis.
Georg Heigold, who mentored me in the beginning of my time at i6 and introduced me
to the concepts of discriminative modeling.
Björn Hoffmeister and Christian Plahl for introducing me to the practical aspects of
developing a speech recognition system.
Yifan Gong, Jinyu Li, Frank Seide, Jian Xue, Dong Yu and colleagues for the friendly
atmosphere and the support during my internship at Microsoft.
Alexander Richard, with whom I collaborated for several topics of this thesis.
Philippe Dreuw and Patrick Dötsch for help with the handwriting recognition system.
My office mates Christian Plahl, Martin Sundermeyer, and Albert Zeyer for the good
atmosphere and good discussions about our work.
All my colleagues for the good times we had during working time and in our free time,
including Pavel Golik, Stefan Hahn, Matthias Huck, Saab Mansour, Markus Nußbaum-
Thom, David Nolden, David Rybach, Daniel Stein, Zoltán Tüske, and David Vilar.
Thanks for the good teamwork and the fun we had – it was a great time with you!
My parents for always supporting me and giving me all the chances I had.
The biggest thank-you goes to my little family. My wife Tine for her love, her encour-
agement, and her support during all these years. And my two wonderful daughters: our
little one Lotta and Paula, now four years old, who missed me on the many weekends
when I was finishing this thesis. Thank you!

ix

Outline

1 Introduction 1
1.1 Statistical Speech Recognition . 2

1.2 Feature Extraction . 3

1.3 Acoustic Model . 4

1.4 Language Modeling . 7

1.5 Search . 8

1.6 Log-Linear Model Combination . 9

1.7 Word Lattices . 9

1.8 Performance Measurement . 10

1.9 Acoustic Modeling using Neural Networks 11

1.9.1 Neural networks . 11

1.9.2 Neural network training . 13

1.9.3 Log-linear models . 15

1.9.4 The hybrid approach . 16

1.10 Related Work . 16

1.11 Document Structure . 18

2 Scientific Goals 21

3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition 23
3.1 Preliminaries . 23

3.2 Modeling . 24

3.2.1 Frame-level model . 24

3.2.2 Sequence-level model . 26

3.3 Training Criteria . 27

3.3.1 Cross-entropy . 28

3.3.2 Sequence-discriminative maximum mutual information 29

3.3.3 Minimum Bayes risk . 30

3.3.4 Regularization . 31

3.4 Features . 32

3.4.1 Polynomial features . 32

3.4.2 Clustering features . 33

3.4.3 Feature selection . 33

3.5 Parameter Optimization . 34

3.5.1 Gradient descent and Newton’s method 34

xi

Outline

3.5.2 L-BFGS . 35

3.5.3 Rprop . 35

3.5.4 Orthant-wise Rprop for `1-regularized training 36

3.5.5 Growth transformations . 36

3.5.6 Stochastic gradient descent . 37

3.5.7 Stochastic second-order algorithms 37

3.5.8 Convergence properties . 38

3.5.9 Implicit feature transformation 38

3.6 Experimental Results . 39

3.6.1 Comparison of features . 40

3.6.2 Feature selection . 42

3.6.3 Experiments on LVCSR . 42

3.6.4 Comparison of optimization algorithms 44

3.7 Discussion . 46

3.8 Publications and Joint Work . 47

4 Convergence Analysis of Log-Linear Training 49
4.1 Introduction . 49

4.2 Formal Analysis . 51

4.2.1 Preliminaries . 51

4.2.2 The case without regularization 52

4.2.3 Spectrum of the uncentered covariance matrix 54

4.2.4 The case with regularization . 56

4.3 Experimental Results . 57

4.3.1 Handwritten digit recognition . 57

4.3.2 Handwritten text recognition . 59

4.4 Relation to Prior Work . 61

4.5 Discussion . 61

4.6 Publications and Joint Work . 62

5 Hessian-Free Optimization for Cross-Entropy Training 63
5.1 Introduction . 63

5.2 Martens’ Hessian-Free Algorithm . 64

5.3 Empirical Analysis on Handwritten Digit Recognition 68

5.4 Experimental Results on Speech Recognition 70

5.5 Discussion . 72

5.6 Publications and Joint Work . 73

6 Mean-Normalized Stochastic Gradient Descent 75
6.1 Introduction . 75

6.2 Derivation of the Algorithm . 76

6.3 Convergence Proof . 78

6.4 Improving Generalization Ability by Low-Rank Factorization 79

xii

Outline

6.5 Learning Rate Strategies . 80

6.6 Experimental Results . 81

6.6.1 Conversational speech recognition 81

6.6.2 Offline handwriting recognition 84

6.7 Discussion . 85

6.8 Publications and Joint Work . 86

7 Sequence-Discriminative Training of Neural Networks 87
7.1 Introduction . 87

7.2 Training Criteria . 88

7.3 Modifications for Robust Training . 89

7.3.1 Cross-entropy smoothing . 89

7.3.2 Frame-rejection heuristic . 89

7.4 Optimization . 90

7.5 Implementation . 90

7.6 Experimental Results . 91

7.6.1 Offline handwriting recognition 91

7.6.2 Conversational speech recognition 92

7.6.3 Experiments on the large-scale task 96

7.7 Discussion . 97

7.8 Publications and Joint Work . 98

8 Scientific Contributions 99

9 Outlook 103

A Corpora and Systems 105
A.1 Wall Street Journal . 105

A.2 Quaero English . 106

A.2.1 Quaero 2010 . 106

A.2.2 Quaero 2011 . 107

A.3 Isolated Handwritten Digit Recognition 108

A.4 Offline Continuous Handwriting Recognition 109

A.4.1 The IAM 2011 system . 110

A.4.2 The IAM 2014 system . 110

A.5 Overview of Experimental Results . 110

B Implementation of Neural Networks in the RASR Toolkit 113
B.1 Implementation . 113

B.1.1 Models . 114

B.1.2 Frame-discriminative training . 114

B.1.3 Sequence-discriminative training 114

B.1.4 Recognition . 115

xiii

Outline

B.1.5 Feature extraction . 115
B.2 Experimental Comparison with QuickNet 115
B.3 Summary . 117

C Detailed Calculations 119
C.1 Chapter 6 . 119

D Symbols and Acronyms 121
D.1 Symbols . 121
D.2 Acronyms . 124

E Publications and Joint Work 127

List of Figures 129

List of Tables 131

Bibliography 133

xiv

Chapter 1

Introduction

Speech is the most common and natural way of human communication. This makes au-
tomatic speech recognition the natural choice for a human-machine interface. Recently,
automatic speech recognition has become an important component of many commercial
products such as mobile phones, dictation systems, and many more. Nowadays, large
amounts of audio and video data are recorded and stored. Automatic speech recognition
makes these data accessible for further natural language processing such as indexing,
translation, or information extraction.

The speech recognition problem is defined as the task of converting an acoustic signal,
which contains speech, to written text. Today’s large vocabulary continuous speech
recognition systems handle complete utterances of unconstrained speech. The word
error rate, i.e. the Levenshtein distance between the correct and the recognized word
sequence, is used as the evaluation measure for speech recognition systems.

Modern speech recognition systems are based on the statistical approach. Given
a sequence of acoustic vectors representing the speech signal, the most likely word
sequence according to a statistical model is chosen. Conventionally, this statistical
model is decomposed into a language model and an acoustic model. The parameters of
the models are learned from data in the training phase of the system.

Traditionally, the acoustic model has been represented by generative models. Dis-
criminative models have the advantage of directly optimizing the posterior probability
required in recognition. These models typically have a huge number of parameters.
Learning these parameters from data is a high-dimensional optimization problem. In
this thesis, we explore discriminative models both with a shallow structure (log-linear
models) and a hierarchical structure (neural networks). The central topic of this thesis
is the optimization problem, but related topics such as generalization ability, model
structure, and training criteria are studied as well. The same methods and software as
in speech recognition can be employed to build state-of-the-art handwriting recognition
systems, which differ only in the feature extraction. We evaluate our methods on speech
as well as handwriting recognition tasks.

In the remainder of this chapter, the statistical approach to speech recognition is
reviewed and the general notation used in this thesis is introduced. Related work is
discussed in Section 1.10.

1

Chapter 1 Introduction

Speech Input

Feature
Extraction

Acoustic Model

Language Model

Global Search Process:

maximize

 x1
...

xT

p(w1 ... wN) p(x1 ... xT | w1...wN)

 w1 ... wN

Recognized
Word Sequence

over

 p(x1 ... xT | w1...wN)

p(w1 ... wN)

Feature Vectors

opt w1 ... wN

- subword units
- pronunciation lexicon

{ }

Figure 1.1. Basic architecture of a statistical speech recognition
system [Ney 90]

1.1 Statistical Speech Recognition

Modern speech recognition systems are based on the statistical approach. Given a
sequence of acoustic vectors xT1 = (x1, . . . , xT), Bayes’ decision rule [Bayes 63] states

that the word sequence ŵN̂1 = (ŵ1, . . . , ŵN̂) which maximizes the posterior probability
should be chosen:

ŵN̂1 = argmax
wN

1

p(wN1 |xT1) (1.1)

= argmax
wN

1

p(wN1)p(xT1 |wN1) . (1.2)

In statistical speech recognition systems, statistical models are assumed for the two
factors appearing in Eq. (1.2). The prior probability of a word sequence p(wN1) is given
by the language model (LM). The conditional probability of observing an acoustic vector

2

sequence for the given word sequence p(xT1 |wN1) is defined by the acoustic model (AM).
The parameters of the models are learned from training data in the training phase of the
system. Figure 1.1 depicts the general architecture of a statistical speech recognition
system, which consists of four main components:

• The feature extraction module performs signal analysis to compute acoustic fea-
tures xT1 from the input speech signal.

• The language model provides the prior probability of the hypothesized word se-
quence wN1 based on the syntax and semantics of the language.

• The acoustic model consists of statistical models for words or smaller sub-word
units, and a pronunciation lexicon which defines the mapping from words to sub-
word units, e.g. phonemes.

• The search module combines the knowledge sources to determine the best word
sequence according to Eq. (1.2).

In the following sections, these components will be described in more detail.

1.2 Feature Extraction

The feature extraction module converts the digital speech signal into a sequence of
acoustic vectors. This preprocessing stays apart from the statistical approach and is
motivated by models of the human auditory system. Normalization techniques can
be applied to remove information which is irrelevant for the speech recognition process.
The complexity of the feature extraction depends on the structure of the acoustic model.
Shallow models require a rather complex feature extraction. Hierarchical models learn
a feature representation from data and require less preprocessing stages.

In most speech recognition systems, the feature extraction starts with a short-term
spectral analysis [Rabiner & Schafer 79] based on a fast Fourier transform. The phase
information of the Fourier transform is removed by applying the modulus and the
dimension is reduced using triangular-shaped band filters. Further processing yields
the widely used Mel-frequency cepstral coefficients (MFCC) [Davis & Mermelstein 80]
or perceptual linear prediction (PLP) coefficients [Hermansky 90].

The short-term features lack dynamic information of the signal, which can be in-
corporated by concatenation of neighboring feature vectors. For generative models, a
dimension reduction of the resulting feature vector is required. Typically, this is done
using a linear discriminant analysis (LDA) [Häb-Umbach & Ney 92] which maximizes
class separability in the lower dimensional feature space [Fisher 36]. For neural networks,
less preprocessing steps are required and higher-dimensional features can be employed.
In most systems, either MFCC features with a relatively large temporal context are
used, or the filter bank outputs are used directly [Mohamed & Dahl+ 12]. Using neural
networks, it is even possible to work directly on the raw speech signal, see e.g. [Palaz
& Collobert+ 13,Tüske & Golik+ 14].

3

Chapter 1 Introduction

stst−1 st+1

xtxt−1 xt+1

Figure 1.2. Illustration of an HMM as a graphical model. White vertices
correspond to hidden states, gray vertices to observations. The
arrows illustrate conditional dependence.

Speaker adaptation is an important component in state-of-the-art speech recognition
systems and can be performed at different levels of the recognition system. At feature
level, vocal tract length normalization is a popular technique to compensate for variabil-
ity caused by different length of the vocal tract [Eide & Gish 96,Welling & Kanthak+

99]. In addition, constrained maximum likelihood linear regression (CMLLR) can be
used for estimating speaker-dependent linear transformations of the features [Gales
98]. Invariance of the recognition system to speaker variations can also be improved
by generating artificial training data using feature transformation methods. For exam-
ple vocal tract length perturbation has been reported to improve speech recognition
performance [Jaitly & Hinton 13].

1.3 Acoustic Model

The aim of acoustic modeling is to provide a statistical model for the conditional prob-
ability p(xT1 |wN1) of an acoustic vector sequence xT1 given a word sequence wN1 . The
de-facto standard in speech recognition is to assume a hidden Markov model (HMM)
for the acoustic model [Baum & Eagon 67,Baker 75]. HMMs allow for modeling varying
speaking rates and structuring the model into smaller sub-units.

An HMM is a statistical model which can be regarded as a stochastic finite state au-
tomaton. Each state has a probability distribution, which models the stochastic output
of the state. The transitions between states are stochastic, i.e. the HMM has a proba-
bility distribution for the transition between states. In HMM terminology, the states
of the automaton are called hidden states and the outputs are called observations. The
hidden state sequence is assumed to be a first-order Markov process. The observations
are conditionally independent of all other random variables given the state, see Fig. 1.2.

In speech recognition, the observations are the acoustic features and the state se-
quence corresponds to the positions in a word sequence. The HMMs have a left-to-right
topology, which allows forward, skip, and loop transitions, and thus model varying
speaking rates. A typical example of such a topology is shown in Fig. 1.3.

In the simplest case, words are modeled by HMMs with a pre-defined number of
states and a left-to-right topology (whole-word models). Word sequence HMMs are

4

Figure 1.3. Depiction of the Bakis HMM topology.

obtained by concatenating word models. The conditional probability of an acoustic
observation sequence xT1 given the word sequence is defined as the sum over all possible
state sequences sT1 in this HMM:

p(xT1 |wN1) =
∑
sT1

p(xT1 , s
T
1 |wN1) (1.3)

=
∑
sT1

T∏
t=1

p(xt, st|xt−1
1 , st−1

1 , wN1) (1.4)

=
∑
sT1

T∏
t=1

p(xt|xt−1
1 , st1, w

N
1) p(st|xt−1

1 , st−1
1 , wN1) . (1.5)

The first-order Markov assumption of the model implies that the probability of a state
depends only on the predecessor state. Further, it is assumed that the observations are
conditionally independent of all other random variables given the state. This implies:

p(xT1 |wN1) =
∑
sT1

T∏
t=1

p(xt|st, wN1) p(st|st−1, w
N
1) . (1.6)

The quantities p(xt|st, wN1) and p(st|st−1, w
N
1) are known as emission probabilities and

transition probabilities respectively.

The parameters of the HMMs are tied. For example in the case of whole-word models,
the parameters of the same word in different contexts are identical. As a result from
the tying, the number of emission models is finite. Formally, the tying is a function
that maps a word sequence and an HMM state to an emission model label

A(wN1 , s) = a (1.7)

such that

p(x|s, wN1) = p(x|a) . (1.8)

Tying is also used for the transition model. In the RWTH Aachen system, the proba-
bilities of transitions of the same type (e.g. loop, forward, and skip) are tied.1

1See the system descriptions in Chapter A for details of the practical implementation.

5

Chapter 1 Introduction

The classical choice for the emission model is a Gaussian mixture model (GMM). In
this case, the acoustic model is referred to as a Gaussian-mixture-HMM (GHMM). The
GMM emission probabilities for a label a and an observation x are defined as

p(x|a) =

La∑
l=1

ca,lN (x|µa,l,Σa,l) . (1.9)

Here, N (x|µ,Σ) denotes the normal distribution with mean µ and covariance matrix Σ.
The non-negative mixture weights (ca,l) are subject to the constraint

La∑
l=1

ca,l = 1 (1.10)

for each label a. In the RWTH Aachen system, the covariances of all states and densities
are tied and assumed to be diagonal. This choice ensures that the covariance matrix is
non-singular. A more mundane advantage is that the calculation of likelihoods can be
performed more efficiently [Kanthak & Schütz+ 00].

In the training phase of the system, the parameters of the acoustic model are es-
timated from data. The GMM parameters can be estimated efficiently according to
the maximum likelihood (ML) criterion using the expectation maximization (EM) al-
gorithm [Dempster & Laird+ 77]. The performance of a GHMM system can be im-
proved by a subsequent discriminative training step. Starting from a ML initialization,
an objective function based on the posterior probability of the word-sequence is opti-
mized. The most widely-used objective functions are maximum mutual information
(MMI) [Bahl & Brown+ 86,Normandin 96,Valtchev & Odell+ 97], and minimum phone
error (MPE) [Povey & Woodland 02], which are discussed in detail in Chapter 3.

A number of techniques have been introduced for the extension of GHMM acoustic
models to large vocabulary continuous speech recognition (LVCSR). Instead of whole-
word HMMs, the word HMMs are built from small sub-word units. The pronunciation
lexicon provides the mapping from words to sequences of sub-word units. Using sub-
word instead of whole word models enables the speech recognition system to recognize
words which have not been seen in the training data. Moreover, it has the advantage
of a more reliable parameter estimation, because more training instances are available
for these units.

The most widely-used sub-word units for LVCSR are clustered triphones. The pronun-
ciation lexicon stores the mapping from words to sequences of phonemes, i.e. classes of
speech sounds, which are perceived as equivalent to each other in a given language [Es-
ling 10]. Each phoneme sequence uniquely defines a sequence of triphones, i.e. phonemes
together with their predecessor and successor phonemes. Words are then modeled by
concatenating several HMMs, each representing a triphone. The triphone HMMs typi-
cally have three or six states. A widely used variant is the Bakis topology [Bakis 76],
which is depicted in Fig. 1.3. The motivation for using triphones is that the acoustic
realization of a phoneme depends strongly on the surrounding phonemes. This effect,

6

which is known as coarticulation, also occurs across word boundaries. Therefore, it is
important to consider the surrounding phonemes across word boundaries in triphone
models [Hon & Lee 91,Odell & Valtchev+ 94,Sixtus 03].

The number of all possible triphones is too large for estimating separate models for
each of them reliably. Many triphones might even not be contained in the training
data at all. Therefore, the parameters of acoustically similar HMM state models are
tied [Young 92]. Commonly, a phonetic decision tree is used to determine a clustering of
HMM states [Young & Odell+ 94]. This top-down clustering approach has the advantage
of assigning state models also to triphones unseen during training.

The pronunciations contained in the pronunciation lexicon are either generated manu-
ally or automatically. Typically, the pronunciations of a base vocabulary are generated
manually. Automatic grapheme-to-phoneme conversion algorithms are used for gener-
ating missing pronunciations. In the RWTH Aachen system, a statistical approach for
grapheme-to-phoneme conversion is employed [Bisani & Ney 03].

A word can have multiple pronunciations. For example the word “the” has a prevo-
calic and a preconsonantal pronunciation. The HMM for a word sequence is therefore
in general non-linear and has different states for different pronunciations. The pronun-
ciation probabilities are assumed to be included in the transition probabilities.

The GHMM approach for acoustic modeling has been dominant for about two decades.
In recent years, discriminative approaches for acoustic modeling have received much
attention. In particular, hybrid deep neural network (DNN)-HMMs have been shown
to outperform GHMMs considerably. Neural networks and the hybrid approach are
discussed in Section 1.9.

1.4 Language Modeling

The language model p(wN1) provides a prior probability for a word sequence wN1 . Ideally,
the model implicitly covers syntax and semantics of the language. A major advantage
of the factorization (1.2) into acoustic model and language model is that the language
model can be trained on text data only, which can be obtained easily.

The classical choice for the language model is an m-gram count model [Bahl &
Jelinek+ 83], which makes the assumption that the probability of a word depends only
on its m− 1 predecessors (Markov assumption). According to the chain rule of proba-
bility, the probability of a word sequence wN1 can be factorized as

p(wN1) =
N∏
n=1

p(wn|wn−1
1) . (1.11)

Making use of the Markov assumption, Eq. (1.11) can be simplified to

p(wN1) =
N∏
n=1

p(wn|wn−1
n−m+1) . (1.12)

7

Chapter 1 Introduction

Here, we use the convenient notation that p(wn|wn−1
n−m+1) is p(wn|wn−1

1) if m is larger
than n and p(w1|w0

1) is p(w1). Consecutive sequences of m words are referred to as
m-grams. In principle, the probabilities p(wn|wn−1

n−m+1) can be estimated as relative
frequencies from m-gram counts. However, the number of possible m-grams grows
exponentially in m. Even when using very large training sets, many m-grams have only
very few observations or are not contained in the training data at all. Commonly, the
m-gram probabilities are smoothed by discounting in combination with backing-off or
interpolation [Katz 87, Generet & Ney+ 95, Ney & Essen+ 94, Kneser & Ney 95]. In
discounting, probability mass is removed from the non-zero probabilities. A fall-back
model of lower m-gram order is used for distributing the discounted probability mass
over all unseen m-grams (backing-off) or over all m-grams (interpolation).

Recently, neural networks have also become popular for language modeling. Feed-
forward neural networks (NNs) allow for estimating the m-gram probability directly
without backing-off [Bengio & Ducharme+ 01, Schwenk 07]. With recurrent neural
networks (RNNs), even the Markov assumption is not required [Mikolov & Karafiát+

10, Sundermeyer & Schlüter+ 12]. Despite of some recent progress in using neural
network language models directly in search [Huang & Zweig+ 14], they are mostly
applied in a lattice or n-best list rescoring step.

1.5 Search

In the search process, the most likely word sequence according to Eq. (1.16) for the
observed speech signal is computed. As shown in Fig. 1.1, the search module combines
all knowledge sources: the acoustic model, the pronunciation model, and the language
model. If the acoustic model is an HMM and the language model an m-gram model,
the search module has to solve the maximization problem

ŵN̂1 = argmax
wN

1

p(wN1)p(xT1 |wN1) (1.13)

= argmax
wN

1

{ N∏
n=1

p(wn|wn−1
n−m+1)

∑
sT1

T∏
t=1

p(xt|st, wN1) p(st|st−1, w
N
1)
}
. (1.14)

Usually, the summation over all state sequences is approximated by the maximum.
This approximation is known as the maximum approximation or Viterbi approximation
[Viterbi 67,Ney & Aubert 96]. Equation (1.14) then becomes

ŵN̂1 = argmax
wN

1

{ N∏
n=1

p(wn|wn−1
n−m+1) max

sT1

T∏
t=1

p(xt|st, wN1) p(st|st−1, w
N
1)
}

. (1.15)

In this formulation, the search process solves a single-source shortest path problem in
a search network.

8

Both, Eq. (1.14) and Eq. (1.15) can be evaluated in linear time using dynamic pro-
gramming [Bellman 57,Viterbi 67,Baum 72,Ney 84,Rabiner & Juang 86]. Nevertheless,
the size of the search network is enormous. In LVCSR, it is clearly intractable to evalu-
ate all hypotheses. Therefore, algorithms which discard unlikely hypotheses, i.e. which
prune a large part of the search space, are required. As a consequence, search errors
can occur, i.e. the best hypothesis may not be found because it is pruned. In principle,
pruning allows to control computation time by trading speed for recognition quality. If
the pruning parameters are adjusted properly, no significant search errors occur.

The approaches to the search problem can be broadly distinguished by two properties
[Aubert 02]. First, the search network can be pre-compiled in advance and used as
a static structure, or, it can be expanded dynamically during search. Second, one
distinguishes between breadth-first and depth-first search algorithms.

A prominent example of the depth-first strategy is the A∗ algorithm [Hart & Nilsson+

68]. It organizes the search in a time-asynchronous manner depending on a heuristic
estimate of the costs to complete the path. The A∗ algorithm has been applied to
speech recognition in [Jelinek 69,Paul 91], but since its quality depends strongly on the
heuristic, breadth-first search algorithms are commonly used.

Breadth-first search algorithms compute the likelihoods of all active hypotheses at
each time frame and are commonly used in combination with beam-pruning. At each
time step, beam-pruning compares the likelihoods and keeps only those hypotheses
which have likelihoods sufficiently close to the current best one [Lowerre 76, Ney &
Mergel+ 87, Ortmanns & Ney 95]. The computational complexity of the beam-search
can be reduced further with a prefix-tree representation of the pronunciation dictionary
[Ney & Häb-Umbach+ 92, Ortmanns & Eiden+ 98]. Acoustic and language model
look-aheads aim at pruning sub-optimal paths as early as possible [Ortmanns & Ney
00,Alleva & Huang+ 96,Nolden & Ney+ 11,Nolden & Schlüter+ 11].

Weighted finite state transducer (WFST) provide a generic way to construct and
optimize the search space [Allauzen & Mohri 03, Mohri & Riley 97]. A WFST is a
weighted finite state automaton with input and output labels. In the WFST framework,
generic algorithms are used to combine the knowledge sources and to minimize the
search space. In particular, a static minimized WFST search network implicitly applies
the lexical prefix tree and the language model look-ahead technique [Kanthak & Ney+

02]. WFST-based search networks can also be generated dynamically in order to reduce
memory requirements. A comprehensive overview on WFST-based search algorithms
is given in [Rybach 14].

1.6 Log-Linear Model Combination

For optimal performance, the impact of the individual statistical models on the decision
rule can be weighted by introducing scaling factors. The scaling is performed in log-
space such that the model in Eq. (1.2) is eventually a log-linear model. For instance,

9

Chapter 1 Introduction

1

2

3

4

5

6

7 8 9
0

neun /9//−876
null /0//−424
drei /3//−384

[SIL] /si//−2618

sechs /6//−1014

drei /3//−1013

drei /3//−909

zwei /2//−556

neun /9//−480

[SIL] /si//−706

[SIL] /si//−274

[SIL] /si//−632

[SIL] /si//−719

sieben /7//67

sieben /7//−568

fünf /5//−437

Figure 1.4. Example word lattice on a German digit strings recognition task
(SieTill). The reference sequence is marked in red. [Heigold 10]

the decision rule with a language model scale γ > 0 becomes

ŵN̂1 = argmax
wN

1

p(wN1)γp(xT1 |wN1) . (1.16)

By convention, the emission model scale is fixed to 1.0 and only the scales for the
language, transition, and pronunciation model are optimized. To keep the notational
complexity at a minimum, we assume that all statistical models are already in their
scaled form where appropriate.

1.7 Word Lattices

Many applications require a set of the most likely word sequences in addition to the
first-best result. A common example is the application of models, which are too com-
putationally expensive to be integrated during search, for example complex language
models. The most direct form to represent a set of word sequences is an N -best list. A
much more compact representation is achieved using word lattices.

In this work, a word lattice is defined as a weighted directed acyclic graph, where the
arcs are labeled with pairs of a word and its pronunciation (word-pronunciations). The
states are annotated with word boundary information including the time frame and
the acoustic context in case of across word modeling. The arc weights are set to the
language model, the acoustic model, or the combined log-probabilities. Usually, Viterbi
approximation is applied on arc-level, i.e. the acoustic model score contains only the
probability of the best HMM sequence. An example for a word lattice is shown in
Fig. 1.4.

Lattices can be generated during a recognition pass, where the pruned search space
is stored as a graph. The RWTH Aachen speech recognizer applies the word pair
approximation [Ortmanns & Ney+ 97], which simplifies their generation and makes
them compact.

In this work, word lattices are important in the context of sequence-discriminative
training, where they are used for representing the set of competing hypotheses [Valtchev
& Odell+ 97]. In sequence-discriminative training, it is usually assumed that the lat-
tices also contain Viterbi arc-alignments. In our sequence-discriminative training exper-
iments, the size of the lattices has been reduced by forward-backward pruning [Sixtus
& Ortmanns 99], and the reference word sequence has been merged into the lattice.

10

1.8 Performance Measurement

The recognition quality of a speech recognizer is commonly measured in terms of its
word error rate (WER) on transcribed test data. The word error rate is the normal-
ized Levenshtein distance between the recognized word sequence and the correct word
sequence. The normalization is performed w.r.t. the number of reference words. The
Levenshtein distance is the minimal number of local edit operations (insertion, deletion,
and substitution of words) required to transform one word sequence into the other [Lev-
enshtein 66].

The quality of a language model can be measured in terms of its perplexity (PPL).
The perplexity of a language model and a word sequence wN1 is defined as

PP(wN1) = p(wN1)−
1
N =

[
N∏
n=1

p(wn|wn−1
1)

]− 1
N

. (1.17)

The perplexity of a language model can be interpreted as the average number of choices
to continue the word sequence wn1 at any position n.

1.9 Acoustic Modeling using Neural Networks

As outlined above, discriminatively trained GHMM speech recognition systems have
been the state-of-the-art for decades. However, in recent years, neural networks have
been shown to be superior to GMMs as acoustic models [Mohamed & Dahl+ 09, Dahl
& Ranzato+ 10, Seide & Li+ 11b, Sainath & Kingsbury+ 11, Dahl & Yu+ 12, Jaitly &
Nguyen+ 12]. Neural networks are discriminative models, i.e. they directly model the
posterior probability required in classification. In contrast to discriminatively trained
generative models, they are trained discriminatively from scratch. Another advantage
of discriminative models is that their structure is not restricted to fit to a generative
model. In particular, the structure of neural networks allows for the joint training of a
discriminative feature extraction and the classifier.

Neural networks have already been used for speech recognition since the 1980’s. At
that time, neural networks were limited to isolated word recognition [Burr 86, Peel-
ing & Moore+ 86, Gold & Lippmann+ 87] or had a very complex topology [Waibel &
Hanazawa+ 89]. These approaches could not compete with HMM based speech recogni-
tion systems. [Bourlard & Morgan 94] proposed the hybrid approach, which allows for
using neural networks within the HMM framework. Initially, the success of the hybrid
approach was rather limited, one reason being that the networks were undersized due
to a lack of computing power. Neural networks were then mostly used as a feature
extractor [Fontaine & Ris+ 97,Hermansky & Ellis+ 00,Grezl & Karafiát+ 07].

In recent years, the interest in neural networks for speech recognition has again greatly
increased. In [Mohamed & Dahl+ 09] it was found that deep neural networks, i.e. neural
networks with many hidden layers, outperform GMMs for phone recognition. [Seide &

11

Chapter 1 Introduction

Li+ 11b] scaled DNNs to LVCSR. In earlier work on deep learning it was argued that
deep neural networks require an unsupervised pre-training step [Hinton & Salakhutdinov
06]. Later it has been found that these techniques are not necessary for large-scale tasks
like speech recognition [Seide & Li+ 11a].

Since neural networks and the related log-linear models are the main topic of this
thesis, they are described in more detail in the following.

1.9.1 Neural networks

A comprehensive overview of neural networks in general would go beyond of the scope
of this work. This section introduces the basic concepts and the formalism for neural
networks with a multi-layer perceptron structure, which can be found in text books
such as [Bourlard & Morgan 94,Bishop 06].

In our context, neural networks are used as a model for class-posterior probabilities.
For an observation space RD and a finite number of C classes, a neural network is a
parameterized function

gθ : RD → RC , x 7→ gθ(x) . (1.18)

The parameters of the network θ are learned from data. Their exact form is specified
below. Note that we only consider static inputs and the class of networks we consider
is restricted to feed-forward neural networks.

The outputs of the network are used as estimates for the class-posterior probability,
therefore, we write

(gθ(x))c = pθ(c|x) . (1.19)

This suggests the use of the decision rule

r : RD → {1, . . . , C}, x 7→ argmax
c

pθ(c|x) . (1.20)

The basic idea of neural networks is a hierarchical processing of the data, i.e. gθ
is a composition of parameterized functions. Mostly, the network is assumed to be
organized as a stack of layers. Such an L-layer network is a composition of L functions

gθ = g
(L)

W (L),b(L) ◦ g
(L−1)

W (L−1),b(L−1) . . . ◦ g
(1)

W (1),b(1)
. (1.21)

Each function is of the form

g
(l)

W (l),b(l)
: RDl−1 → RDl , l = 1, . . . , L (1.22)

with Dl ∈ N, D0 = D, DL = C, and parameters W (l) ∈ RDl−1×Dl and b(l) ∈ RDl .
These functions are referred to as layers with weight matrix W (l) and bias b(l). The
function g(L) is the output layer, and the remaining g(l) are the hidden layers of the
network. The parameters of the network are the weight matrices and biases of all layers:

θ =
(

(W (1); b(1)), . . . , (W (L); b(L))
)
. (1.23)

12

Each layer itself is a composition of the affine transformation defined by (W (l), b(l)) and
an activation function σl:

g
(l)

W (l),b(l)
(x) = σl(W

(l)>x+ b(l)) . (1.24)

To enable non-linear classification, the activation function needs to be non-linear. Typ-
ically, it has the same functional form in all components:

σl : RDl → RDl , y 7→ (σ(y1), . . . , σ(yDl
)) , (1.25)

with some σ : R → R. The classical choice for the activation function is the sigmoid
function:

σ : R→ R, y 7→ 1

1 + e−y
. (1.26)

In order to ensure that the output of the network is a proper probability distribution,
the softmax non-linearity [Bridle 90] can be used at the output layer:

σL : RC → RC , y 7→ 1

Z(y)
(ey1 , . . . , eyC) . (1.27)

Here,

Z(y) =
C∑
c=1

eyc (1.28)

is the normalization term.

The intermediate values required for evaluating the network with a given input x are
called activations:

x(0) = x

x(1) = g
(1)

W (1),b(1)
(x(0))

...

x(L) = g
(L)

W (L),b(L)(x
(L−1))

. (1.29)

A typical illustration of a neural network as a graph is shown in Fig. 1.5. Calculating
the activations in successive order corresponds to a traversal of this graph in topological
order and is known as a forward pass.

1.9.2 Neural network training

In the supervised training setting, a training sample, i.e. a sequence of labeled observa-
tions, is given:

(xn, cn)n=1,...,N ⊂ RD × {1, . . . , C} . (1.30)

13

Chapter 1 Introduction

Hidden
layer

x(1)

(W1, b1) (W2, b2)
Input

x(0)

Output
layer

x(2)

Figure 1.5. Illustration of a neural network with a four-dimensional input, a
five-dimensional hidden layer, and a three-dimensional output layer.
The biases are marked in black.

In training, the parameters of the network are optimized according to a training crite-
rion, which depends on the training sample:

F(θ) =
N∑
n=1

Fn(θ) . (1.31)

We use the convention that the objective function is minimized in training. Mostly, the
cross-entropy (CE) criterion (with hard labels) is used [Bridle 90]:

Fn(θ) = − log pθ(cn|xn) . (1.32)

Note that the cross-entropy criterion requires that the output of the network is nor-
malized, which is the case when a softmax output layer is used. The cross-entropy
criterion is also known as maximum mutual information (MMI) and as conditional
maximum likelihood criterion.

The minimum of the objective function can in general not be determined analytically.
Therefore, iterative numerical optimization methods are employed, which make use of
the gradient of the objective function. This gradient is computed using the backpropa-
gation algorithm2. The algorithm performs a forward and a backward pass through the

2The history of the backpropagation algorithm is difficult to track down. Often [Rumelhart & Hinton+

86] is cited, although the same method has been used in many earlier works already in the 1960’s,
e.g [Bryson & Denham+ 63]. The backpropagation algorithm for neural networks is also a special
case of the reverse mode in automatic differentiation [Griewank 12], which has been developed in
the 1970’s. Confer [Schmidhuber 14] for a discussion.

14

network. In the forward pass, the activations of each layer are calculated in successive
order. Then, the error signal at the output layer, i.e. the gradient of the objective
function w.r.t. the output layer activations, is computed. In the backpropagation step,
the error signals of the hidden layers are calculated recursively using chain-rule. The
gradient can then be calculated from the activations and the error signals.

The most widely used optimization method for neural networks is stochastic gradi-
ent descent (SGD). SGD employs a stochastic approximation of the gradient, i.e. the
gradient is only evaluated on a small random mini-batch B ⊂ {1, . . . , N}:

∇F(θ,B) =
∑
n∈B
∇Fn(θ) . (1.33)

In every iteration i, the parameters are updated by

θi = θi−1 − ηi∇F(θi−1,Bi) , (1.34)

where ηi > 0 is the learning rate. The initialization θ0 can be set randomly or computed
by a pre-training algorithm. Alternative algorithms for optimizing neural networks are
the topic of Chapter 5 and 6.

In general, neural network training is a non-convex optimization problem. Using
numerical optimization algorithms, only a local optimum of the objective can be de-
termined. This local optimum depends on the initialization θ0 and the choice of the
optimization algorithm and its hyperparameters such as the mini-batch size and the
learning rates for SGD.

Deep networks, i.e. networks with many hidden layers, are sometimes initialized with
a layer-wise restricted Boltzmann machine (RBM) pre-training [Hinton & Osindero+

06] or other unsupervised pre-training algorithms. However, it has been found that
for large-scale tasks like speech recognition, unsupervised pre-training is not necessary.
Already randomly initialized DNNs perform almost as well as RBM pre-trained models.
The same or even larger improvements as with RBM pre-training are also obtained by
a supervised layer-wise pre-training [Seide & Li+ 11a].

1.9.3 Log-linear models

Log-linear (LL) models are a special case of neural networks with only a softmax output
layer and no hidden layers. This specific structure of log-linear models has important
consequences which distinguishes them from general neural networks.

The posterior probability of a class c given an observation x defined by a log-linear
model is of the form:

p(Λ,β)(c|x) =
1

Z(x)
exp

(
λ>c x+ βc

)
with Z(x) =

∑
c̄

exp
(
λ>c̄ x+ βc̄

)
. (1.35)

Here, Λ = (λ1; . . . ;λC) ∈ RD×C and β ∈ RC are the parameters of the log-linear model.

15

Chapter 1 Introduction

In contrast to neural networks, log-linear models imply only linear decision bound-
aries. Non-linear classification is achieved by mapping observations to a higher-
dimensional feature space. A typical example is a log-linear model with quadratic
features. Such a model has linear decision boundaries in the higher-dimensional feature
space, but quadratic decision boundaries in the original feature space.

This approach is closely related to the concept of kernels, which are widely used
in many machine learning algorithms, most prominently in support vector machines
(SVMs) [Cortes & Vapnik 95]. While for log-linear models the features are explicitly
computed, this is usually avoided in SVMs by means of the kernel trick [Aizerman &
Braverman+ 64,Boser & Guyon+ 92].3 For SVMs, this comes at the price of a training
time complexity which is in general cubic in the number of training samples [Bottou &
Lin 07].

The main advantage of log-linear models in comparison to general neural networks
is that their training according to the cross-entropy criterion is a convex optimization
problem. In principle, this allows for determining the global optimum of the objective
function, independently of the initialization and the specific choice of the optimization
algorithm. Mostly, log-linear models are optimized using general-purpose optimization
algorithms such as L-BFGS [Liu & Nocedal 89].

Log-linear models are also motivated by the maximum entropy principle [Jaynes 57].
It can be shown that a probability distribution maximizing the entropy among all distri-
butions satisfying consistent constraints must be of log-linear form [Darroch & Ratcliff
72]. Therefore, log-linear models are also known as maximum entropy models. Since
the maximum entropy solution is identical to the conditional maximum likelihood solu-
tion of a log-linear model [Darroch & Ratcliff 72], the notion of maximum entropy can
serve as a motivation but is not required in the following. We are primarily interested
in the functional form of the model, therefore we use the term log-linear model.

1.9.4 The hybrid approach

The application of neural networks to LVCSR is not straightforward. The framework
presented above is only suited for static input. The hybrid approach [Bourlard & Morgan
94] allows for using neural networks as emission models in the HMM framework.

In the hybrid approach, the neural network is trained with the emission model labels
as classes and the acoustic observations as the input. In other words, the network is a
model for the posterior probability pθ(a|x) of a label a given an acoustic observation x.
In recognition, the class-conditional probability p(x|a) of an emission model label a is
required. Using Bayes’ rule, the class-conditional probability can be expressed in terms
of the posterior probability:

p(x|a) =
p(a|x) p(x)

p(a)
. (1.36)

3Note that it is possible to train log-linear models using the kernel trick as well [Kubo & Wiesler+ 11].
Also, SVMs are sometimes trained without the kernel trick [Chapelle 07].

16

The prior probability p(a) can be estimated easily as the relative frequency in an HMM
state alignment. The marginal probability p(x) can be discarded in recognition, because
it does not change the maximizing argument in Eq. (1.15). The emission score used in
hybrid NN-HMMs is obtained by plugging in the estimate of the neural network for the
posterior probability:

g(x, s, wN1) =
pθ(a|x)

p(a)
, (1.37)

where

A(wN1 , s) = a . (1.38)

1.10 Related Work

In the next chapter, we will present the scientific goals of this work. In order to better
understand the context, in which these goals have developed, we here give a brief
overview on related publications for each of the sub-topics of this work.

Log-linear modeling for speech recognition (Chapter 3) Log-linear models,
also known as maximum entropy models, are well known in the field of statistics [Jaynes
57,Darroch & Ratcliff 72] and are a general tool in machine learning. They have found
a wide range of applications in the natural language processing domain [Rosenfeld
94, Berger & Pietra+ 96, Ratnaparkhi et al. 96]. Of particular interest in the context
of speech recognition are sequential models. The maximum entropy Markov model
(MEMM) [McCallum & Freitag+ 00] has been a first attempt in this direction, but
due to its position-wise normalization it is limited by the label bias problem [Bottou
91]. Conditional random fields (CRFs) do not suffer from this problem [Lafferty &
McCallum+ 01] and have been applied successfully to many natural language processing
tasks, e.g. [Sha & Pereira 03,Cohn 07]. Instead of using a discriminative sequence model
like MEMMs or CRFs, log-linear models can also be used in combination with HMMs
via the hybrid approach presented above [Bourlard & Morgan 94].

As linear discriminative models, maximum entropy models are also strongly related to
SVMs and structured SVMs, their extension to structured, in particular sequential data
[Tsochantaridis & Joachims+ 05]. Using kernels for enabling non-linear classification is
a standard technique in machine learning, especially for SVMs.

A number of researchers have worked on the application of log-linear models to speech
recognition. This is also motivated by the observation that the posterior form of the
commonly used Gaussian distribution is a log-linear model. Earlier works were carried
out on small-scale tasks like digit recognition [Macherey & Ney 03, Heigold 10], where
good results are already achieved with linear features.

Different approaches have evolved for scaling the models to larger tasks. Analogous to
GMMs, latent variables can be introduced into the model, leading to log-linear mixture
models and hidden CRFs (HCRFs) [Gunawardana & Mahajan+ 05]. The drawback
of this approach is that the convexity of the model is lost and an initialization with

17

Chapter 1 Introduction

a generative model is required. Another direction is based on exploiting a generative
model within the discriminative framework. This can be done by using the sufficient
statistics of the generative model as features [Jaakkola & Haussler 99,Layton & Gales
06] or directly using the output of the generative model on whole segments [Heigold
& Zweig+ 09, Zweig & Nguyen 09, Zhang & Ragni+ 10, Ragni & Gales 11]. In such a
framework, the log-linear model does not replace the generative model, but is trained
on top of it and is mostly applied in a lattice rescoring step. The work most closely
related to our approach is [Hifny & Renals+ 05,Hifny & Renals 09], where a model with
generic features is used directly in decoding.

In some works, neural network features have been employed in a CRF frame-
work [Fosler-Lussier & Morris 08, Do & Artières 10]. Of course, the neural network
is then the major part of the acoustic model. These papers already point into the
direction of sequence-discriminatively trained hybrid DNN-HMMs, which we study in
Chapter 7 and nowadays are considered as state-of-the-art.

Analysis of convergence properties of log-linear training (Chapter 4) The
convexity of training could possibly lead to the misconception that optimization is of
minor importance for log-linear models. This however, is not valid for large-scale tasks,
which can be characterized by the fact that computation time is limited [Bottou &
Bousquet 08].

Several researchers have empirically compared different optimization algorithms for
log-linear training. While in earlier works on log-linear models the optimization prob-
lem has been solved with generalized iterative scaling (GIS) [Darroch & Ratcliff 72]
or improved iterative scaling (IIS) [Lafferty & McCallum+ 01], it has been found that
gradient-based numerical optimizers are much faster, in particular the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) (L-BFGS) algorithm [Liu & No-
cedal 89,Minka 01,Malouf 02,Sha & Pereira 03].

The theoretical analysis of the optimization problem is limited. [Salakhutdinov &
Roweis+ 03] derived a convergence analysis specifically for bound optimization algo-
rithms like GIS and showed that GIS converges slowly when features are correlated
and have a non-zero mean. In the context of neural networks, the analysis [LeCun &
Kanter+ 90] is often referenced. In fact, [LeCun & Kanter+ 90] analyze the convergence
properties of a linear regression model with mean squared error loss. Although they
study a different combination of model and loss function, their analysis has similarities
with ours. A comparison with their work is given in Chapter 4.

Second-order optimization of neural networks (Chapter 5 and Chapter 6)
Learning deep neural networks is a difficult optimization problem [Glorot & Bengio 10].
This makes second-order optimization a promising research direction. Here, only a brief
overview on the large number of papers on second-order optimization for deep learning
is given.

Optimization algorithms for deep learning can be categorized into stochastic and
batch algorithms. Stochastic algorithms are typically faster, while batch algorithms are

18

more accurate and can be parallelized more easily. For batch algorithms, the optimiza-
tion can be regarded as a black box and numerical optimizers known from optimiza-
tion literature can be employed, e.g. L-BFGS [Liu & Nocedal 89, Dean & Corrado+

12]. Recently, Hessian-free (HF), an algorithm specifically tailored for DNN training,
has been proposed [Martens 10]. [Kingsbury & Sainath+ 12] applied HF to sequence-
discriminative training of acoustic models and reported improvements in recognition
accuracy and wall-clock time.

Stochastic second-order algorithms usually make strong approximations of the Hes-
sian matrix. For example, [LeCun & Bottou+ 98] use a diagonal approximation. Ada-
Grad [Duchi & Hazan+ 11] is another stochastic diagonal second-order algorithm, which
has recently been applied to large-scale acoustic model training [Dean & Corrado+ 12].
In the context of this thesis, the publication [Raiko & Valpola+ 12] is of interest, which
aims at improving convergence behavior by using an adaptive activation function.

Sequence-discriminative training of neural networks (Chapter 7) Typically,
neural networks are trained according to the cross-entropy criterion, which allows for
training models discriminatively from scratch. This criterion optimizes the decision on
frame level although the decision on sequence level is required in recognition. Similar
to Gaussian mixtures and log-linear models, the performance of neural networks can be
improved by fine-tuning the models according to sequence-discriminative criteria.

Sequence-discriminative training of neural networks has first been proposed by [Kings-
bury 09]. With the advent of deep learning, this work received more attention and has
been extended from shallow networks to deep networks [Kingsbury & Sainath+ 12].
Several heuristics to make sequence-discriminative training more robust have been pro-
posed in [Su & Li+ 13,Veselý & Ghoshal+ 13]. According to [Heigold & McDermott+

14], creating word lattices on-the-fly improves the stability of training and makes such
heuristics unnecessary.

1.11 Document Structure

The main chapters of this thesis are organized as follows. In the next chapter, the
scientific goals of this thesis are presented. Chapter 3 presents our work on log-linear
models for speech recognition. An analysis of the convergence behavior of log-linear
training is given in Chapter 4. Chapter 5 and Chapter 6 deal with second-order op-
timization of neural networks. In Chapter 7, we investigate sequence-discriminative
training of neural networks. The scientific contributions of this work are summarized
in Chapter 8. Finally, an outlook on possible future directions related to this work is
given in Chapter 9.

19

Chapter 2

Scientific Goals

Discriminative techniques are a major line of research in automatic speech recognition.
At the beginning of this work, Gaussian mixture models were the de-facto standard
for acoustic modeling. These generative models are trained according to the maximum
likelihood criterion using the expectation maximization algorithm. Their results can be
improved with discriminative training using the maximum likelihood model as initial-
ization.

In this thesis, we study the use of discriminative models, i.e. models which directly
parametrize the posterior probability required in recognition. Such models are trained
discriminatively from scratch and do not rely on a suboptimal maximum likelihood
initialization. In the first part of this thesis, log-linear models are investigated, which
have a shallow structure. Their main advantage is the convexity of training. During the
last years, it became apparent that deep neural networks are superior to both Gaussian
mixtures and log-linear models for acoustic modeling due to their hierarchical structure.
Therefore, the scope of this thesis has been extended in the direction of deep neural
networks.

In the following, we summarize the main scientific goals of this thesis.

Investigations on convex training of large-scale acoustic models (Chapter 3)
The discriminative training of Gaussian mixtures is a non-convex optimization problem,
therefore it can get stuck in local optima. Conventional discriminative training involves
many approximations and heuristics. One goal of this work is the development of a dis-
criminative training procedure which requires less engineering work than conventional
discriminative training does.

Log-linear models are a principled method to overcome the problems of conventional
discriminative training. The training of log-linear models is a convex optimization
problem, thus it can not get stuck in local optima. In principle, the unique global
optimum can be found from any initialization using any optimization algorithm with
guaranteed convergence.

In this thesis, we investigate different design choices required for log-linear model-
ing, namely the model structure, the feature functions, the training criterion, and the
optimization algorithm. We aim for applying log-linear models to large-scale speech
recognition tasks, therefore special attention is paid to training efficiency and how the
design choices interact with it. A topic of particular interest is the choice of the opti-

21

Chapter 2 Scientific Goals

mization algorithm.

Analysis of convergence properties of log-linear training (Chapter 4) Despite
of the convexity of log-linear training, optimization plays an important role in its appli-
cation. In practice, computation time is limited. The global optimum is approximated
using numerical optimizers. On large-scale tasks, the quality of this approximation is
an important factor contributing to the accuracy of the model.

The difficulty of a convex optimization problem can be described formally in terms
of the condition number of the Hessian matrix. In this work, we analyze the condition
number of log-linear training theoretically and draw practical conclusions. We validate
the convergence analysis empirically on handwriting and speech recognition tasks.

Such a convergence analysis is of interest beyond log-linear training itself. Log-linear
models are a special case of neural networks with a softmax output layer.

Development and analysis of optimization algorithms for neural networks
(Chapter 5 and Chapter 6) Neural networks are almost always optimized with
stochastic gradient descent. Since optimization plays an important role already for
convex models, it is natural to investigate more sophisticated algorithms for neural
network training as well. Second-order algorithms use a search direction based on a
quadratic approximation of the objective function. We investigate the feasibility of the
Hessian-free algorithm [Martens 10] for large-scale cross-entropy training. This batch
algorithm uses a full quadratic model of the objective function and is therefore very
accurate but also expensive.

Incorporating second-order information into stochastic algorithms is more difficult.
Many proposed stochastic second-order algorithms in the literature either cause a large
computational overhead in comparison to stochastic gradient descent or are difficult to
tune. We develop a simple stochastic second-order algorithm which does not suffer from
these problems. The algorithm is motivated by our convergence analysis of log-linear
models.

With more accurate optimization of neural networks, overfitting gets more severe.
For this reason, we investigate the use of a linear bottleneck topology for deep neural
networks as a regularization method. The linear bottleneck topology is also attractive
for accelerating training and evaluation of the network.

Investigation of sequence-discriminative training of neural networks (Chap-
ter 7) Acoustic models in hybrid neural-network-HMM speech recognition systems
have typically been trained on frame-level. In a number of recent works, it has been
shown that neural-network-HMMs can be improved substantially by training them ac-
cording to the sequence-discriminative criteria. However, it is not possible to draw
clear conclusions on the optimal training setup from current literature. Several authors
observed problems with its stability and proposed a variety of solutions. In this work,
we aim for getting more empirical insight into this technique. Further, our work on
training linear bottleneck networks from scratch is extended.

22

Chapter 3

Convex Log-Linear Acoustic Models for
Large-Scale Speech Recognition

Generative acoustic models based on Gaussian mixtures can be significantly improved
by discriminative training. Conventional discriminative training is a non-convex opti-
mization problem, therefore it can get stuck in local optima. In addition, it involves
many heuristics and approximations, for example the initialization and smoothing with
a suboptimal maximum likelihood model, and the use of word lattices. This leads to
much engineering work in practice.

In this chapter, we explore log-linear models for acoustic modeling as a principled
method to overcome the problems of discriminative training. Log-linear models are
discriminative models. They directly model the posterior probability required in classi-
fication. This avoids the indirection of discriminative training of generative models with
maximum likelihood initialization. The training of log-linear models is convex. Thus,
the global optimum of the objective function is accessible. In principle, the global
optimum can be found from any initialization using any optimization algorithm with
guaranteed convergence.

We investigate different design choices required for log-linear modeling, namely the
model structure, the training criterion, the feature functions, and the optimization al-
gorithm. Our goal is to apply convex log-linear models to large-scale speech recognition
tasks, therefore special attention is paid to training efficiency.

In our experiments on medium to large-scale speech recognition tasks, we show that
log-linear models can be trained discriminatively from scratch. The performance of
log-linear models is comparable to discriminatively trained Gaussian mixture HMMs,
but with the advantage of a convex training.

The framework developed in this chapter forms also the basis for the remaining
chapters of this thesis.

3.1 Preliminaries

Before we proceed with the definition of log-linear models, we clarify the notation
used throughout this chapter. Our framework is the statistical approach to pattern
recognition, where the task is to classify observations. If not specified otherwise, x and
x′ are elements from the observation space RD, and c, c′ ∈ {1, . . . , C} are classes. In

23

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

general sequence classification tasks, the targets are sequences of labels from a label set
{1, . . . , Y }. Individual labels are denoted by y, ψ. The classification rule is based on a
statistical model pΛ with parameters Λ, which are optimized on the training sample.

The classes in speech recognition are word sequences. Words are denoted by w
or v. The training data consists of transcribed utterances (xr,wr)r=1,...,R . Each
utterance consists of a feature sequence xr = (xr,1, . . . , xr,Tr) and its transcription

wr = (wr,1, . . . , wr,Nr). The total number of time frames is T =
∑R

r=1 Tr. Often, it is
assumed that a Viterbi alignment of the training data is available, which is given in form
of a sequence of HMM states sr = (sr,1, . . . , sr,Tr) for each utterance r = 1, . . . , R. The
corresponding sequence of emission model labels is denoted by ar = (ar,1, . . . , ar,Tr).

Some speech recognition training criteria are based on word lattices, which represent
the most likely word sequences of an utterance. We assume that the lattices include
Viterbi alignments of all lattice arcs. The word lattice corresponding to utterance r is
denoted by Lr. We write L(w) for the sub-lattice of L consistent with a word sequence
w. The lattice arcs are word-pronunciations, i.e. pairs of a word and its pronunciation.
Word-pronunciation sequences are denoted by π. The function ω(π) maps from a
word-pronunciation sequence to the corresponding word sequence.

In this chapter, we deal with models with a convex training criterion. A function
f : Rn → R is called convex if for all x, y ∈ Rn, and α ∈ [0, 1], we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) . (3.1)

f is strictly convex if the inequality holds strictly whenever x 6= y. If f is twice
differentiable, f is convex if and only if the Hessian matrix ∇2f(x) is positive semi-
definite for all x ∈ Rn. If ∇2f(x) is positive definite for all x ∈ Rn, then f is strictly
convex. Note that the converse direction of this statement does not hold [Boyd &
Vandenberghe 09, p71]. The function f is strongly convex if and only if its Hessian is
uniformly lower-bounded by a multiple of the identity.

Convex functions are important in optimization. Any local optimum of a convex
function is a global optimum [Boyd & Vandenberghe 09, p69] and the set of global
optima is convex [Boyd & Vandenberghe 09, p75]. The global optimum of strictly
convex functions is unique. In contrast to non-convex functions, the global optimum of
convex functions can be found efficiently using numerical optimization algorithms.

3.2 Modeling

In this section, the definitions of log-linear models on frame-level and on sequence-level
are derived.

3.2.1 Frame-level model

Recall from Section 1.9.3 that a log-linear model defines a posterior probability for a
class given an observation. The decision boundaries of log-linear models are linear. Non-
linear classification is achieved by mapping observations to a higher-dimensional feature

24

space. Commonly, the mapping to the feature space is made explicit by denoting it as

f : RD → RJ . (3.2)

The components of f are called feature functions or kernel functions. For ease of
notation, we can assume that one component of the feature mapping is constant, i.e.
fJ(x) = 1 for all x ∈ RD. Then, separate bias parameters are not required and the
log-linear model simplifies to

pΛ(c|x) =
1

Z(x)
exp

(
λ>c f(x)

)
(3.3)

with normalization constant

Z(x) =
∑
c̄

exp
(
λ>c̄ f(x)

)
. (3.4)

Here, Λ = (λ1; . . . ;λC) ∈ RJ×C are the parameters of the model. Note that the
parameters of log-linear models are redundant. Shifting the parameters of all classes
by a vector λ̄ ∈ RJ results in exactly the same posterior probabilities:

p(λ1;...;λC)(c|x) = p(λ1+λ̄;...;λC+λ̄)(c|x) . (3.5)

This parameter transformation is known as an invariance transformation [Heigold 10,
Chapter 4].

An alternative formulation of log-linear models uses class-dependent features and a
class-independent parameter vector Λ ∈ RJC :

pΛ(c|x) =
1

Z(x)
exp

(
Λ>f(x, c)

)
with Z(x) =

∑
c̄

exp
(

Λ>f(x, c̄)
)
. (3.6)

It can easily be seen that both formulations are equivalent in the sense that for a model
in one notation, there is a model with the same posterior probabilities in the other
notation, see [Heigold 10, p48].

A log-linear model induces a decision rule via

r : RD → {1, . . . , C}, x 7→ argmax
c

pΛ(c|x) = argmax
c

λ>c x . (3.7)

Note that the normalization term does not appear in the decision rule. The normal-
ization is required in training. Furthermore, it simplifies the integration of log-linear
models into more complex classifiers because it enables their statistical interpretation.

As discussed in Section 1.9.4, static log-linear models can be integrated into HMM
speech recognizers via the hybrid approach. The log-linear model is trained with the
HMM emission model labels as classes, and the acoustic observations as input. Let wN1
denote a word sequence, xT1 a feature sequence, sT1 an HMM state sequence, and

at = A(wN1 , st) , t = 1, . . . , T (3.8)

25

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

the corresponding emission model labels. Assuming a bigram language model for sim-
plicity, recall that the discriminant maximized in Viterbi search is of the form

p(wN1 , s
T
1 , x

T
1) =

N∏
n=1

p(wn|wn−1)
T∏
t=1

p(xt|at) p(st|st−1, w
N
1) . (3.9)

Inserting the log-linear model (3.3) via the hybrid approach yields

p(wN1 , s
T
1 , x

T
1) = C ′

N∏
n=1

p(wn|wn−1)
T∏
t=1

pΛ(at|xt)
p(at)

p(st|st−1, w
N
1) (3.10)

= C ′′ exp
(N∑
n=1

log p(wn|wn−1) +
T∑
t=1

λ>atf(xt)

− log p(at) + log p(st|st−1, w
N
1)
)
. (3.11)

C ′ and C ′′ are positive constants independent of the state and the word sequence.
The resulting model is termed log-linear HMM. Note that dividing by the state prior
probability is equivalent to subtracting the log-prior from the bias parameter.

3.2.2 Sequence-level model

Instead of using a log-linear model within the hybrid approach, one can define the log-
linear model directly on sequence level. Such models are known as conditional random
fields (CRFs). In order to ensure efficient decoding, usually a linear chain structure is
assumed.

Following [Sutton & McCallum 12, Definition 2.2], a linear-chain CRF is a probability
distribution over label sequences given an observation sequence of the form:

pΛ(yT1 |xT1) =
1

Z(xT1)
exp

(
T∑
t=1

Λ>f(yt, yt−1, xt)

)
. (3.12)

Again,

Z(xT1) =
∑
ψT
1

exp

(
T∑
t=1

Λ>f(ψt, ψt−1, xt)

)
(3.13)

is the normalization term. Note that the observation and the label sequence are re-
quired to have the same length. The class-dependent features are now functions of
two consecutive labels and the observation. Usually, HMM-like features are employed,
which are of the form:

fψ,ψ′(y, y
′, x) = δψ,y δψ′,y′ , (3.14)

fψ,j(y, y
′, x) = δψ,y φj(x) . (3.15)

26

Here, φ : RD → RJ is a class-independent kernel function. For notational convenience,
the features and corresponding parameters are indexed with label pairs respectively
label dimension-index pairs. The sequence-level model then becomes

pΛ(yT1 |xT1) =
1

Z(xT1)
exp

(
T∑
t=1

λ>yt,·φ(xt) + λyt,yt−1

)
. (3.16)

The parameter corresponding to feature fψ,ψ′ then takes the role of the log-probability
of the transition from ψ′ to ψ. The parameter vectors λy,· = (λy,1, . . . , λy,J) correspond
to the emission model.

In speech recognition, the posterior probability of a word and a state sequence given
an observation sequence is required. This can be obtained by adding features depending
on the word sequence to the model and letting the state sequence take the role of the
label sequence. The resulting model with HMM parameter tying is of the form

p(wN1 , s
T
1 |xT1) =

1

Z(xT1)
exp

(
N∑
n=1

µwn,wn−1 +

T∑
t=1

λ>atφ(xt) + λst,st−1,wN
1

)
(3.17)

with normalization constant analogous to the exponent in Eq. (3.17). The posterior
probability p(wN1 |xT1) can be obtained by marginalizing over the state sequences. This
model is known as a hidden CRF (HCRF), i.e. a CRF with hidden variables [Gunawar-
dana & Mahajan+ 05]. In addition, HCRF allow hidden variables on emission level.
Thus, HCRFs are the posterior form of Gaussian mixture HMMs.

Note that the functional form of Eq. (3.11) and Eq. (3.17) is very similar. It can
easily be seen that any log-linear HMM can be converted into a CRF with appropriate
choice of features and parameters. One could suspect that the converse direction does
not hold. In contrast to the CRF parameters, the language model and transition model
parameters of the log-linear HMM are constrained to define a proper probability distri-
bution. But with the technique presented in [Heigold & Ney+ 11], it can be shown that
any linear-chain CRF can be converted into a log-linear HMM. This implies that the
log-linear HMM and the sequence-level model are equally expressive.

In the next section, we will see that it is more appropriate to distinguish between
frame-discriminative and sequence-discriminative training.

3.3 Training Criteria

Log-linear models can be trained according to all criteria involving frame- or utterance-
posterior probabilities. This includes the criteria known from discriminative training
of GHMMs [Heigold & Schlüter+ 12]. In principle, the sequence-level model allows for
training the emission, transition, and language model jointly. However in this thesis,
we only deal with the emission model. Therefore, we use the notation from Eq. (3.3)
for log-linear models.

27

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

3.3.1 Cross-entropy

Cross-entropy1 is a frame-discriminative training criterion. As such, it is defined on
individual acoustic observations and their corresponding emission model label given by
an alignment:

F (CE) : RJ×A → R, Λ 7→ − 1

T

R∑
r=1

Tr∑
t=1

log pΛ(ar,t|xr,t) + αregR(Λ) . (3.18)

Here, R : RJ×A → R is a regularization term with regularization constant αreg > 0.
The purpose of the regularization term is to improve the generalization ability of the
model. Appropriate choices of R are discussed in Section 3.3.4. The first summand of
the objective function is the loss term.

Minimizing the cross-entropy objective is a convex optimization problem. This di-
rectly follows from the fact that linear functions are convex, the function f(x) =
log
∑

i exp(xi) is convex, and the composition of convex functions is again convex [Boyd
& Vandenberghe 09, Chapter 3]. The convexity implies that the global optimum can be
found from any initialization using numerical optimization algorithms. This is beneficial
for training the model pΛ from scratch. Heuristics such as using a maximum likelihood
initialization for discriminative training of Gaussian mixture models or pre-training of
deep neural networks are not required.

For further reference, we state the first and second partial derivatives of the unregu-
larized cross-entropy objective function for 1 ≤ a, ā ≤ A and 1 ≤ j, ̄ ≤ J :

∂F (CE)

∂λa,j
(Λ) =

1

T

R∑
r=1

Tr∑
t=1

(
pΛ(a|xr,t)− δa,ar,t

)
fj(xr,t) , (3.19)

∂2F (CE)

∂λa,j∂λā,̄
(Λ) =

1

T

R∑
r=1

Tr∑
t=1

pΛ(a|xr,t)(δa,ā − pΛ(ā|xr,t)) fj(xr,t)f̄(xr,t) . (3.20)

In contrast to the maximum likelihood approach, the cross-entropy criterion takes
the competing classes into account. Consider the log-posterior of a training example
(a, x):

log pΛ(a|x) = λ>a x− log
∑
a′

exp
(
λ>a′x

)
. (3.21)

It can be improved either by increasing the score of the correct state λ>a x or decreasing
the scores of the other states. Thus, the correct state competes against the other

1Note that the cross-entropy criterion is also known as frame-discriminative MMI criterion. The
criterion is also identical to the (frame-discriminative) conditional maximum likelihood criterion.
Further, the term MMI is often used for the corresponding sequence-discriminative criterion. To
avoid ambiguity and for consistency with recent neural network literature, we use the term cross-
entropy for the frame-discriminative criterion and MMI for the sequence-discriminative criterion.

28

states. In this sense, the objective function (3.18) is discriminative. Note that the
discriminative approach requires evaluating the scores of all classes, which makes it
computationally demanding.

Frame-discriminative training optimizes only the emission model of isolated frames.
The other knowledge sources of the speech recognition system – the transition model,
the pronunciation lexicon, and the language model – are not taken into account. From
this point of view, frame-discriminative training is suboptimal. On the other hand,
other heuristics are mostly avoided due to its simplicity. In particular, the criterion
does not require word lattices.

3.3.2 Sequence-discriminative maximum mutual information

Sequence-discriminative maximum mutual information training of log-linear models di-
rectly optimizes the posterior probability of the whole training utterance, thereby taking
into account all knowledge sources of the speech recognition system:

F (MMI) : RJ×A → R, Λ 7→ − 1

R

R∑
r=1

log pΛ(wr|xr) + αregR(Λ) . (3.22)

Again, R denotes a regularization term. The utterance-posterior probability requires
the normalization over all competing word sequences. For LVCSR, it is not feasible to
carry out this summation over all possible word sequences and one restricts it to the
most likely ones represented by a word lattice [Valtchev & Odell+ 97]. The posterior
probability of utterance (x,w) with lattice L is then defined as

pΛ(w|x) =
∑

π∈L(w)

p(π|x) (3.23)

=
1

Z(x)

∑
π∈L(w)

p(w)αqΛ(x|π)α . (3.24)

Here, the normalization term Z(x) is obtained by summing over all paths in the lattice:

Z(x) =
∑
π∈L

p (ω(π))α qΛ(x|π)α . (3.25)

The acoustic pseudo-probability qΛ is commonly defined using Viterbi approximation
on arc-level:

qΛ(x|π) = exp

(
T∑
t=1

λ>atf(xt) + log p(st|st−1, ω(π))

)
, (3.26)

where, sT1 is the state sequence composed of the arc-alignments of π, and aT1 is the
corresponding emission model label sequence.

29

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

The smoothing weight α > 0 is typically set to the inverse of the language model
scale used in recognition. Smoothing does not have an effect in the computation of the
single-best Viterbi path, but in the computation of the utterance posterior, it prevents
the normalization term to be dominated by a single utterance [Woodland & Povey 02].
Using a weak language model, typically a unigram, is another commonly used heuristic
to ensure that the set of competing hypothesis has enough variation [Schlüter & Müller+

99]. An initial model is used for creating the lattices and computing the arc-alignments.
Usually, the lattices and the alignments are kept fix during training.

Note that in general the reference is represented by multiple paths in the lattice be-
cause of pronunciation variants and optional silence arcs between word-arcs. Therefore,
sequence-discriminative MMI involves a sum in the numerator of the utterance-posterior,
cf. Eq. (3.23). Because of this summation, sequence-discriminative MMI is not convex.
The criterion can be transformed into a convex function by restricting the summation
to the best path according to the initial model [Heigold & Rybach+ 09].

Sequence-discriminative training is not well-suited for training a model from scratch,
because it requires an initial model for creating the word lattices. Instead, one can first
train a log-linear model using a frame-discriminative criterion and then further optimize
it according to a sequence-discriminative criterion. The goal of this chapter is the de-
velopment of an alternative to discriminative training of GMMs, which is easier to use.
Therefore, the experiments in this chapter are restricted to frame-discriminative train-
ing. We will revisit sequence-discriminative training in the context of neural networks
in Chapter 7.

3.3.3 Minimum Bayes risk

Minimum Bayes risk (MBR) training goes back to [Kaiser & Horvat+ 00, Kaiser &
Horvat+ 02]. The MBR criterion optimizes the expected error on the training data,
where the expectation is taken with respect to the model. Typically the error is defined
using the Levenshtein distance or an approximation to it.

Let C denote a cost function, which assigns a cost to a word-pronunciation sequence
depending on the reference. The MBR objective function with respect to this cost is
defined as

F (MBR) : RJ×A → R, Λ 7→ 1

R

R∑
r=1

∑
π∈L

pΛ(π|xr)Cwr [πr] + αregR(Λ) . (3.27)

As for sequence-discriminative MMI, it is implicitly assumed that the posteriors are
based on scaled scores and a weak language model.

If the error is chosen as the exact word-level Levenshtein distance to the reference,
i.e.

Cw[π] = Lev(ω(π),w) , (3.28)

then the criterion optimizes the expectation of the typical evaluation criterion used in
speech recognition [Kaiser & Horvat+ 02]. For this reason, the criterion is considered to

30

be superior to MMI. To enable the use of efficient lattice algorithms, [Povey & Woodland
02] introduced a local approximation of the Levenshtein distance, which is based on the
temporal overlap of lattice arcs. Further, [Povey & Woodland 02] observed that the
criterion with the local Levenshtein distance on phoneme level performs better than
the one defined on word level. This criterion is known as minimum phone error (MPE)
and is commonly regarded as the method of choice for discriminative GHMM training.

Various modifications of the MPE criterion have been proposed. [Zheng & Stolcke 05]
introduce a slightly different error measure, leading to a criterion known as minimum
phone frame error (MPFE). The same criterion on HMM state level is called state-
level minimum Bayes risk (sMBR) [Gibson & Hain 06] and has recently been used for
sequence-discriminative training of neural networks [Kingsbury & Sainath+ 12].

In contrast to MMI, the MBR objective function is bounded. Therefore, MBR train-
ing is more robust to outliers than MMI. On the other hand, the boundedness implies
that the MBR objective is not convex.

3.3.4 Regularization

Regularization is a standard technique in statistics and machine learning to prevent
overfitting. The most commonly used regularizer is the `2-norm of the parameters:

R : RJ×A → R, Λ 7→ ‖Λ‖22 =
∑
a,j

λ2
a,j . (3.29)

The `2-regularization term penalizes models with extreme parameter values. It is dif-
ferentiable and strictly convex.

Similarly, `1-regularization [Tibshirani 96] penalizes parameters measured by their
`1-norm:

R : RJ×A → R, Λ 7→ ‖Λ‖21 =
∑
a,j

|λa,j | . (3.30)

`1-regularization is especially advantageous if many features are irrelevant [Ng 04]. It
favors sparse models, i.e. most parameters are zero. In contrast to the `2-regularization
term, it is not differentiable and only convex, but not strictly convex.

Because of the non-differentiability of the `1-regularization term, the optimization
is more involved from a theoretical and algorithmical point of view. General gradient-
based optimization algorithms need to be adapted to the special case of `1-regularized
objective functions. The optimum of a non-differentiable convex function can be char-
acterized in terms of the subgradient, which is a generalization of the gradient. Let
f : Rn → R denote a convex function. Then g ∈ Rn is a subgradient of f at x ∈ Rn if

f(y) ≥ f(x) + g>(y − x) (3.31)

for all y ∈ Rn. Note that when f is differentiable, then the subgradient coincides with
the gradient uniquely. From the definition of the subgradient, it can directly be seen
that x∗ is the optimum of f if and only if zero is a subgradient of f at x∗.

31

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

Early stopping [Plaut & Nowlan+ 86,Morgan & Bourlard 89] is a simple and widely
used alternative to `2- and `1-regularization. Early stopping terminates training as
soon as the error on a validation set increases. In terms of the objective function, early
stopping is ill-defined. On the other hand, it does not require tuning of a regularization
constant, which makes it well suited for large-scale problems.

3.4 Features

Log-linear models induce linear decision boundaries. Non-linear classification is
achieved by mapping observations into a high-dimensional feature space. The choice of
the feature representation is thus a crucial step.

The features considered in literature can be roughly divided into simple generic fea-
tures [Kuo & Gao 06,Hifny & Renals 09,Yu & Deng+ 09,Wiesler & Nußbaum+ 09] and
complex specialized features [Fosler-Lussier & Morris 08, Heigold & Zweig+ 09]. The
hidden part of a neural network with a softmax output layer can also be regarded as
a complex feature extractor of a log-linear model. Complex features tend to be more
powerful than simple approaches but with the drawback that the main algorithm is
possibly outsourced into a non-convex feature extraction part. Since the goal of this
chapter is to investigate the feasibility of convex training of acoustic models, we restrict
this study to simple generic features.

3.4.1 Polynomial features

A polynomial feature of degree k is of the form:

f(d1,...,dk) : RD → R, x 7→ xd1 · . . . · xdk , (3.32)

with (d1, . . . dk) ∈ {1, . . . , D}k. Polynomial features are commonly used with SVMs
and other kernel methods. A log-linear model with polynomial features up to order
one is referred to as a first-order model, a model with features up to order two as a
second-order model and so on. Polynomial models can be interpreted from a statistical
point of view. A first-order model is the posterior form of a generative Gaussian model
with tied covariance matrices, a second-order model corresponds to a Gaussian model
with class-specific covariance matrices. A third-order model also takes class-specific
skewnesses of the distributions into account.

Polynomial features are global in the sense that their support is the whole observa-
tion space. Therefore they generalize well to unseen data. In principle Weierstrass’s
approximation theorem [Rudin 76, Chapter 7] states that any continuous function can
be approximated arbitrarily well by polynomials on a compact set, which could indicate
that polynomial feature functions are a good choice. But for high-dimensional problems,
the use of high-order polynomial features is prohibitive, since their number grows ex-
ponentially in the order of the model. First and second-order models can be trained
quite efficiently, training third-order models is already computationally very expensive.
Going beyond third order is yet not feasible.

32

3.4.2 Clustering features

The densities of GMMs trained with the EM-algorithm correspond to localized dense
subsets of the feature space. Due to this locality, GMMs can model the training data
well. To carry over this idea to the log-linear framework, we can apply the EM algorithm
to estimate a single Gaussian mixture distribution for the marginal probability

p(x) =

L∑
l=1

p(l)p(x|l) , (3.33)

where L is the number of densities. In the log-linear model, we use every density p(x|l)
of the GMM to define a feature function

fl(x) =
p(x|l)∑
l′ p(x|l′)

, l = 1, . . . , L . (3.34)

Because of the exponential decay of Gaussian densities, most feature functions are close
to zero for fixed x. By setting features below a small threshold to zero, sparse features
are obtained, which strongly reduces the computational demands of the gradient ac-
cumulation. The number of features can be increased by concatenating features of
neighboring time frames. We refer to these features as clustering features [Wiesler &
Nußbaum+ 09].

Similar features are used in fMPE [Povey & Kingsbury+ 05]. In the log-linear frame-
work, clustering features have first been introduced by [Hifny & Renals 09]. Conceptu-
ally, the features are also related to radial basis function kernels used for SVMs. With
such local features, log-linear models can approximate the training data very well, but
tend to overfit quickly. In terms of the classical bias/variance dilemma [Geman &
Bienenstock+ 92], log-linear models with clustering features have a low bias, but a high
variance. Conversely, models with polynomial features have a high bias, but a lower
variance.

3.4.3 Feature selection

Training log-linear models is computationally demanding. Their training time is directly
proportional to the feature dimension. Feature selection algorithms aim at identifying
a subset of relevant features in a separate pre-processing step and are therefore an
attractive method for reducing training time. Moreover, feature selection can improve
results by reducing overfitting.

In [Wiesler & Richard+ 11], we empirically compared feature selection algorithms
for log-linear models and found ReliefF [Kira & Rendell 92, Kononenko 94] to be a
good choice. ReliefF is a state-of-the-art feature selection algorithm, which takes the
interaction of features into account. The idea of the algorithm is to measure how well a
feature separates neighboring training examples in the original feature space. A small
subset of the training data is chosen randomly. For each instance in the subset, the k

33

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

nearest instances of the same class (nearest hits) and all other classes (nearest misses)
are computed on the complete training data. When a feature of an observation and one
of its nearest hits differs, the score of the feature is reduced. Conversely, the feature
score is increased, if the feature of the training example and one of its nearest misses
is different. The highest-scoring features are selected. The nearest hits and misses are
calculated in the original feature space with `2-norm.

3.5 Parameter Optimization

A major motivation for the use of log-linear models is the convexity of training. In prin-
ciple, the global optimum can be found from any initialization and with any numerical
optimization algorithm with guaranteed convergence. From a naive point of view, the
optimization can therefore be viewed as a black box.

For large-scale tasks this point of view is an oversimplification. The global optimum
can not be determined exactly, but is approximated using numerical optimizers. Large-
scale tasks are characterized by the fact that the quality of this approximation impacts
the error rate because of limited computation time [Bottou & Bousquet 08]. Therefore,
even for convex problems, the choice of the optimization algorithm and the initialization
are important.

In the following, we discuss optimization algorithms, which are relevant for log-linear
training. Important properties of optimization algorithms are their convergence speed,
memory requirements, parallelism, and practical aspects such as ease of implementation.

The algorithms can be categorized into batch and stochastic algorithms. The updates
of batch algorithms are computed on the complete training data. In contrast, stochastic
algorithms only require the statistics of a small random subset of the training data.
Stochastic algorithms are in particular effective on large and redundant datasets. On
the other hand, batch algorithms can be parallelized straightforwardly by distributing
the computation of the gradient (data-parallelism).

Beyond of comparing different optimization algorithms, we formally analyze general
convergence properties of log-linear training in Chapter 4. We already make use of
this analysis in this chapter, and therefore summarize the main result here. Further,
we derive a method for transforming features implicitly in the optimization algorithm,
which is useful in the context of this convergence analysis.

3.5.1 Gradient descent and Newton’s method

Although rarely used in practice, gradient descent and Newton’s method are the basis of
all gradient-based optimization algorithms. Gradient descent is the most simple batch
optimization algorithm. In every iteration, the model is updated by

Λi = Λi−1 − ηi∇F(Λi−1) , (3.35)

where ηi > 0 is the step size or learning rate. Gradient descent with an appropriate line-
search (for example step-sizes which satisfy the Wolfe conditions [Wolfe 69]) is globally

34

convergent, i.e. it converges to a local optimum from any initialization [Nocedal &
Wright 06, Theorem 3.2]. However, its convergence speed is very slow, cf. Theorem 4.1.

Newton’s method is based on a second-order Taylor series approximation of the ob-
jective function:

F(Λk + P) ≈ F(Λk) + P>∇F(Λk) +
1

2
P>∇2F(Λ)P . (3.36)

Minimizing the second-order model of the objective function on the right hand side of
Eq. (3.36) yields the Newton update rule:

Λi+1 = Λi − ηi∇2F(Λ)−1∇F(Λi) . (3.37)

Newton’s method converges rapidly in the neighborhood of the solution in terms of
the number of iterations. Note that the size of the Hessian matrix is in the order
of the square of the dimension of Λ. This makes Newton’s method prohibitive for
high-dimensional problems such as all machine learning tasks considered in this work.
Practical second-order algorithms use approximations of the inverse Hessian matrix.
The general form of such a second-order batch algorithm is

Λi+1 = Λi − ηiBi∇F(Λi) , (3.38)

where Bi is a positive-definite matrix.

3.5.2 L-BFGS

L-BFGS [Liu & Nocedal 89] is the most widely used general-purpose algorithm for large-
scale unconstrained optimization. It is generally considered as the best batch algorithm
for log-linear training [Malouf 02,Sha & Pereira 03,Wallach 03]. L-BFGS incrementally
builds a model of the inverse Hessian matrix using a limited history of the previous
gradients and iterates. The algorithm is matrix-free, i.e. rather than storing the matrix
Bi explicitly, L-BFGS directly computes its product with the gradient. Thus, the
memory requirement of L-BFGS is linear in the number of parameters. No additional
statistics have to be accumulated in comparison to gradient descent. Only the parameter
update is computationally more expensive, but these costs are negligible in the batch
case. However, L-BFGS converges much faster than gradient descent.2 In addition, a
line-search can be avoided in most iterations, because L-BFGS has a natural step size
of 1.0. There exists a well-founded convergence theory for L-BFGS, see e.g. [Nocedal
& Wright 06, Chapter 8].

3.5.3 Rprop

Resilient backpropagation (Rprop) [Riedmiller & Braun 93] is a batch algorithm well-
known in the field of neural networks. Rprop uses separate learning rates for all pa-
rameters, which corresponds to a diagonal second-order model of the objective function.

2As gradient descent, L-BFGS converges with a linear convergence rate, but the constant has a weaker
dependence on the condition number, cf. Chapter 4.

35

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

The parameter-specific learning rates are computed from sign changes of the gradient.
There exist slightly different variants of the basic Rprop algorithm. In this work, we use
the iRprop+ variant proposed in [Igel & Hüsken 03]. In order to guarantee Rprop’s con-
vergence, a line search has to be employed [Anastasiadis & Magoulas+ 05]. In practice,
this is not necessary when a sufficiently small initial learning rate is chosen. Rprop has
only few tuning parameters, is simple to implement, and shows good empirical results.

3.5.4 Orthant-wise Rprop for `1-regularized training

The optimization of `1-regularized objective functions requires special care, because
the regularization term is non-differentiable. General gradient-based optimization al-
gorithms need to be adapted to the special case of `1-regularized objective functions.
In [Wiesler & Richard+ 11], we introduced orthant-wise Rprop (OW-Rprop), a mod-
ification of Rprop suitable for optimizing `1-regularized functions. The idea of our
algorithm is analogous to that of orthant-wise L-BFGS proposed in [Andrew & Gao
07].

The algorithm is based on the definition of the pseudo-gradient of the objective
function. Let F̃ denote the loss term of the objective function. Then the pseudo-
gradient 3F is defined by

3s,iF(Λ) =


∂s,iF̃(λ) + αreg sgn(λs,i) , if λs,i 6= 0

∂s,iF̃(λ) + αreg , if λs,i = 0 and ∂s,iF̃ < −αreg

∂s,iF̃(λ)− αreg , if λs,i = 0 and ∂s,iF̃ > αreg

0 , if λs,i = 0 and − αreg ≤ ∂s,iF̃ ≤ αreg

.

Here, sgn(x) is the sign function. It can be verified elementarily that the pseudo-gradient
is a subgradient.3 Among all subgradients, it is the vector with the maximal number of
zero-components. This implies that a parameter vector minimizes the objective function
if and only if its pseudo-gradient is zero.

The idea of the algorithm is that the objective function is differentiable, when it is
restricted to the orthant (a multidimensional quadrant) containing the current iterate
and into which the pseudo-gradient leads. OW-Rprop’s parameter update is calculated
in the same way as that of Rprop, but with the pseudo-gradient instead of the gradient.
Furthermore, the update is constrained to the current orthant, i.e. whenever for Rprop
the sign of a parameter changes from one iteration to the next, OW-Rprop sets it to
zero.

3Use the characterization of the subgradient of the `1-norm given in [Boyd & Vandenberghe 14]:

g subgradient of x 7→ ‖x‖1 at x0 ⇔ ‖g‖∞ = 1 and g>x0 = ‖x0‖1

36

3.5.5 Growth transformations

In earlier works on log-linear models, the optimization problem has been solved with
generalized iterative scaling (GIS) [Darroch & Ratcliff 72] or improved iterative scaling
(IIS) [Lafferty & McCallum+ 01]. Later, it has been found that these algorithms con-
verge extremely slowly in comparison to gradient-based numerical optimizers such as
L-BFGS [Minka 01,Malouf 02,Sha & Pereira 03]. Therefore algorithms of this type are
not considered in this work.

3.5.6 Stochastic gradient descent

Stochastic gradient descent is the stochastic version of the gradient descent algorithm
discussed above. It is the de-facto standard for neural network training, see Section 1.9.2.
For convex optimization, batch algorithms are employed traditionally. Only in recent
years, stochastic algorithms have received considerable attention for convex problems
[Vishwanathan & Schraudolph+ 06, Shalev-Shwartz & Singer+ 07, Bordes & Bottou+

09,Schraudolph & Yu+ 07].
It can be shown that if the objective function is strongly convex, the training examples

are independent and identically distributed (i.i.d.) and the learning rates fulfill the
Robbins-Monroe conditions [Robbins & Monro 51]:

∞∑
i=1

ηi =∞ and

∞∑
i=1

η2
i <∞ , (3.39)

then stochastic gradient descent converges almost surely towards the global optimum,
see e.g. [Bottou 98]. In our experiments with log-linear models, we use learning rates
defined by

ηi =
τ

τ + i
η0 , (3.40)

where η0 is the initial learning rate, and τ controls how fast the learning rate decays
over time. I.i.d. training examples are simulated by shuffling the dataset. This requires
that all training examples have to be loaded into memory. Note that this is not required
for batch algorithms, because they do not depend on the order of the training sample.

Stochastic gradient descent’s main advantage is that it frequently updates the model.
This is in particular beneficial when working with very large datasets. While batch al-
gorithms can be parallelized easily, this is much more difficult for stochastic algorithms.
Data-parallelism is only possible within one mini-batch, which is typically of the size
in the order of a few hundred to a few thousands training examples. This computa-
tion can be performed efficiently on a single GPU. Recently, there has been success
in parallelizing stochastic gradient descent to multiple compute nodes by exploiting its
robustness to delayed model updates [Dean & Corrado+ 12,Seide & Fu+ 14,Strom 15].
These approaches are of great practical relevance, but require a carefully optimized
implementation and a suitable compute infrastructure.

37

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

Stochastic algorithms require careful tuning of learning rates. Usually, many runs of
SGD with different learning rate settings have to be performed. Since SGD does not
evaluate the objective function on the complete training data, it can not detect that a
local optimum has been reached.

3.5.7 Stochastic second-order algorithms

In contrast to L-BFGS and Rprop, SGD is a first-order algorithm. Since second-order
information is crucial in batch algorithms, it is natural to investigate whether stochastic
algorithms can benefit from second-order information as well. The update of stochastic
second-order algorithms is of the same form as in the batch case

Λi+1 = Λi − ηiBi∇F(Λi,Bi) , (3.41)

but with the stochastic gradient ∇F(Λi,Bi) on a mini-batch Bi instead of the exact
gradient. Bi is again a positive-definite matrix, which is updated in every iteration
using information from mini-batch Bi.

[LeCun & Bottou+ 98] proposed to approximate the Hessian by its diagonal. For
log-linear models, the diagonal of the Hessian can be computed exactly with only small
additional costs. In order to compensate for stochastic noise, the diagonal stochastic
Hessian matrix is smoothed using the estimate of the previous iteration and interpolated
with the identity matrix.

The wide use of L-BFGS suggests generalizing it to the stochastic case. This algo-
rithm is known as online L-BFGS (oLBFGS) [Schraudolph & Yu+ 07]. As L-BFGS, it
uses an approximation to the inverse of the Hessian matrix, which is built from differ-
ences of subsequent gradients and models. oLBFGS requires that the gradients which
are used for computing the difference are computed on the same mini-batch. This means
that two gradient evaluations have to be performed on each mini-batch instead of one
as in stochastic gradient descent. Because of the frequent parameter updates in the
stochastic case, the higher costs of the update step impact the run-time too (depending
on the history size). Convergence of oLBFGS in the convex setting has been proven
in [Sunehag & Trumpf+ 09].

3.5.8 Convergence properties

The choice of the optimization algorithm is an important factor contributing to the
convergence speed of log-linear training. Furthermore, the convergence speed depends
on the general difficulty of the optimization problem. In Chapter 4, we analytically
study the condition number of log-linear training, which gives an accurate description
of the difficulty of the problem. The analysis shows that log-linear training can be
highly ill-conditioned. The conditioning of the optimization problem can be dramat-
ically improved by affine feature transformations. Note that invertible affine feature
transformations do not have an effect on log-linear models when convergence issues and
the regularization penalty are not taken into account – for every invertible affine feature

38

transformation there exists an equivalent model with the same posterior probabilities.
According to our analysis, best convergence behavior can be expected with decorrelated
features with normalized mean and variance. In the experiments in this chapter, we
already make use of this result, but refer to Chapter 4 for the formal analysis.

3.5.9 Implicit feature transformation

In principle, the features used for log-linear training can be generated once and then
stored to disk. Feature transformations motivated by the above-mentioned convergence
properties have therefore only negligible costs in comparison to the optimization. How-
ever, often very high-dimensional features are used for log-linear models, which are
derived from low-dimensional observations, for example polynomial features. Storing
these features is prohibitive. The features have to be computed on-the-fly in every
iteration. In particular, decorrelation requires an expensive high-dimensional matrix
product. Here, we show that these computations can be avoided by performing the
transformation on model side [Wiesler & Schlüter+ 12].

Let M ∈ RJ×J̃ and b ∈ RJ̃ denote the parameters of an affine feature transforma-
tion. We use the notation of log-linear models with separate bias parameters from
Section 1.9.3. The scores of the log-linear model are

λ>a (Mf(x) + b) + βa = (M>λa)
>f(x) + λ>a b+ βa . (3.42)

Thus, the posterior probabilities of transformed features can be calculated by trans-
forming the model instead of the features. Let

(Λ̃; β̃) = (M>Λ; Λ>b+ β) (3.43)

denote the transformed model parameters. Then the gradient (3.19) can be written as

∇λaF (CE)(Λ;β) =
1

T

R∑
r=1

Tr∑
t=1

(
p(Λ;β)(a|Mf(xr,t) + b)− δa,at

)
(Mf(xr,t) + b)

= M
1

T

R∑
r=1

Tr∑
t=1

(
p

(Λ̃;β̃)
(a|xr,t)− δa,at

)
f(xr,t)

+
1

T

R∑
r=1

Tr∑
t=1

(
p

(Λ̃;β̃)
(a|xr,t)− δa,at

)
b

= M∇λaF (CE)(Λ̃; β̃) +∇βaF (CE)(Λ̃; β̃) b .

(3.44)

An analogous identity holds for the gradient with respect to βa. Thus, the gradient
with the transformed features can be accumulated using the original features and the
transformed model (3.43) and then transforming the gradient via (3.44). This procedure
reduces the complexity of the affine feature transformation from O(TJJ̄) to O(AJJ̄)
and is therefore beneficial when the number of data points is larger than the number
of classes.

39

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

Table 3.1. Results on the WSJ corpus. The 5 120-dimensional sparse
features were obtained from the original 9 216-dimensional sparse
features with a feature selection algorithm.

Model Criterion Poly. order #Sparse feat. WER [%]
Orig. feat. Norm. feat.

GMM
ML - - 3.5 -

MPE - - 3.2 -

LL CE

1 - 7.9 8.0
2 - 4.2 4.0
3 - 3.7 3.5
- 9216 4.4 -
2 9216 3.6 3.2

LL
CE

2
5120 3.6 -

CE + `1 9216 3.9 -
CE + `1 5120 4.1 -

3.6 Experimental Results

In this section, we present experimental results with hybrid log-linear HMMs on medium
to large-scale speech recognition tasks. In a first set of experiments on the medium-scale
Wall Street Journal (WSJ) task, we compare the features which we introduced above.
The training scheme is then scaled to a recent LVCSR task. Finally, we present an
empirical comparison of optimization algorithms.

3.6.1 Comparison of features

As a first step towards a log-linear LVCSR system, we experimented with the choice
of features on the Wall Street Journal corpus. The dataset and the Gaussian mixture
baseline system are described in detail in Appendix A.1. Often, the Wall Street Journal
corpus is considered as an LVCSR task, but with a recognition vocabulary of 5k words
and 15 hours training data, it is quite small in comparison to recent corpora. The
results on this corpus need to be interpreted with care, because the evaluation corpus
has only 5k running words. This means, that a difference of 0.1 percent word error
rate corresponds to only five errors. Nevertheless, the corpus is a good choice for first
experiments, because it requires the most important LVCSR techniques and it allows
for performing a large number of comparative experiments.

As a proof-of-concept, we trained the log-linear system on the Wall Street Journal
task completely from scratch, i.e. even without an alignment from a Gaussian mixture
system. We first assumed a linear time alignment and performed a realignment with
the converged model. After several cycles of training and realignment, we obtained a

40

reasonable alignment, which has been used for all reported experiments.
All log-linear systems have been trained with Rprop with a maximum of 100 iterations

according to the cross-entropy criterion. We used the state tying of the Gaussian
mixture baseline system. The best iterate has been selected on the development set.
The state priors were set to the relative frequencies calculated from the alignment used
in training.

In our experiments, we observed that the log-linear emission scores have a different
range than the Gaussian mixture scores. Therefore, we scaled the emission scores in
Eq. (1.37) with a factor κ > 0. The optimized values for κ in our experiments range
from 0.3 to 5.0. Note that one can equivalently retune the transition probabilities and
the language model scale. We have not observed improvements from optimizing the
prior scale and set it to 1.0 in all recognitions.

The polynomial features were constructed from the same LDA-transformed features,
which have been used for the Gaussian mixture baseline system. We tested first-,
second-, and third-order polynomial features. The features have a dimension of 33,
594, and 7 139. The training of the third-order model has been initialized with the
second-order model, because this training is computationally expensive even on this
moderately-sized task.

The clustering features were constructed from a Gaussian mixture with tied diago-
nal covariance matrices. The Gaussian mixture model has been trained with the EM
algorithm with a splitting procedure. Note that the EM algorithm has been applied to
the acoustic training vectors without considering class labels. This means we did not
rely on an existing GHMM system. In preliminary experiments [Wiesler & Nußbaum+

09], we found that the error rate saturates with clustering features obtained after ten
splits and a temporal context of nine. The resulting sparse feature dimension was 1 024,
respectively 9 264 after context expansion. On average, only 30.6 components of the
9 264-dimensional sparse feature vector were non-zero, which strongly accelerated the
gradient accumulation.

The recognition results are shown in Table 3.1. The baseline system achieves a word
error rate of 3.5 percent with maximum likelihood training. The result is improved to
3.2 percent word error rate after MPE training.

The log-linear system with first-order polynomial features has an error rate of 7.9
percent. By increasing the polynomial order, the error rate decreases to 4.2 (second-
order features) and 3.7 percent (third-order features). Training a forth-order model with
66 045 dimensional features is not only currently infeasible. Considering the moderate
improvement from second to third-order features, one can not expect substantial further
improvements from increasing the polynomial order.

Normalizing the features according the convergence analysis mentioned in the previ-
ous section consistently improves the optimization behavior. For these experiments, we
normalized the mean and variance of the polynomial features. The second-order features
were additionally decorrelated. The original first-order features were already decorre-
lated. We have not investigated the effect of decorrelation of the third-order features
because of their high dimension. The feature normalization improves the recognition

41

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

accuracy of polynomial models. For the first-order model, optimization is not an issue.
The second-order and third-order models are both improved by 0.2 percent word error
rate. The error rate of the third-order model is still worse than the discriminatively
trained baseline system, but it already reaches the error rate of the maximum likelihood
baseline.

The log-linear model with only sparse features performs worse than the model with
polynomial features. But the combination of second-order features and sparse features
outperforms the third-order model. The log-linear system now achieves the same error
rate as the MPE-trained Gaussian mixture system.4 The feature normalization not
only improves the recognition accuracy. The best result is already obtained after only
16 Rprop iterations in contrast to 68 with the unnormalized features.

3.6.2 Feature selection

In order to speed up training, we investigated feature selection methods on the log-
linear Wall Street Journal system. We applied the ReliefF feature selection algorithm
described in Section 3.4.3 to the clustering features. Further, we experimented with
`1-regularization using the OW-Rprop algorithm described in Section 3.5.4.

The training subset required for ReliefF was set to 650 training examples. The
number of nearest hits and misses was set to 50. We observed that the algorithm is
robust to the choice of the tuning parameters. The results in Table 3.1 show that
ReliefF allows for reducing the number of sparse features moderately from 9216 to 5120
without degradation in word error rate.

For the experiments with `1-regularization, we set the regularization constant to
αreg = 100/T = 1.85e-5. We only penalized the parameters corresponding to the
polynomial features. We observed a similar convergence speed of OW-Rprop and Rprop.
Roughly sixty percent of the polynomial-feature parameters of the final model were
zero. However, the results in Table 3.1 show that although OW-Rprop works well as an
optimization algorithm, the `1-penalty degrades recognition accuracy. Of course, one
could set the regularization constant to an insignificant value, but then it is not possible
to exploit model sparsity for accelerating training.

Overall, the experience from our experiments is that there are simpler and more
effective methods for accelerating training than general feature selection methods. In
particular, improving the convergence behavior by feature normalization reduced the
number of Rprop iterations by a factor of four. Therefore, we have not have not
investigated feature selection methods further.

3.6.3 Experiments on LVCSR

The findings on the Wall Street Journal corpus allowed us to scale the log-linear system
to larger tasks. We chose the English Quaero 2010 corpus for the evaluation of the

4The result reported here is slightly better than the one in [Wiesler & Schlüter+ 11]. The reason is
that we previously used incorrect state priors, which have been calculated on a different alignment.

42

Table 3.2. Results on the English Quaero 2010 corpus. The last row is the
result of the system combination with the log-linear and the
MPE-trained GMM system.

Model Criterion WER [%]
Dev2010 Eval2010 Eval2011

GMM
ML 25.5 25.1 32.2
MPE 24.0 24.0 30.6

LL CE 24.2 24.0 30.8

System combination - 22.2 22.3 28.9

log-linear approach. The task of the Quaero corpus is the transcription of English
conversational data. It is a challenging task due to the variability of the audio data, the
speaking style, and frequent speaker changes. The training set contains 103 hours of
speech data. The baseline system is a simplified version of the evaluation system used
in the Quaero 2010 evaluation [Sundermeyer & Nußbaum-Thom+ 11]. The corpus and
the GHMM baseline system are described in detail in Section A.2.1.

Similarly to the Wall Street Journal setup, we used a combination of second-order
polynomial features and sparse clustering features with context expansion. The LDA-
transformed features used for the Gaussian mixture are 45-dimensional. The second-
order polynomial features derived from these features have a dimension of 1 080. The
polynomial features were decorrelated and their mean and variance were normalized.
For the sparse clustering features, we trained a Gaussian mixture for the marginal
probability with 12 splits. The resulting sparse features with a context size of nine have
a dimension of 36 864.

In contrast to the Wall Street Journal setup, the log-linear training on Quaero was
based on the maximum likelihood alignment. The log-linear model has been trained
according to the cross-entropy criterion using Rprop. The gradient accumulation has
been accelerated using the implicit feature transformation derived in Section 3.5.9. The
best iterations for the log-linear training and the MPE training of the Gaussian mixture
system have been selected on the development data. The best log-linear model has
been obtained after 16 iterations, the best GMM after 20 iterations. Using a CPU-
based implementation, the computation time of one Rprop iteration with the log-linear
model is roughly five times larger than one GMM/MPE iteration. On the other hand,
the frame-discriminative log-linear approach does not require the generation of word
lattices. Since the training scheme can be parallelized easily, the proposed training
scheme is scalable to large tasks.

The recognition results are summarized in Table 3.2. The log-linear model and the
MPE-trained Gaussian mixture system perform equally well. In addition, we performed
a confusion network combination [Evermann & Woodland 00] of the log-linear and the

43

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

Table 3.3. Results on the English Quaero 2011 / Train-50h corpus

Model Criterion WER [%]
Dev2011 Eval2011

GMM
ML 24.4 31.6
MPE 23.6 30.2

LL CE 23.6 30.6

 2.9

 2.95

 3

 3.05

 3.1

 1 2 3 4 5 6 7 8 9 10

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Epoch

SGD
Diag. Hessian

oLBFGS

Figure 3.1. Objective function of SGD, oLBFGS, and the diagonal Hessian
method on the training data

MPE-trained Gaussian mixture system. Strong improvements are obtained, although
both systems use the same acoustic front end and the same state tying.

In order to be able to compare our approach to more recent results, we trained a
log-linear model on the 50 hour subset of the Quaero 2011 corpus, cf. Appendix A.2.2.
The model has been trained analogously to the one on the Quaero 2010 corpus. We
obtained a slight gain of 0.3 percent word error rate by increasing the context size
of the clustering features from 9 to 17. The recognition results are summarized in
Table 3.3. Again, the log-linear model performs about as well as the discriminatively
trained Gaussian mixture system.

44

Table 3.4. Comparison of optimization algorithms on the English Quaero
2010 corpus. Recognition results on the Dev2010 corpus and the
training objective function values for trainings with original and
normalized features

Normalized Features Original Features

Algorithm Iteration WER [%] Obj. fct. WER [%] Obj. fct.

Rprop
50 25.6 2.985 - -

100 25.3 2.935 - -

L-BFGS
50 27.8 3.194 - -

100 26.1 3.004 - -

SGD
5 25.3 2.937 26.6 3.050

10 25.2 2.922 26.2 3.017

oLBFGS
5 25.1 2.938 33.1 4.109

10 24.9 2.905 32.3 4.055

Diagonal Hessian
5 25.1 2.940 25.7 3.020

10 24.8 2.905 25.8 3.007

3.6.4 Comparison of optimization algorithms

The experiments on the Wall Street Journal corpus show the importance of the perfor-
mance of the optimizer for log-linear training. In the previous sections, all log-linear
trainings have been performed with Rprop. In this section, an empirical comparison of
optimization algorithms on the Quaero 2010 corpus is presented [Wiesler & Richard+

13].

More specifically, we compare Rprop to L-BFGS, which is commonly regarded as the
best batch algorithm for log-linear training [Malouf 02], and to stochastic optimization
algorithms, which are commonly used for neural network training. In particular, we
evaluate whether stochastic second-order algorithms, which recently received attention
in the machine learning literature, are beneficial in a large-scale setting.

The log-linear system has the same state tying as the Gaussian mixture system. We
used second-order polynomial features, which were derived from the baseline features
of the Gaussian mixture system. Mean and variance of the second-order features were
normalized to improve the convergence behavior. The dimension of the second-order
features is 1 080. The number of parameters of the log-linear model is 4.9 million, and
thus only about one tenth of the Gaussian mixture model. We chose this relatively
small model, because overfitting does not occur with this configuration. This allows for
a more direct comparison of the optimization algorithms.

The history size of L-BFGS was set to 20. For the experiments with stochastic

45

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

algorithms, we used decaying learning rates of the form in Eq. (3.40). The learning
rate parameters η0 and τ were optimized using the first one million frames. We used
mini-batches of size 4 500. We tested smaller mini-batch sizes as well, but the results
were slightly worse. In the experiments, we observed that it is important to use a
smaller learning rate for the bias parameters than for the other parameters (0.1 times
the standard learning rate in our experiments). The computation of the batch-gradient
has been distributed to 100 CPUs. For stochastic algorithms, multi-threading with
eight threads has been used.

The experimental results are shown in Table 3.4. First, notice that Rprop is more
than two times faster than the widely used L-BFGS algorithm.

Rprop takes about 38 iterations to reach the objective function value of SGD after
only a single pass over the data. However, in the late phase of convergence, SGD is
quite slow. Although Rprop’s overall computation time is much higher than that of
SGD, Rprop is competitive to SGD in wall clock time due to the better parallelizability.
Which algorithm is preferable depends on the size of the dataset and on the amount of
computational resources, which one is willing to spend.

In the next series of experiments, we compared the performance of SGD with the
stochastic second-order algorithms oLBFGS and the diagonal Hessian method, which
have been described in Section 3.5.7. The investigated stochastic second-order algo-
rithms converge slightly faster than SGD in terms of the number of iterations, see
Fig. 3.1. During the first epochs, the second-order algorithms perform worse than SGD.
But closer to the solution, they converge faster than SGD. Note that the second-order
algorithms require additional computations. In particular, oLBFGS requires two gra-
dient evaluations per batch, hence doubling the computational demands. In contrast,
the additional computational costs of the diagonal Hessian method are low. The best
recognition result is achieved with the diagonal Hessian method after ten epochs, see
Table 3.4. The word error rate of this simple second-order model is between that of the
maximum likelihood trained Gaussian mixture system and the discriminatively trained
Gaussian mixture system, compare Table 3.2.

Finally, the results in Table 3.4 also show that normalizing the features for improv-
ing the convergence behavior is not only important important for batch, but also for
stochastic optimization algorithms. Without feature normalization, SGD and the diag-
onal Hessian method degrade by about one percent word error rate, and oLBFGS even
much more.

3.7 Discussion

In this chapter, we presented an approach to acoustic modeling based on log-linear
models. The frame-discriminative training of the log-linear acoustic model is convex.
Thus, the model can be trained discriminatively from scratch, i.e. without using a gener-
ative model as initialization. The training does not require word lattices, which makes
the approach algorithmically simple and saves engineering work. In our experiments on

46

medium to large-scale speech recognition tasks, the log-linear model achieved about the
same performance as the sequence-discriminatively trained Gaussian mixture baseline
system.

Two aspects have turned out to be critical for reaching this performance. The first
one is the choice of features for the log-linear model. Here, we concentrated on generic
features, which are restricted to the emission model. The second one is the numerical
optimization of the log-linear parameters. We observed that the choice of the opti-
mization algorithm as well as the conditioning of the optimization problem have an
important impact on the recognition error rate.

In contrast to other works on log-linear acoustic modeling, our approach is scalable to
large tasks without losing the convexity of the training. Most works on log-linear models
have been conducted on small-scale tasks, in particular [Macherey & Ney 03, Heigold
& Rybach+ 09, Hifny & Renals 09, Ragni & Gales 11, van Dalen & Ragni+ 13]. The
effect of both, the choice of features and the convergence behavior, differs strongly on
small-scale and large-scale tasks. On small-scale tasks, already linear features provide
good results. Optimization is not relevant, because the optimization can be run until
the unique global optimum is found with arbitrary precision.

Log-linear models with latent variables allow for increasing the model complexity
straightforwardly [Gunawardana & Mahajan+ 05]. Therefore, this approach is also well-
suited for large-scale tasks [Heigold & Ney+ 11]. However, the convexity of training
is then lost. It is difficult to train such models without using a generative model as
initialization. For this reason, log-linear models with latent variables are strongly similar
to conventional discriminatively trained GHMMs.

In parallel to our work, large performance gains over Gaussian mixture models and
thus also over log-linear models have been achieved with neural network-based acous-
tic models [Mohamed & Dahl+ 09, Dahl & Ranzato+ 10, Seide & Li+ 11b, Sainath &
Kingsbury+ 11,Dahl & Yu+ 12,Jaitly & Nguyen+ 12]. This approach is strongly related
to the log-linear model studied here. The neural networks have a log-linear output layer
and are typically trained according to the cross-entropy criterion. In recognition, the
hybrid approach is used. The essential difference between log-linear models and neu-
ral networks is that neural networks jointly learn the classifier and the feature space,
whereas the features for log-linear models are specified manually. The drawback of
neural networks is that their training is not convex and the global optimum is not ac-
cessible. However, it has turned out that it is more important to enable the model to
learn the features than enforcing convexity, especially on larger datasets. For instance,
already a neural network with only a single hidden layer outperforms the log-linear
model developed here.5

There are two natural extensions of the work presented in this chapter. Since the
performance of the optimizer is already important for simple convex models, can neural
networks be improved with better optimization algorithms as well? This question is ad-
dressed in Chapter 5 and Chapter 6. Secondly, we only considered frame-discriminative

5compare Table 3.3 and Table 7.3

47

Chapter 3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition

training of log-linear models here. One can expect that these models can be further
improved with sequence-discriminative training. We study this technique in the context
of neural networks in Chapter 7.

3.8 Publications and Joint Work

This work builds on G. Heigold’s work on log-linear models [Heigold 10]. In particular
the initial implementation of the hybrid log-linear approach is by G. Heigold. The focus
of G. Heigold’s work in the log-linear framework was on training criteria, which have
mostly been studied on small-scale tasks such as a German digit string recognition task
(SieTill) [Heigold & Rybach+ 09]. For large-scale tasks, non-convex log-linear models
with latent variables have been employed [Heigold & Deselaers+ 08,Heigold & Wiesler+

10,Heigold & Ney+ 11].
The novel contribution of the work presented in this chapter is the extension of the

convex log-linear approach to large-scale tasks by investigating the choice of feature
functions and improving the optimization [Wiesler & Nußbaum+ 09,Wiesler & Richard+

11,Wiesler & Schlüter+ 12,Wiesler & Richard+ 13]. Detailed author contributions for
these publications are given in Appendix E. The proof-of-concept of training a log-linear
model directly from a linear time alignment without an existing GHMM system has been
contributed by M. Nußbaum-Thom. A part of the experiments has been performed by
A. Richard under the author’s supervision.

48

Chapter 4

Convergence Analysis of Log-Linear
Training

In this chapter, we present a theoretical analysis of the convergence behavior of log-linear
training. Our analysis shows that log-linear training can be highly ill-conditioned. In
this case, the global optimum of the objective function can not be found efficiently.
Conversely, the conditioning of the optimization problem can be improved strongly by
feature normalizations. We verify our findings on two handwriting recognition tasks.

4.1 Introduction

The convexity of log-linear training could possibly lead to the misconception that op-
timization is of minor importance for log-linear models. However, this is not valid for
large-scale problems. The solution of log-linear training is determined using iterative
numerical optimization algorithms. Large-scale problems can be characterized by the
fact that computation time is limited, which only allows for an approximate solution of
the optimization problem [Bottou & Bousquet 08]. In this case, the test error depends
on the error caused by this approximation. This is in particular relevant, when the
optimization problem is difficult.

From optimization theory it is known that the convergence speed of a wide range
of optimization algorithms can be characterized in terms of the condition number of
the Hessian matrix at the optimum, i.e. by the ratio of the largest and the smallest
eigenvalue of the matrix. The following theorem describes the convergence behavior of
gradient descent applied to quadratic functions. It can be found in many textbooks, for
example in [Luenberger & Ye 08, Chapter 8].

Theorem 4.1. Let
f : Rn → R, x 7→ x>Ax+ b>x+ c (4.1)

be a strictly convex quadratic function with A ∈ Rn×n and b, c ∈ Rn. Let f∗ be the
minimum of f . Let κ denote the condition number of A, i.e. the ratio of the largest and
smallest eigenvalue of A. Then the iterates generated by gradient descent with exact
line search satisfy

f(xk+1)− f∗ ≤
(
κ− 1

κ+ 1

)2

(f(xk)− f∗) . (4.2)

49

Chapter 4 Convergence Analysis of Log-Linear Training

Figure 4.1. Illustration of the “zig-zag” behavior of gradient descent on a
two-dimensional quadratic optimization problem

The constant which describes the improvement of gradient descent, is bounded by

κ− 1

κ+ 1
≤ 1− 1

κ
. (4.3)

For large condition numbers, the constant is close to one, thus convergence is slow.
The bound in Eq. (4.2) is tight in the sense that there exists a starting point for
which Eq. (4.2) is an equality. The role of the condition number for gradient descent
is illustrated in Fig. 4.1. On poorly conditioned problems, gradient descent shows a
characteristic “zig-zag” behavior, leading to slow convergence. Theorem 4.1 can be
generalized to non-quadratic strictly convex functions. In this case, the asymptotic
behavior of gradient descent is determined by the condition number of the Hessian
matrix at the optimum, see [Nocedal & Wright 06, Theorem 3.4].

Gradient descent exhibits the strongest dependence of the convergence speed on the
condition number. More sophisticated gradient-based optimization algorithms as conju-
gate gradient (CG) and L-BFGS depend on the condition number and other properties
of the eigenvalue spectrum [Nocedal & Wright 06, Chapter 5.1 and Chapter 9.1]. Let-
ting apart that Newton’s method is not feasible for high-dimensional problems, its
convergence behavior is in principle completely independent of the condition number.
In practice, even Newton’s method depends on the condition number, because comput-
ing the Newton direction requires solving a system of linear equations, which is more
difficult for problems with high condition number [Boyd & Vandenberghe 09, Chapter
9.5].

In this chapter, we derive bounds for the condition number of the cross-entropy ob-
jective function for log-linear models. Our analysis shows that convergence can be
accelerated by feature transformations. We verify our analytic results on two classifi-
cation tasks. One is a small digit recognition task, the other a large-scale continuous
handwriting recognition task. The experiments show that in extreme cases, log-linear
training can be so ill-conditioned that a useful model can only be found from a reason-
able initialization. On the other hand, when care is taken, we obtain good results with
a conceptually simple and generic approach.

50

4.2 Formal Analysis

This section contains our theoretical result. We derive bounds for the eigenvalues of
the Hessian of the cross-entropy objective function, which determine the convergence
behavior of gradient-based optimization algorithms. First, we relate the eigenvalues
of the Hessian to those of the uncentered covariance matrix. Then, bounds for the
condition number of the uncentered covariance matrix are derived.

4.2.1 Preliminaries

To emphasize the generality of our analysis, we use the general notation for log-linear
models from Chapter 1 instead of the speech recognition specific notation. We avoid
using explicit bias parameters by extending the feature vector by a component which
is constantly 1.0. The log-linear model is then of the form

pΛ(c|x) =
1

Z(x)
exp

(
λ>c x

)
with Z(x) =

∑
c̄

exp
(
λ>c̄ x

)
. (4.4)

The parameters of the model are of the form Λ = (λ1; . . . ;λC) ∈ R(D+1)×C . The
(D + 1)-th feature component is the constant one.

Let (xn, cn)n=1,...,N denote the training sample. Our analysis concerns the `2-
regularized cross-entropy objective function:

F : R(D+1)×C → R, Λ 7→ − 1

N

N∑
n=1

log pΛ(cn|xn) + αreg ‖Λ‖22 . (4.5)

Although the objective function is convex, it is not guaranteed that it attains the
infimum. For example if the data is linearly separable and no regularization is used,
the parameters can get arbitrarily large. In the following, we restrict ourselves to the
non-degenerate case, where the minimum is attained, i.e. we assume that there exists
a Λ∗ with

F(Λ∗) = inf
Λ
F(Λ) . (4.6)

The second derivatives of the objective function are

∂2F
∂λc,j∂λc̄,̄

(Λ) =
1

N

N∑
n=1

pΛ(c|xn)(δc,c̄ − pΛ(c̄|xn)) xn,jxn,̄ + αreg δc,c̄ δj,̄ . (4.7)

The gradient and the Hessian matrix of F are defined in terms of the vectorized param-
eters.

In the following, we require basic definitions and results from matrix analysis. A com-
prehensive reference is [Horn & Johnson 05]. Recall that the eigenvalues of a symmetric
real matrix are real. We denote the eigenvalues of a symmetric real matrix A ∈ Rn×n

in ascending order by
ϑ1(A) ≤ ϑ2(A) ≤ . . . ≤ ϑn(A) . (4.8)

51

Chapter 4 Convergence Analysis of Log-Linear Training

The spectrum of the matrix is the set of all eigenvalues:

σ(A) = {ϑ1(A), . . . , ϑn(A)} . (4.9)

The condition number of a positive definite matrix A ∈ Rn×n is defined as the ratio
between the largest and the smallest eigenvalue:

κ(A) =
ϑn(A)

ϑ1(A)
. (4.10)

Below, we will exploit that the calculation of the spectrum is simplified if the matrix
has a Kronecker product structure, cf. [Horn & Johnson 94, Chapter 4]. Given two
matrices A ∈ Rm×n and B ∈ Rp×q, the Kronecker product is defined as

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq . (4.11)

4.2.2 The case without regularization

We begin with the analysis of the loss term, i.e. we assume that αreg is zero. Only
this term shows a complex behavior. The Hessian matrix of the objective function
at the optimum depends on the posterior probabilities pΛ∗(c|x), which are of course
unknown. In the following, we consider a simpler problem. We derive the eigenvalues
of the Hessian at Λ0 = 0. If the quadratic approximation of F at Λ0 is good, the Hessian
does not change strongly from Λ0 to Λ∗ , and the eigenvalues of ∇2F(Λ0) are close to
those of ∇2F(Λ∗). This enables us to draw conclusions about the convergence behavior
of gradient-based optimization algorithms. The experiments in Section 4.3 justify our
assumption. All experimental results are in accordance to the theoretical results.

The following definition plays a central role in the convergence analysis:

Definition 4.1. The uncentered (empirical) covariance matrix is defined as

V =
1

N

N∑
n=1

xnx
>
n ∈ R(D+1)×(D+1) . (4.12)

In the following, we assume that the covariance matrix of the non-trivial features
x1, . . . , xD is positive definite, which is the case if there are no linear dependencies in
the features and the number of training sample is sufficiently large. In the next section,
we show that this also implies that V is non-singular.

Now we can formulate the main result of this section.

Theorem 4.2. The spectrum of the Hessian matrix ∇2F(Λ0) is determined by the
spectrum of the uncentered empirical covariance matrix:

σ(∇2F(Λ0)) = {0} ∪ {C−1ϑ1(V), . . . , C−1ϑD+1(V)} . (4.13)

Further, the rank of ∇2F(Λ0) is (C − 1)(D + 1).

52

Proof of Theorem 4.2. The proof is based on the Kronecker product structure of the
Hessian at Λ0.

For Λ0 = 0, the posterior probabilities are uniform, i.e.

pΛ0(c|x) = C−1 (4.14)

for all observations x and classes c. Hence, the second derivatives of F are

∂2F
∂λc,j∂λc̄,̄

(Λ0) = C−1
(
δc,c̄ − C−1

) 1

N

N∑
n=1

xn,jxn,̄ . (4.15)

Let IC ∈ RC×C denote the C-dimensional identity matrix and 1C ∈ RC×C the
matrix, where all entries are equal to one. With the definition

S = C−1
(
IC − C−11C

)
, (4.16)

the Hessian matrix can be written as a Kronecker product:

∇2F(Λ0) = S ⊗ V . (4.17)

The eigenvalues of S can be computed easily:

σ(S) = {0, C−1} . (4.18)

The rank of S is C − 1. The spectrum of the Kronecker product is given by [Horn &
Johnson 94, Theorem 4.2.12]

σ(S ⊗ V) = {ϑi(S)ϑj(V)|1 ≤ i ≤ C, 1 ≤ j ≤ D + 1} , (4.19)

which proves Eq. (4.13). Further, the rank of the Kronecker product is the product of
the rank of S and V [Horn & Johnson 94, Chapter 4.2], which concludes the proof.

A difficulty in the analysis of the unregularized case is that the objective function is
only convex, but not strictly convex. The Hessian matrix is singular, thus the condition
number is not defined. From Eq. (4.17) it follows that the null space of the Hessian is
spanned by the (D + 1) columns of

U =
1√
C

1
...
1

⊗ ID+1 ∈ RC(D+1)×(D+1) . (4.20)

Note that these basis vectors exactly correspond to the invariance of log-linear models
to parameter shifts, cf. Section 3.2.1. Any change in the direction of a column of U does
not change the objective function, and the directional derivative in such a direction is
zero. Therefore, the optimization problem is essentially a (C − 1)(D + 1)-dimensional
problem. The convergence behavior of the problem is determined only by the non-zero

53

Chapter 4 Convergence Analysis of Log-Linear Training

eigenvalues. In our context it is therefore appropriate to define the condition number of
a positive semi-definite matrix as the the ratio of the largest and the smallest non-zero
eigenvalue.

κ(A) =
ϑn(A)

mini:ϑi(A)6=0 ϑi(A)
. (4.21)

With this definition of the condition number, Theorem 4.1 can directly be generalized
to the singular case. An analog result was shown by [Notay 90] for the application of
CG for solving systems of linear equations, which is equivalent to the minimization of
quadratic functions. All results about the convergence behavior of conjugate gradient
extend to the singular case, if instead of the complete spectrum only the non-zero
eigenvalues are considered. In the next section, we analyze the condition number of the
uncentered covariance matrix.

4.2.3 Spectrum of the uncentered covariance matrix

The dependence of the convergence behavior on the properties of the uncentered co-
variance matrix is in accordance to experimental observations. Other researchers have
noted before, that the use of correlated features leads to slower convergence, e.g. [Sha &
Pereira 03]. [Minka 01] noted that convergence is slower when adding a constant to the
features, because this “introduces correlation, in the sense that” the uncentered covari-
ance matrix “has significant off-diagonals.”. How can these these findings be verified
formally?

The following theorem addresses the case of uncorrelated features. Note that we need
to distinguish between the non-trivial first D components of the feature vector and the
constant feature component, corresponding to the bias parameters.

Theorem 4.3. Suppose the features x1, . . . xD are uncorrelated with respect to the em-
pirical distribution. Let µ, σ2 ∈ RD denote the empirical mean and variance vector of
(x1, . . . xD). Without loss of generality, we assume that the first D features x1, . . . xD
are ordered such that

0 < σ2
1 ≤ . . . ≤ σ2

D . (4.22)

The extremal eigenvalues of the uncentered empirical covariance matrix are bounded by:

max
{

0,min
{

1, σ2
1

}
− ‖µ‖

}
≤ϑ1(V) ≤ σ2

1 (4.23)

max
{
‖µ‖2 + 1, σ2

D + µ2
D

}
≤ϑD+1(V) ≤ σ2

D + ‖µ‖2 + 1 . (4.24)

Furthermore, the minimal eigenvalue ϑ1(V) is strictly positive.

Theorem 4.3 shows that even with uncorrelated features, the optimization problem
can be arbitrarily poorly conditioned. A non-zero feature mean causes a large maximal
eigenvalue. With zero mean, the matrix can also be ill-conditioned due to a different
scaling of the features.

The proof of Theorem 4.3 is based on Weyl’s inequalities, see [Horn & Johnson
05, Theorem 4.3.7]:

54

Theorem 4.4 (Weyl’s inequalities). Let A,B ∈ Rn×n denote symmetric real matrices.
Then, the following bounds on the eigenvalues of A+B hold for all 1 ≤ j, k ≤ n:

λj+k−n(A+B) ≤ λj(A) + λk(B) , (4.25)

λj+k−1(A+B) ≥ λj(A) + λk(B) . (4.26)

Proof of Theorem 4.3. Since the features are uncorrelated, we have

V = diag(σ2
1, . . . , σ

2
D, 0) + µ̄µ̄> , (4.27)

with

µ̄ =

(
µ
1

)
∈ RD+1 . (4.28)

Denote the left summand in Eq. (4.27) as A and the right summand as B. The
eigenvalues of A are the diagonal elements. B is a rank-one matrix with eigenvalues
ϑD+1(B) = 1 + ‖µ‖2 and ϑj(B) = 0 for 1 ≤ j ≤ D.

Now Weyl’s inequalities can be applied. The upper bound on ϑ1(V) follows from
Eq. (4.25) with j = 2 and k = D. Similarly, the upper bound on ϑD+1(V) follows with
j = k = D+1. The lower bound ϑD+1(V) ≥ ‖µ‖2+1 is a consequence of Eq. (4.26) with
j = 1 and k = D + 1. This bound is sharpened by using the fact that every diagonal
element of V is a lower bound for the largest eigenvalue [Horn & Johnson 05, p181]).

The smallest eigenvalue of V is hard to bound. The uncentered covariance can also
be written as

V =

(
diag(σ2) 0

0 1

)
+

(
µµ> 0

0 0

)
+

(
0 µ
µ> 0

)
. (4.29)

The eigenvalues of the right-most matrix are {−‖µ‖, 0, ‖µ‖}. Applying Eq. (4.26) re-
peatedly, yields

ϑ1(V) ≥ min
{
σ2

1, 1
}

+ 0− ‖µ‖ . (4.30)

Finally, the positive definiteness of V and thus the bound ϑ1(V) > 0 follows elemen-
tary from

y 6= 0⇒ y>V y > 0 . (4.31)

To prove this statement, write y = (v, w) with v ∈ RD and w ∈ R. Then,

0 = y>V y = v>diag(σ2)v + (µ>v + w)2 (4.32)

implies v = 0 due to the positive definiteness of diag(σ2) and thus also w = 0.

Analyzing the general case of correlated and unnormalized features is more difficult.
The idea of the following theorem is to regard the off-diagonals as a perturbation of
the diagonal matrix. This case can be analyzed with Geršgorin’s circle theorem [Horn
& Johnson 05, Theorem 6.1.1], which states that all eigenvalues lie in discs around the
diagonal entries of the matrix.

55

Chapter 4 Convergence Analysis of Log-Linear Training

Theorem 4.5. Let µ, σ2 ∈ RD denote the empirical mean and variance vector of
(x1, . . . xD) and Σ ∈ RD×D the covariance matrix. Assume that Σ is positive definite
and σ2

1 ≤ . . . ≤ σ2
D. Let

Ri =
∑

1≤j≤D
j 6=i

|Σi,j | (4.33)

denote the radius of the i-th Geršgorin circle. Then the extremal eigenvalues of the
uncentered empirical covariance matrix are bounded by:

max
{

0,min
{

1, σ2
1

}
−R1 − ‖µ‖

}
≤ϑ1(V) ≤ σ2

1 + µ2
1 (4.34)

max
{
‖µ‖2 + 1, σ2

D + µD
}
≤ϑD+1(V) ≤ σ2

D +RD + ‖µ‖2 + 1 . (4.35)

Furthermore, the minimal eigenvalue ϑ1(V) is strictly positive.

Proof of Theorem 4.5. The upper bound on ϑ1(V) follows from σ2
1 +µ2

1 being a diagonal
element of V . The other bounds obtained by Weyl’s inequalities follow analogously to
Theorem 4.3. In contrast to the case with uncorrelated features, the eigenvalues of Σ
are not known and are therefore bound using Geršgorin’s theorem. To show the positive
definiteness of V , note that to show the positive definiteness in Theorem 4.3, we have
not used that the features are uncorrelated.

The conclusions from Theorem 4.5 are the same as in the case of uncorrelated features.
The lower bound for the condition number is almost unchanged, which shows that a
non-zero mean and different scaling of features causes ill-conditioning. Further, with
correlated features, the condition number can even be much worse. In particular, if the
mean is zero and the variances are all one, Theorem 4.5 implies:

1 ≤ κ(V) ≤ 2 +RD
max {0, 1−R1}

. (4.36)

Hence, ill-conditioning can also be caused from correlation of the features alone.
Our analysis shows that log-linear training can be ill-conditioned if the feature rep-

resentation is fixed. Conversely, the analysis shows that log-linear training can be
accelerated by decorrelating the features and normalizing their means and variances.

4.2.4 The case with regularization

How does the convergence analysis change when regularization is used? The Hessian of
the `2-regularization term is a multiple of the identity. Therefore, the eigenvalue αreg of
the regularization term adds to the eigenvalues of the loss term. This has an important
consequence. The zero eigenvalue of the Hessian changes to αreg and the Hessian is
then strictly positive definite. Thus, the condition number depends only on the largest
eigenvalue of V :

κ(∇2F(Λ0)) =
C−1ϑD+1(V) + αreg

αreg
. (4.37)

56

Table 4.1. Results on the USPS task with different feature transformations
and regularization parameters αreg

Feat. normalization αregN Train error [%] #Iterations

None 0.0 0.0 513
Mean and var. 0.0 0.0 116
Decor., mean and var. 0.0 0.0 66

None

0.01 0.03 731
0.1 0.43 358
1.0 2.08 174

10.0 4.29 100

This shows that for large regularization parameters, the condition number is close to
one and convergence is fast. But if the regularization constant is small, the condition
number gets large, even if V is well-conditioned.

On first glance, it seems paradoxical that a small modification of the objective func-
tion can change the convergence behavior completely. But the objective function with
a small regularization constant has a very flat optimum instead of being constant in
these directions. Finding the exact optimum is indeed very hard.

On the other hand, the optimization is dominated by the loss-term in this case. If
this term is well-conditioned, the optimization quickly approaches an optimum of the
loss-term. Since the regularization term is only small, the iterates already correspond
to good models according to the objective function. Only the final phase of convergence
is slow.

4.3 Experimental Results

In this section, we validate our theoretical result on two classification tasks. We contrast
a small-scale and a large-scale learning task in the sense of the characterization by
[Bottou & Bousquet 08]. The small-scale task is the well-known U.S. Postal Service
(USPS) task for handwritten digit recognition. The second task, IAM, is a continuous
handwriting recognition task. Our main interest is the large-scale task IAM.

4.3.1 Handwritten digit recognition

The training set of the USPS dataset consists of 7 291 images from ten classes of hand-
written digits, see Section A.3. We trained a log-linear classifier directly on the whole
image with 16×16 pixels.

We used L-BFGS for optimization. For all experiments, we used a backtracking line
search and a history size of ten, which is a standard value given in literature [Malouf 02,

57

Chapter 4 Convergence Analysis of Log-Linear Training

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 40 60 80 100 120 140 160 180 200

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Iterations

No normalizations
Mean and var. norm.

Decorrelation, mean and var. normal.

Figure 4.2. Training objective function on IAM with second-order features
and different feature normalizations. The parameters are initialized
with zero.

Sha & Pereira 03]. We initialized the models with zero and terminated the optimization,
when the relative change in the objective was below ε = 1e-5 , i.e. when

F(Λi−1)−F(Λi)

F(Λi)
< ε . (4.38)

Table 4.1 contains the results on the USPS task. The results reflect our analysis of the
condition number. Without normalizing mean and variance, the optimization problem
is not well-conditioned. It requires more than 500 iterations until the termination
criterion is satisfied. The optimization takes even longer, when a very small non-zero
regularization constant is used. This is what we expected by analyzing the condition
number – the objective function has a very flat optimum, which slows down convergence.
On the other hand, for higher regularization parameters, the convergence speed is much
faster.

We applied the normalizations only to the unregularized models because the feature
transformations affect the regularization term. Therefore, results with regularization
are not exactly comparable when feature transformations are applied. The mean and
variance normalization reduces the computational costs greatly, from 513 to 116 itera-
tions. Decorrelation reduces the number of iterations further to 66.

58

4.3.2 Handwritten text recognition

Our second task is the IAM English handwriting recognition task, which is described
in Appendix A.4. The IAM task is a large-scale learning problem in the sense that
it is not feasible to run the optimization until convergence as on USPS, thus the test
error is strongly influenced by the optimization accuracy. The corpus has a predefined
subdivision into a training, a development, and a test set. The training set contains
lines of handwritten text with 54k words in total. With our feature extraction, this
corresponds to roughly 3.6 million observations. The development and test set contain
9k respectively 25k words. We use the IAM 2011 system described in A.4.1 as our
GHMM baseline. With maximum likelihood training, the baseline system achieves an
error rate of 39.4 percent on the test data. MPE training improves the result to 29.3
percent word error rate.

We built a hybrid log-linear HMM handwriting recognition system, analogous to the
log-linear speech recognition systems from Chapter 3. The log-linear model has been
trained according to the cross-entropy criterion using the alignment generated with the
maximum likelihood baseline system. The objective function has been optimized with
L-BFGS with a history size of ten. For all experiments, we assumed a limited training
budget, which allows for performing 200 iterations. We used polynomial features of
degree one (D = 30), two (D = 495) and three (D = 5 455). In contrast to USPS,
where the training frame error without regularization was zero, the training frame
error on IAM ranges from forty to sixty percent. Thus, the impact of regularization
is only minor. In preliminary experiments, we did not obtain any improvements by
regularization. Therefore, all reported results are obtained without regularization.

Figure 4.2 shows the optimization behavior of the second-order models with different
feature preprocessings. The observed convergence behavior is again in accordance to
our theoretical analysis. Note that the objective function of the training with unnor-
malized features remains constant for the first iterations, because L-BFGS performs a
backtracking.

The recognition results are shown in Table 4.2. The first-order features are already
decorrelated, but without normalizing their mean and variance, the convergence is
slower, resulting in a worse word error rate on the development and test set. The
difference is moderate, when the parameters are initialized with zero. In a next exper-
iment, we initialized all parameters randomly with plus or minus one. This results in
a huge degradation with the unnormalized features and has only a minor impact with
normalized features and exactly the same random initialization.

The differences are even larger in the second-order feature experiments. This can be
expected, since mean and variance take on more extreme values when the features are
squared. In addition, the second-order features are correlated, which further worsens
the condition of the problem. The improvement from mean and variance normalization
is only moderate in word error rate with zero initialization. With unnormalized features
and random initialization, the optimization did not lead to a usable model for recog-
nition at all. Fastest convergence speed and best recognition results were obtained by

59

Chapter 4 Convergence Analysis of Log-Linear Training

Table 4.2. Results on the IAM database for polynomial feature spaces of
degree m ∈ {1, 2, 3} with different initializations and preprocessings.

m Feature Normalization Initialization WER [%]
Development Test

1

None
Random 68.3 75.5
Zero 49.9 60.1

Mean and var.
Random 48.9 58.5
Zero 49.7 58.9

2

None
Random >100.0 >100.0
Zero 32.4 40.2

Mean and var.
Random 34.4 41.3
Zero 30.2 38.5
1st-order 26.8 33.1

Decorrelation, mean and var.
Random 25.9 32.3
Zero 25.1 31.6

3 Mean and var. 2nd-order 23.0 27.4

additionally decorrelating the features. In addition, the influence of the initialization is
the smallest in this case.

The estimation of the whitening transformation for third-order features is already
computationally very expensive because of the high feature dimension. Therefore, we
only normalized mean and variance of the third-order features, but initialized the models
incrementally from first to second to third-order features. In this manner, we obtain
our best result of 27.4 percent word error rate. Thus, the log-linear system outperforms
the MPE trained baseline system.

Although the main purpose of our experiments is to validate our theoretical conver-
gence analysis, it is of interest to compare our result to others reported in literature.
Our system is competitive to other systems with comparable preprocessing and archi-
tecture. [Bertolami & Bunke 08] obtain 32.9 percent word error rate on the test set with
an ensemble-based HMM approach. [Dreuw & Heigold+ 11] obtain 29.0 percent word
error rate with an additional discriminative adaptation method. The system of [Graves
& Liwicki+ 09], which is based on recurrent neural networks with a long short-term
memory (LSTM) structure, outperforms our system with 25.9 percent word error rate.

More recently, strong improvements have been obtained on the IAM database. Cur-
rently, the best published result on IAM is 12.2 percent word error rate [Doetsch &
Kozielski+ 14], which is also based on LSTM-RNNs. The largest part of the gains are
due to a better preprocessing, an open vocabulary recognition approach, and other im-
provements, which are not related to the emission model [Kozielski & Doetsch+ 13], cf.

60

also the system description in Appendix A.4.2.

4.4 Relation to Prior Work

The convergence behavior of log-linear training has been studied empirically in several
works. Most of them focused on the empirical comparison of optimization algorithms
[Minka 01, Malouf 02, Wallach 03, Sha & Pereira 03], confirming Minka’s observation
that bound optimization algorithms such as GIS and IIS converge extremely slowly in
comparison to gradient-based numerical optimizers. Minka also observed that a non-
zero feature mean is generally harmful for log-linear training.

The theoretical analysis of the optimization problem is limited. In [Salakhutdinov
& Roweis+ 03], a general convergence analysis of bound optimization algorithms is
derived. As a special case, Salakhutdinov et al. discuss the application of GIS to log-
linear training and conclude that GIS converges slowly when features are correlated
and have a non-zero mean. The disadvantage of their analysis is that it concerns only
GIS which is today known to perform very badly in practice.

Our analysis shares several similarities with the study by LeCun et al. [LeCun &
Kanter+ 90, LeCun & Kanter+ 91], which has been derived in the context of neural
networks. The most important difference to our study is that LeCun et al. consider
a different combination of model and training criterion. LeCun et al. study a linear
regression model with a one-dimensional output trained according to the mean squared
error criterion. The model does not have a bias parameter. In this simpler case, the
cost function is quadratic and its Hessian matrix is the uncentered covariance matrix.
The properties of the uncentered covariance matrix are analyzed under quite restrictive
assumptions. It is assumed that all feature components are independent and identically
distributed. Thus, the effect of correlation and different feature scales is not addressed.
Furthermore, they fix the ratio of the number of model parameters and the number of
training examples. The derivation of the spectrum is then performed in the limit of
infinite training data, leading to a continuous spectrum. In contrast, we assume a fixed
training set. In [LeCun & Bottou+ 98], informal arguments are given, which suggest
that the features should be scaled to have the same variance and decorrelated. Thus,
we confirm the findings of LeCun et al. for a different training criterion and under more
general assumptions.

4.5 Discussion

The convexity of training guarantees that a large class of well-understood numerical
optimization algorithms converge to the global optimum of the objective function. For
large-scale applications like speech recognition, considerations in the limit of infinite
iterations of the optimization algorithm are not sufficient. Assuming a limited training
budget, the choice of the optimization algorithm and the initialization determine the
quality of the approximation of the global optimum. This rather obvious fact becomes

61

Chapter 4 Convergence Analysis of Log-Linear Training

critical when the optimization problem is not well-posed. The analysis derived in this
chapter specifies the conditioning of the optimization problem in terms of elementary
feature statistics. With unfavorable feature properties, log-linear training can be highly
ill-conditioned and the test error is strongly influenced by the optimization error. Con-
versely, our analysis shows that the optimization problem can be preconditioned by
feature transformations.

A rather unexpected result of our analysis is the effect of the regularization term.
We showed that a weak regularization can hurt the performance of the optimizer. A
small regularization constant causes the objective function to have a very flat optimum
instead of being constant in one direction of the parameter space. This can be regarded
as a disadvantage of `2-regularization for log-linear models. The regularization term
should not penalize models differently if they induce the same posterior probabilities.

The limitation of our analysis is the assumption that the second-order properties of
the objective function do not change strongly when deviating from the zero-initialization.
Although our experiments justify this assumption, it would be desirable to formulate
conditions under which it is valid.

From the difficulty of training log-linear models, we can draw a general conclusion. On
the one hand, convexity is highly desirable, because it guarantees that training can not
get stuck in local optima and it facilitates theoretical analysis. On the other hand, on
large-scale tasks, it is inevitable to deal with the difficulties of optimization. Influenced
by the dominance of convex approaches in the machine learning community, one aim
of convex log-linear modeling was to get rid of the dependence on the initialization and
the optimization algorithm and thus to make training easier to use. This initial hope,
which has been formulated in our work [Wiesler & Nußbaum+ 09] and others [Heigold
10] appears to be overly optimistic.

While our analysis emphasizes the role of optimization in the convex setting, it is rel-
evant beyond of that. Nowadays, neural networks are commonly used with a log-linear
output layer1 and trained according to the cross-entropy criterion. Our convergence
analysis therefore describes the theoretically amenable case of the most common type
of neural network training.

4.6 Publications and Joint Work

This chapter is based on the analysis derived in [Wiesler & Ney 11], for which the author
contributed the idea, derived the theory, and performed the experiments. The baseline
systems for the handwriting recognition experiments were provided by P. Dreuw.

1in the context of neural networks known as softmax layer

62

Chapter 5

Hessian-Free Optimization for
Cross-Entropy Training

Deep neural network-based acoustic models have been shown to be superior to Gaussian
mixture models in a number of recent works. The de-facto standard algorithm for the
optimization of neural networks is stochastic gradient descent. Its main advantage is
that it scales well to large datasets. However, its asymptotic convergence behavior is
very slow. In regions with pathological curvature, stochastic gradient descent may al-
most stagnate and thereby falsely indicate convergence. Another drawback of stochastic
gradient descent is that it is hard to parallelize across mini-batches.

In this chapter, we study a second-order optimization algorithm known as Hessian-
free (HF). This algorithm has been proposed originally in [Martens 10], where it has
been evaluated on small-scale tasks such as MNIST. The focus of Martens’ work is on the
role of pre-training for deep neural networks. In a recent work [Kingsbury & Sainath+

12], Hessian-free optimization has been applied to large-scale sequence-discriminative
training of neural networks for speech recognition. Kingsbury et al.’s main motivation
is the observation that Hessian-free can be parallelized more easily than stochastic
gradient descent.

The goal of this chapter is to better analyze the Hessian-free algorithm and to investi-
gate whether it is useful for large-scale cross-entropy training of deep neural networks.

5.1 Introduction

Hessian-free is a second-order batch optimization algorithm, which has been designed
specifically for optimizing neural networks. It is based on a full second-order model of
the objective function, which is computed in every iteration. This distinguishes it from
other second-order algorithms. For example, L-BFGS uses only a low-rank model, and
Rprop a diagonal model, cf. Section 3.5.

As a batch algorithm, Hessian-free can be parallelized well. In the work by [Kingsbury
& Sainath+ 12], a speedup over SGD in terms of wall-clock time by a factor of more
than five has been obtained by parallelizing Hessian-free. Furthermore, Hessian-free
allows for a more accurate optimization than SGD. In the work by Kingsbury et al.,
this reduced word error rate by four percent relative.

63

Chapter 5 Hessian-Free Optimization for Cross-Entropy Training

From an optimization point of view, the characteristics of frame- and sequence-
discriminative training are very different. In particular, sequence-discriminative train-
ing is initialized with a good model, while frame-discriminative training is typically
started from scratch. Therefore, it is not clear whether Kingsbury et al.’s results gener-
alize to cross-entropy training.

Our setting is the same as in the previous chapter. The training sample is a sequence
of observations and classes (xn, cn)n=1,...,N . In training, the cross-entropy objective
function

F(θ) = − 1

N

N∑
n=1

log pθ(cn|xn) (5.1)

is minimized. In contrast to Chapter 3 and 4, the posterior probability is given by a
neural network with parameters θ. The output layer of the network is assumed to be a
log-linear model, also known as a softmax layer.

5.2 Martens’ Hessian-Free Algorithm

This section describes Martens’ Hessian-free algorithm and its relation to other algo-
rithms in optimization literature.

The algorithm as it has been implemented in this work is outlined in Algorithm 1. It
is a specific form of the Newton-CG method. Recall from Section 3.5.1 that the Newton
step is defined as the minimum of the quadratic model of the objective function

m(P) =
1

2
P>MP +∇F(θ)>P + F(θ) . (5.2)

The matrix M is chosen as the Hessian matrix ∇2F(θ). If M is positive-definite, the
Newton step is well-defined and can be computed by solving the linear system

M P = −∇F(θ) . (5.3)

In every iteration of Newton’s method, the model is updated by the solution of this equa-
tion. Newton’s method converges rapidly in terms of iterations. For high-dimensional
problems like the training of neural networks, Newton’s method is prohibitive, because
the size of the Hessian matrix is in the order of the square of the model size. Accumu-
lating, storing, as well as inverting the Hessian matrix is not feasible.

The Newton-CG method is a well-known modification of Newton’s method for high-
dimensional problems, see e.g. [Nocedal & Wright 06, Chapter 6]. In the Newton-CG
method, the linear system (5.3) is solved approximately using the iterative conjugate
gradient (CG) algorithm [Hestenes & Stiefel 52]. Conjugate gradient only requires
products of the Hessian matrix and an arbitrary vector, but does not require the matrix
itself, cf. Algorithm 2. For problems, where an algorithm exists which computes these
matrix-vector products efficiently, Newton-CG can be applied.

64

Algorithm 1 Outline of the Hessian-free algorithm

function HessianFree(θ0, λ0)
θ ← θ0 . network parameters
λ← λ0 . damping factor
Fprev ← F(θ0) . objective function
P0 ← 0 . search direction
while not converged do

A = G(θ) + λI . damped Gauss-Newton matrix
b = −∇F(θ)>b
. apply CG algorithm to qθ(P) = 1

2P
>(G(θ) + λI)P +∇F(θ)>P

{P1, . . . , PN} = CG(A, b, P0)
determine first i with F(θ + Pi−1) ≥ F(θ + Pi) . CG backtracking
γ ← 1
if Fprev < F(θ + Pi) then

find γ > 0 with Fprev > F(θ + γPi) . linesearch
end if
ρ← (Fprev −F(θ + PN))/qθ(PN) . damping factor update: our version
if ρ < 0.25 then

λ← 3/2λ
else if ρ > 0.75 then

λ← 2/3λ
end if
θ ← θ + γPi, P0 ← βPN , Fprev ← F(θ + γPi) . update

end while
return θ

end function

The most important design choice for the application of the Newton-CG algorithm
is how to compute the required matrix-vector products. For neural networks, Hessian-
vector products can be computed by a modified forward-backward algorithm similar to
the one used for computing the gradient. In neural network literature, this is known as
the Pearlmutter trick [Pearlmutter 94].

Since the Hessian matrix of the cross-entropy criterion is not positive definite,
Martens decided to use the positive semi-definite Gauss-Newton matrix instead. The
Gauss-Newton matrix has originally been defined for the squared error criterion, but
can be generalized to the cross-entropy criterion [Schraudolph 02]. Algorithm 3 com-
putes the Gauss-Newton matrix-vector products by performing a modified forward pass,
which sets the error signal of the output layer. The matrix-vector product is then ob-
tained by applying the conventional backward pass.

The cost of a Gauss-Newton matrix-vector product is roughly twice the cost of a
gradient calculation. Calculating these products on the complete training data is highly
expensive, since every run of conjugate gradient requires several of such products. A

65

Chapter 5 Hessian-Free Optimization for Cross-Entropy Training

Algorithm 2 Conjugate gradient algorithm for solving the system of linear equations
Ax = b with initialization x0

function CG(A, b, x0)
r0 ← Ax0 − b . residual
p0 ← −r0 . search direction
k ← 0
while rk 6= 0 do . iterate

αk ←
r>k rk
p>k Apk

xk+1 ← xk + αkpk
rk+1 ← rk + αkApk . matrix-vector product

βk+1 ←
r>k+1rk+1

r>k rk
pk+1 ← −rk+1 + βk+1pk
k ← k + 1

end while
return xk

end function

central idea of Martens is to use a stochastic approximation of the Gauss-Newton matrix,
i.e. to compute matrix-vector products on mini-batches. In contrast, gradients and
objective function values are computed exactly.

The quadratic approximation (5.2) is only reliable in a neighborhood around θ. There-
fore, the Newton-CG method must be prevented from taking too large steps. This is in
particular important when using a stochastic approximation of M . In optimization lit-
erature, it is suggested either to perform a line-search in the direction P , or, to assume
a trust region around θ. This means that instead of minimizing (5.2), a constrained
minimization problem is solved:

PTR = min
P
m(P) such that ‖P‖2 ≤ ∆ . (5.4)

The trust region radius ∆ is dynamically adapted based on the progress of the algo-
rithm. Problem (5.4) can be solved with matrix factorizations [Moré & Sorensen 83],
but these are prohibitive for high-dimensional problems. A widely used cheap approx-
imation of (5.4) is given by Steihaug’s method [Steihaug 83], which simply terminates
CG when the trust region is left. Martens found the well-understood Steihaug method
not to be effective for neural network training and therefore uses a damping heuristic
instead. This means that the matrix M in Eq. (5.2) is replaced by M + λI with a
damping parameter λ > 0. Here, I denotes the identity matrix. Similar to trust region
algorithms, the damping parameter λ is adapted based on the ratio of the actual and
the expected improvement

ρ =
F(θ)−F(θ + P)

m(0)−m(P)
. (5.5)

For large values of ρ, the damping parameter is decreased, which results in larger

66

Algorithm 3 Algorithm for computing the product of the Gauss-Newton matrix of a
network with parameters θ = (W (1), . . . ,W (L), b(1), . . . , b(L)) with a parameter vector
ϑ = (P (1), . . . , P (L), a(1), . . . , a(L)) for one observation x [Schraudolph 02].

function GNproduct(θ, ϑ, x)
x(0) ← x . standard forward-pass
for l = 1, . . . , L− 1 do

x(l) ←W (l)>x(l−1) + b(l)

x(l) ← σ(x(l)) . sigmoid layer
end for
x(L) ←W (L)>x(L−1) + b(L)

x(L) ← softmax(x(L)) . softmax layer
y(0) ← 0 . modified forward-pass
for l = 1, . . . , L− 1 do

y(l) ←W (l)>y(l−1) + P (l)>x(l−1) + a(l)

y(l) ← σ(x(l))(1− σ(x(l)))� y(l) . � denotes element-wise multiplication
end for
y(L) ←W (L)>y(L−1) + P (L)>x(L−1) + a(L)

ε←
(

diag(x(L))− x(L)x(L)>
)
y(L) . modified error signal for CE criterion

return backwardPass(θ, (x(1), . . . , x(L)), ε)
end function

steps. For small ρ, the damping parameter is increased. In principle, a damped Gauss-
Newton step is equivalent to a trust region Gauss-Newton step. The heuristic lies in
the update of the damping parameter, because it is not directly related to a trust
region radius. Furthermore, the update of the damping parameter is only consistent
if conjugate gradient is run until convergence and ρ is evaluated with its final iterate.
The advantage of the damping approach is that it is cheaper to solve for the damped
update than solving Eq. (5.4), and it avoids the approximation of Steihaug’s algorithm.

An important property of Hessian-free is that conjugate gradient is initialized with the
solution of the previous conjugate gradient run multiplied with a constant scalar. This
is in contrast to most other Newton-CG implementations, where conjugate gradient is
initialized with zero. Martens reported that this initialization speeds up Hessian-free by
“an order of magnitude” [Martens 10]. Indeed, a suitable initialization may save some
iterations. On the other hand, a non-zero initialization may have a strongly negative
effect when a hard-limit on the number of iterations is set. In addition, Steihaug’s
algorithm and related approaches require a zero initialization.

Another possibility for speeding up conjugate gradient is the use of a preconditioner.
Martens suggests the use of a diagonal preconditioner based on the accumulated squared
gradient.

Finally, Martens introduced a backtracking along intermediate results of the conju-
gate gradient evaluation. Backtracking is helpful if there is a strong mismatch between

67

Chapter 5 Hessian-Free Optimization for Cross-Entropy Training

Table 5.1. Results with the HF algorithm on MNIST

Algorithm CG init. Prec. Damping upd. #Epochs #CG iters

Gradient descent - -
-

- (59.8%) -
Steihaug Zero No - (0.1%) 2 810

Hessian-free

Zero No
Backtracking 237 55 532
Final 79 2 308

Prev. sol.

No
Backtracking 56 1 443
Final 60 1 377

Yes
Backtracking 63 1 505
Final 56 1 458

the quadratic model and the objective function. In this case, the intermediate conjugate
gradient results can lead to much better updates than the final result. On the other
hand, the backtracking procedure causes an objective function evaluation for every
tested model and is therefore highly expensive.

When using backtracking, it is not clear which model should be used for calculating
the damping factor in Eq. (5.5). Martens uses the best model obtained from the back-
tracking [Martens 10]. However, this counteracts the damping approach. It means that
the damping factor may be decreased although the solution of the conjugate gradient
algorithm corresponds to a much too large step. This is undesirable, because it causes
many backtrackings in the subsequent steps. Furthermore, the linear system Eq. (5.3)
gets ill-conditioned with small damping parameters and therefore conjugate gradient
converges very slowly. In the next section, we compare Martens’ variant with using the
final iterate for updating the damping parameter.

5.3 Empirical Analysis on Handwritten Digit Recognition

In this section, we analyze the consequences of Martens’ design choices empirically
on the MNIST database, a small-scale handwritten digit recognition task, see Ap-
pendix A.3. The task of the MNIST dataset is the classification of images of hand-
written digits. The dataset consists of 60 000 training samples and 10 000 test samples.

The implementation of the algorithm has been realized in the Microsoft DNN training
tool and makes use of GPU acceleration. As in the conventional SGD training [Seide &
Li+ 11b], all computations are performed on the GPU without synchronization to the
main memory. The computation of the gradients and likelihoods can be parallelized to
multiple GPUs or a large number of CPUs straight-forwardly, but we simply used one
GPU in this work.

For the experiments, we used the same setup as in [Martens 10], i.e. the features fed
into the neural networks were the gray values of the images with a resolution of 28×28

68

pixels. The DNNs had four layers with dimensions 1 000, 500, 250, and 30.
We trained a baseline system with SGD with a momentum term. It turns out that

with this network architecture, zero training error can be achieved after 420 epochs.
By using early stopping, we obtained similar results on the test set with all algorithms
that can achieve zero classification error on the training data. Since the goal here is to
improve the optimizer, we focus on the performance on the training data. As a measure
of convergence speed, we compare the number of epochs that are required for separating
the training data. For all experiments, we set the maximal number of epochs to 500.
For Hessian-free, we used the settings recommended by Martens, in particular we used
a maximum of 250 conjugate gradient iterations and ten percent of the training data
for computing the matrix-vector products.

In a first test, we compared the batch algorithm gradient descent with a basic Hessian-
free implementation, in order to verify that the second-order information accelerates the
optimization. The basic Hessian-free implementation does not use preconditioning and
always initializes conjugate gradient with zero. The results in Table 5.1 show that batch
gradient descent is not useful for optimizing deep networks. Even after 500 epochs, the
training error is still 59.8 percent. In contrast, the basic Hessian-free implementation
separates the training data after 237 epochs.

In addition, we tested Steihaug’s method. As Martens, we observed that it is not
effective for optimizing deep networks. The reason is that the conjugate gradient iterates
move out of the trust region after only very few iterations. Therefore, Steihaug’s method
does not fully exploit the second-order information.

The computation time per epoch of the basic Hessian-free implementation is very
high, because a large number of conjugate gradient iterations and backtrackings is
performed. By using the final iterate instead of the backtracking iterate for computing
the damping update, Hessian-free’s performance is greatly improved. The number of
epochs is reduced to 79 and the number of conjugate gradient iterations from 55 532 to
2 308. This clearly shows that the correct update of the damping parameter is crucial
and it is preferable to use the final iterate for calculating the damping parameter.

Initializing conjugate gradient with the previous solution instead of zero has two
effects. First, the non-zero initialization reduces the average number of conjugate gra-
dient iterations per epoch. For the variant where the backtracking iterate is used for
calculating ρ, the damping parameters are very small and therefore the resulting linear
problems are poorly conditioned. In this case, the average number of conjugate gradient
iterations per epoch is strongly decreased by a factor of 10.2. When the final iterate is
chosen for updating ρ, the number of conjugate gradient iterations is only reduced by
a factor of 1.3.

Second, the number of epochs is reduced. The intermediate results which are used
for backtracking are between the initialization and the exact solution of the linear
system. Including the previous solution in the search direction weakens the effect of
unrepresentative mini-batches, similar to the momentum term in stochastic algorithms.

Interestingly, we could not observe an acceleration by using preconditioning. From
our results, we can not recommend the use of the squared-gradient preconditioner pro-

69

Chapter 5 Hessian-Free Optimization for Cross-Entropy Training

posed in [Martens 10].

An obvious way for accelerating Hessian-free is to compute the likelihoods for the
backtracking and the damping parameter update on a small subset of the training data
or as in [Kingsbury & Sainath+ 12] on the validation set. However, we found that this
approach does not work at all when training models from scratch. The reason is that
small improvements on the training data do not necessarily carry over to the smaller
dataset. This causes the algorithm to increase the damping parameter repeatedly and
thereby testing smaller and smaller steps. Thus, the algorithm stagnates although it
has not reached an optimum. This problem did not occur in [Kingsbury & Sainath+

12], because they used a very good initialization.

In comparison to SGD, Hessian-free requires less epochs until convergence. Since
the computation time of Hessian-free per epoch is much higher, the total computation
time of SGD and Hessian-free is comparable. On large-scale tasks, Hessian-free can be
accelerated by parallelization. On the other hand, the stochastic approximation of SGD
is much more beneficial on large-scale task. In terms of test set accuracy, Hessian-free
does not perform better than SGD, because underfitting is not an issue on this task.
This situation is different on large-scale tasks.

5.4 Experimental Results on Speech Recognition

In addition to the small-scale experiments on MNIST, we performed experiments on
SMDR3, a Microsoft-internal short message dictation task. The training set consists of
63.4 hours of audio data. The dev and test set have 16 028 and 22 809 running words
respectively.

The baseline acoustic model is a neural network with five hidden layers, each with
1 024 nodes with sigmoid activation. The input to the network is a 572-dimensional
vector obtained by concatenating MFCC features with up to third-order derivatives in a
window of 11 frames. The neural network is initialized with layerwise RBM pretraining.
The fine-tuning is performed with SGD with a momentum term. The initial SGD
learning rate is set to 0.08 and later reduced to 0.002. After 25 epochs, SGD seems to
stagnate with a training frame error rate of 33.2 percent. The word error rate of the
corresponding model is 23.8 percent on the development set and 22.9 percent on the
test set.

We used the best Hessian-free configuration from the MNIST task, i.e. we updated
the damping parameter using the final conjugate gradient iterate, initialized conjugate
gradient with the previous solution, and did not use preconditioning. Because of the
large size of the training set, we used only one percent of the training data for computing
the matrix-vector products.

In an initial experiment, we compared Hessian-free with SGD and found that Hessian-
free converges orders of magnitude slower than SGD on this large-scale task. Even
considering the use of parallelization, it was not reasonable to train the DNNs from
scratch with Hessian-free. Therefore, we did not investigate this possibility further.

70

Table 5.2. Results on the short message dictation task. The third column
denotes the number of initial SGD epochs. The fourth column
denotes the number of additional epochs with either SGD or HF.
The fifth column lists the frame error rate on the training data, and
the sixth column the word error rate on the development set.

Model Algorithm Epoch FER train. [%] WER dev [%]
Init Add.

5×1024

SGD
25 33.2 23.8

+25 32.3 23.4
+75 30.7 23.7

HF
+25 27.1 23.4
+45 24.8 23.3
+75 23.0 23.8

5×512
SGD

10 37.9 26.1
+40 36.6 25.5

HF
+10 35.3 25.2
+40 33.8 24.3

4×1024

SGD
10 34.2 24.5

+40 32.7 24.2

HF
+10 30.5 23.7
+30 28.2 23.4
+40 27.5 23.8

In the following experiments, we aimed at improving the SGD result using Hessian-
free. This may be successful, because SGD does not evaluate the gradient on the
complete training data. Therefore, it does not allow for detecting whether a local
optimum of the objective function has been found. Unexpectedly, it turned out that
the SGD parameters were not close to an optimum at all. After 75 additional Hessian-
free iterations, the training frame error rate decreased from 33.2 to 23.0 percent, see
the results in Table 5.2. Knowing the Hessian-free result, a natural question is whether
the training error rate can be decreased with SGD as well. Indeed, after 75 additional
SGD epochs, the frame error rate slowly decreased to 30.7 percent, but it did not reach
the frame error rate of Hessian-free.

However, these large gains on the training set did not carry over to the development
set. The best Hessian-free recognition result which we achieved was 23.3 percent word
error rate, corresponding to a model with 24.8 percent frame error rate. This is only a
tiny improvement of 0.1 percent word error rate over the SGD result. Decreasing the
error rate on the training set further leads to overfitting. The behavior on the test set

71

Chapter 5 Hessian-Free Optimization for Cross-Entropy Training

is the same as on the development set. The SGD result is improved by 0.1 percent
absolute as well.

In the following experiments, we investigated whether smaller models can be improved
using Hessian-free, where overfitting is less an issue. This would be of great practical
value, because reducing the decoding costs of hybrid DNN-HMM speech recognizers
is a challenge for their large-scale application. In these experiments, we initialized
Hessian-free with the result of SGD after ten epochs in order to reduce computation
time. Using only half of the nodes per layer, the best SGD result is 25.5 percent word
error rate, 2.1 percent worse than with the large model. This gap is reduced to only 0.9
percent with Hessian-free. This deep and narrow model does not overfit, instead some
accuracy is lost due to underfitting. Another experiment is on a neural network with
only four layers of 1 024 nodes. Here, the best SGD result is 24.2 percent word error
rate. Interestingly, the best error rate with Hessian-free is again 23.4 percent, i.e. we
achieved the same error rate with a four-layer network as with the five-layer network
baseline.

5.5 Discussion

In this chapter, we empirically analyzed the properties of the Hessian-free algorithm,
a second-order batch optimization algorithm, which has been proposed in [Martens
10]. Some techniques which are used in the algorithm are rather heuristic and their
effect is not well understood. In particular, we observed in experiments on MNIST
that the damping heuristic has a critical impact on the performance of the algorithm.
Furthermore, the experiments show that the preconditioner proposed in the original
Hessian-free paper [Martens 10] is not effective.

We observed that Hessian-free is not efficient for training deep neural networks from
scratch in large-scale applications. But when starting from a reasonable initialization,
making use of second-order information is highly beneficial. Since the Hessian-free
algorithm can be parallelized well, one could perform only few epochs with SGD, and
then continue with Hessian-free. We obtained strong improvements in terms of training
error using Hessian-free. However, these improvements did not carry over to unseen data
due to overfitting. These results clearly show the need for good regularization methods
when improved optimizers are used. This topic is addressed in the next chapter.

Our experiments allow for drawing some general conclusions about neural network
training. The first is about the role of local optima in neural network training. When
SGD stagnates, it is often argued that a local optimum has been reached. However, our
experiments show that the slow asymptotic convergence behavior of SGD can falsely
indicate convergence. In our experiments, the objective function could still be improved
strongly by continuing the optimization with a second-order algorithm.

Second, we could reduce size of the model without losing accuracy with Hessian-free
optimization. Or conversely, the use of larger models is a possibility to overcome the
limited optimization performance of SGD. From a practical point of view, the use of

72

more accurate optimization algorithms is interesting, because model size needs to be
restricted in production systems.

5.6 Publications and Joint Work

The work described in this chapter has been performed during an internship at Mi-
crosoft Research, which resulted in the publication [Wiesler & Li+ 13]. The idea for
applying the Hessian-free algorithm to cross-entropy training of acoustic models, the
implementation in the Microsoft DNN training tool, the experiments on MNIST, and
the analysis of the results were contributed by the author. The speech recognition ex-
periments were performed jointly with J. Xue. The work was supervised by J. Li and
J. Xue.

73

Chapter 6

Mean-Normalized Stochastic Gradient
Descent

In the previous chapter, we found that neural networks can be optimized more accu-
rately using the Hessian-free algorithm than with stochastic gradient descent. Although
this is of theoretical interest, we encountered two problems with Hessian-free. First, its
updates are too costly for training deep neural networks from scratch. Second, with
large networks, the improvements in terms of training accuracy did not generalize to
unseen data.

In this chapter, we develop a simple and effective stochastic second-order algo-
rithm [Wiesler & Richard+ 14b], which is motivated by our convergence analysis of
log-linear models in Chapter 4. It comes with only negligible additional costs over
stochastic gradient descent and does not require further tuning of hyperparameters.
Further, we study a linear bottleneck network structure, which we find to be an ex-
cellent means against overfitting. Experimental results are presented for a continuous
handwriting recognition task and a conversational speech recognition task.

6.1 Introduction

An alternative to SGD is the use of batch algorithms, i.e. algorithms where the gradi-
ent is computed on the full dataset, for example L-BFGS [Liu & Nocedal 89, Dean &
Corrado+ 12], Rprop [Riedmiller & Braun 93], or the Hessian-free algorithm discussed
in the previous chapter. These algorithms have in common that they make efficient use
of second-order information. Further, they can be parallelized well by distributing the
gradient computation across a large number of machines. However, the computational
costs of batch algorithms may become prohibitive on large datasets. Therefore it is
interesting to incorporate second-order techniques into stochastic algorithms.

Recall from Chapter 3 that the general form of a stochastic second-order update rule
is

θi+1 = θi − ηiBi∇F(θi,B) , (6.1)

where ηi > 0 is the learning rate, ∇F(θi,B) is the gradient of the objective function
F on a mini-batch B, and the positive-definite matrix Bi is chosen to approximate the
inverse Hessian of F at θi.

75

Chapter 6 Mean-Normalized Stochastic Gradient Descent

Most second-order optimization algorithms employ strong approximations to the Hes-
sian matrix on the mini-batch, e.g. a diagonal approximation [LeCun & Bottou+ 98]
or a quasi-Newton approximation [Schraudolph & Yu+ 07, Bordes & Bottou+ 09], cf.
Chapter 3. A difficulty of these approaches is that the stochastic second-order informa-
tion is very noisy and the algorithms have additional computational costs. The idea
of our proposed algorithm is to make use of the analytic results from Chapter 4 about
the structure of the objective function. This allows for estimating a cheap and reliable
second-order model from the limited data on mini-batch level.

It has often been observed that improved optimization algorithms may cause overfit-
ting on machine learning tasks, cf. Chapter 5. Here, we investigate a recently proposed
bottleneck network structure [Sainath & Kingsbury+ 13, Xue & Li+ 13] that allows
for reducing model size and thus improves generalization. Furthermore, these smaller
models reduce computational costs in both training and recognition.

6.2 Derivation of the Algorithm

Our proposed algorithm is based on the conclusion from Chapter 4: the convergence
speed of training a log-linear model – the convex case of a neural network with softmax
output layer – is improved by normalizing mean and variance of the input features. For
neural networks, only the input to the lowest layer can be normalized directly, because
the input to the other layers changes dynamically during training. The idea of our
proposed algorithm is to shift the outputs of all hidden nodes based on their running
averages. The shift is compensated by transforming the parameters of the subsequent
layer. In this way, the function modeled by the network remains unchanged, but its
parametrization is more amenable for numerical optimization. This whole operation
can be performed implicitly as a second-order optimization algorithm.

In the following, we formalize this idea. For terms of simplicity, we consider only the
parameters of one layer of the network. Let W ∈ RD1×D2 denote the weight matrix
and b ∈ RD2 the bias vector of this layer. The objective function for a single training
example (x, c) can be written as

F(W, b) = G(W>z + b) . (6.2)

Here, z is the input to the layer and therefore a function of x. The composition of the
non-linearity of the layer, the remaining higher layers of the network, and the loss-term
are denoted by G. The loss-term depends on the class-identity c of the training example.

By shifting the feature with a vector a ∈ RD1 , we obtain a new objective function

F̃(W, b) = G(W>(z + a) + b) . (6.3)

It is possible to map the parameters corresponding to the original feature space to those
corresponding to the transformed features and vice versa. With

φ(W, b) = (W, b−W>a) , (6.4)

76

we have

F(W, b) = F̃(φ(W, b)) (6.5)

and

F̃(W, b) = F(φ−1(W, b)) . (6.6)

Instead of explicitly normalizing the features and optimizing F̃ , the parameters can
be mapped to the normalized parameter space with φ, updated with the SGD rule
Eq. (1.34), and mapped back to the original parameter space with φ−1:

(Ŵ , b̂) := φ−1
(
φ(W, b)− η · ∇F̃

(
φ(W, b)

))
. (6.7)

This modified update rule requires the gradient of F̃ , which can be calculated using
chain rule:1

∇W F̃(W, b) = ∇WF
(
φ−1(W, b)

)
+ a · ∇bF

(
φ−1(W, b)

)>
, (6.8)

∇bF̃(W, b) = ∇bF
(
φ−1(W, b)

)
. (6.9)

Inserting into Eq. (6.7) leads to the update rule of our proposed mean-normalized
stochastic gradient descent (MN-SGD) algorithm:

Ŵ = W − η ·
(
∇WF(W, b) + a · ∇bF(W, b)>

)
, (6.10)

b̂ = b− η ·
(
∇WF(W, b)> · a+ (1 + a>a)∇bF(W, b)

)
. (6.11)

In order to obtain zero-mean features, we set the shift a to the negative of the activation
mean, which can be calculated by running averages:

ai = −γE (z|Bi) + (1− γ)ai−1 . (6.12)

Here, z is the activation of the layer, E(z|Bi) is the activation mean on mini-batch
Bi, and 0 < γ < 1 is a smoothing factor. Since the activations typically have a high
variance, strong smoothing is required. We observed that the proposed algorithm is not
sensitive to the choice of the smoothing factor and set it to γ = 0.005 in all experiments.

Note that this update rule can be written in the form of a general stochastic second-
order update in the sense of Eq. (6.1). Writing the parameters in vectorized form as
θ = (vec(W), vec(b)) and omitting the iteration indices, the matrix B in Eq. (6.1) is of
the form

B =

(
ID1D2 A>

A (1 + a>a)ID2

)
, (6.13)

1See Lemma C.1 in Appendix C for a detailed derivation.

77

Chapter 6 Mean-Normalized Stochastic Gradient Descent

where A is defined as

A =

 a1 . . . aD1

. . .

a1 . . . aD1

 ∈ RD2×D1·D2 . (6.14)

Analogous formulas can be derived for an implicit variance normalization. However,
in initial experiments, we did not observe improvements by normalizing the variance.
Therefore, we have not considered this approach further.

6.3 Convergence Proof

To prove convergence of the algorithm, we need to restrict ourselves to the strictly con-
vex case, e.g. a single layer network trained according to the `2-regularized cross-entropy
criterion. Note that this assumption is required for almost all results on convergence
guarantees. Our convergence proof is an application of Theorem 3.2 in [Sunehag &
Trumpf+ 09], which follows from a very general result by [Robbins & Siegmund 71],
which makes use of supermartingale theory.

Sunehag et al.’s theorem states that a stochastic second-order algorithm converges
almost surely if the matrix B in Eq. (6.1) is symmetric and its eigenvalues are uniformly
bounded below and above, i.e. bounded by positive numbers m and M , which are
independent of a. Further, commonly used assumptions on the learning rates and mild
technical assumptions on the objective function are required.

The matrix B in Eq. (6.13) is symmetric. Its block-structure allows for the computa-
tion of the extremal eigenvalues:2

λmax, min = 1 +
1

2
‖a‖2 ±

√
‖a‖2 +

1

4
‖a‖4 . (6.15)

Assuming that a is bounded, one can deduce that the extremal eigenvalues are uniformly
bounded. It is easy to see that the maximal eigenvalue is bounded above, since it is
monotonically increasing in ‖a‖. To show the uniform lower bound, consider λmin as a
function of ‖a‖ on the compact interval [0,K], where K > 0 is the bound of ‖a‖. With
‖a‖ equal to zero, λmin is 1. Further, λmin is strictly positive, because for all a

1 +
1

2
‖a‖2 =

√
1 + ‖a‖2 +

1

4
‖a‖4 >

√
‖a‖2 +

1

4
‖a‖4 . (6.16)

Hence, λmin must attain a positive minimum on the compact interval [0,K]. This proves
almost sure convergence of MN-SGD.

2Use the identity det

(
A C>

C B

)
= det(A) det(B − CA−1C>) .

78

sigmoid/ 2 048

sigmoid/ 2 048

W ∈ R2048×2048

sigmoid/ 2 048

linear/ 512

sigmoid/ 2 048

W1 ∈ R512×2 048

W2 ∈ R2 048×512

Figure 6.1. Illustration of a conventional neural network layer (left) and its
counterpart with a linear bottleneck (right)

6.4 Improving Generalization Ability by Low-Rank
Factorization

A general problem of more efficient optimization algorithms on machine learning tasks
is that higher training accuracy can cause overfitting. A standard means against over-
fitting is the use of regularization, e.g. `2-regularization. However, in preliminary ex-
periments, we could not gain improvements in recognition word error rate by using
`2-regularization and therefore were searching for an alternative.

Overfitting can also be avoided by restricting the model size. This has the additional
benefit of accelerating both training and recognition. The size of a deep neural network
can be reduced by decreasing the number of layers or the number of hidden nodes per
layer, as in our experiments with the Hessian-free algorithm in the previous chapter.
But in these experiments, we could not gain improvements in comparison to the largest
model.

Recently, a more sophisticated approach for reducing the size of a deep neural network
has been proposed. The linear bottleneck topology introduced in [Sainath & Kingsbury+

13] is motivated by the observation that weight matrices are often effectively of low rank,
i.e. most of their singular values are close to zero. Such a weight matrix W ∈ RD1×D2

can be approximated well by a low-rank product

W ≈W1W2 (6.17)

with W1 ∈ RD1×r and W2 ∈ Rr×D2 and small r > 0. Figure 6.1 illustrates that this
factorization is equivalent to inserting a linear bottleneck between two layers of the
network. Instead of factorizing the weight matrices of an already-trained network, one
can directly train a model with a linear bottleneck structure from scratch. Because of
the smaller size of the model, training and recognition are accelerated. Sainath et al.
found this technique to be effective for the output layer, but inserting linear bottlenecks

79

Chapter 6 Mean-Normalized Stochastic Gradient Descent

in the hidden layers degraded the result. They conjectured that the hidden layers do
not have an underlying structure that allows for a low-rank factorization.

In another recent work [Xue & Li+ 13], it has been confirmed that linear bottlenecks in
hidden layers degrade performance when the deep neural network is trained from scratch
using SGD. But Xue et al. could achieve a factorization of the hidden layers by first
training a full-sized model, then factorizing the weight matrices by means of a singular
value decomposition (SVD), and finally retraining the model. Using this approach,
they could reduce model size by 80 percent without loss in accuracy. Although this
approach does not accelerate training, it reduces the computational costs of evaluating
the network in recognition.

Xue et al.’s result clearly shows that the degradation observed with linear bottlenecks
in hidden layers is caused by optimization difficulties. The approach based on a singular
value decomposition yields an accurate model with linear bottlenecks, but it cannot be
found using SGD from scratch. In our experiments, we study whether our proposed
MN-SGD algorithm is capable of optimizing neural networks with linear bottlenecks
between all layers from scratch. While Sainath et al. and Xue et al. were using the
linear bottleneck structure as a method for reducing computational costs only, we also
study its use as a regularization method.

6.5 Learning Rate Strategies

A critical aspect for the performance of DNNs is the choice of a learning rate strategy, see
e.g. [Senior & Heigold+ 13]. For our neural network baseline systems, we use the popular
Newbob learning rate strategy as it is implemented in the QuickNet software [Johnson
04], i.e. the learning rate is kept fixed as long as the frame error rate (FER) on the cross-
validation set improves by at least 0.5 percent. In all subsequent epochs, the learning
rate is halved. In contrast to the learning rate strategy in Eq. (3.40), which we used
for log-linear models, Newbob does not require tuning of hyperparameters. Further,
Newbob partly prevents overfitting by controlling the learning rate based on the cross-
validation frame error. However, we noted that the standard implementation of Newbob
decays the learning rate too quickly and it is preferable to reduce the learning rate only
when there is an additional epoch without sufficient improvement on the cross-validation
set.

For our purpose, the Newbob strategy is not well suited, because it prevents direct
optimization on the training data. Thus, a direct comparison of SGD and MN-SGD
in terms of an optimization performance is not possible. Instead, we use Newbob, but
replace the validation set by a representative subset of the training data. Overfitting
is avoided by early stopping, i.e. we use the model with the lowest word error rate
on the development data. In the following we denote these learning rate strategies as
Newbob/CV and Newbob/Train.

80

6.6 Experimental Results

We validated our proposed method on three tasks from small to large-scale complexity.
Our focus is on the English Quaero 2011 task, a challenging broadcast conversations
recognition task. We performed experiments on two variants of this task. In the first
set of experiments, only a fifty hour subset of the acoustic training data has been used
(Quaero/50h). This task is used as a benchmark task at RWTH. In the second set
of experiments, the complete acoustic training data has been employed (Quaero/Full).
Details on the tasks and our baseline systems are given in Appendix A.2.2.

In addition to these speech recognition tasks, we performed experiments on the IAM
handwriting recognition task, building on the 2014 baseline system described in Ap-
pendix A.4.2.

6.6.1 Conversational speech recognition

All neural networks considered in this section were trained according to the cross-
entropy criterion with the 4 501 emission model labels of the GHMM baseline system
as outputs. After removing ten percent of the training data for cross-validation, 15.5
million training examples remained.

The input features to the neural networks were obtained by concatenating 16-
dimensional MFCC vectors in a context window of size 17, the first derivatives of these
vectors, and the second derivate of the first MFCC in a context window of size 13. This
results in a feature dimension of 493. A global mean and variance normalization has
been applied to the features. The baseline neural network has six 2 048-dimensional
hidden layers with sigmoid activation function and a softmax output layer.

For the experiments with bottleneck models as described in Section 6.4, we placed
a linear bottleneck between all hidden-to-hidden connections and the hidden-to-output
connection. Statistics on the size of the considered models are given in Table 6.1. It is
noteworthy that the size of the model without bottleneck structure is more than twice
the number of training examples. However, in initial experiments, we determined that
reducing the number of layers or the number of hidden nodes degrades performance.

All trainings were initialized with supervised layerwise pre-training as described
in [Seide & Li+ 11b], with either SGD or MN-SGD. The mini-batch size for SGD
and MN-SGD has been set to 512. All experiments were performed with our open
source neural network tool, which is described in Appendix B.

Experiments on the small-scale task

The experimental results on the Quaero/50h task are summarized in Table 6.2. The
DNN baseline trained with Newbob/CV achieves 19.1 percent word error rate on the
development data, which is a relative improvement of 19.1 percent in comparison to

81

Chapter 6 Mean-Normalized Stochastic Gradient Descent

Table 6.1. Number of parameters of bottleneck networks and reduction in
comparison to the conventional DNN

Bottleneck dimension #Params. Reduction [%]

- 31.2M 0.0

512 14.7M 52.4
256 7.9M 74.5
128 4.5M 85.6
64 2.8M 91.2

Table 6.2. Results on the Quaero/50h task. The first two columns specify
the type of the learning rate schedule and the bottleneck dimension.
Columns three to six show the results of SGD: the epoch used in
recognition, the frame error rate on the training data at this point,
and the word error rate on the development and test data.
Analogously, columns seven to ten show the results of MN-SGD.

SGD MN-SGD
Newbob BN Ep. FER [%] WER [%] Ep. FER [%] WER [%]

Train Dev Test Train Dev Test

CV - 17 50.1 19.1 25.2 13 47.8 19.0 25.0
Train - 26 44.4 18.5 24.6 17 41.6 19.7 26.0

Train

512 25 49.7 18.8 25.0 25 31.0 18.3 23.9
256 26 54.2 19.4 25.5 26 40.1 18.0 23.7
128 20 58.1 21.1 27.7 23 48.4 18.3 24.2
64 24 59.1 21.6 28.0 27 52.2 18.8 24.7

the discriminatively trained GHMM baseline.3 For fair comparison, we selected the
Newbob/CV model with the minimal recognition error rate instead of simply select-
ing the final model as it is usually done. The neural network trained with SGD and
Newbob/Train outperforms the baseline with 18.5 percent word error rate. Comparing
the training frame error obtained with the different learning rate schedules, one can
presume that the conventional Newbob strategy terminates training too early.

In a first step, we compared the performance of SGD and MN-SGD for training
models without linear bottlenecks. The results in the first two rows of Table 6.2 show

3Note that our results are slightly better than in [Wiesler & Richard+ 14b] because of a technical
detail. Our phoneme set contains a garbage model which is used for pronunciations of short word
fragments, cf. Section 7.6.2. In [Wiesler & Richard+ 14b], we excluded the garbage model states
from neural network training. For the sequence training experiments in Chapter 7, we repeated
the experiments with the garbage model states included in the optimization. Unexpectedly, this
improved the performance of the system slightly.

82

45.0

50.0

55.0

 0 5 10 15 20

F
E

R
 [

%
]

Epoch

SGD
MN-SGD

45.0

50.0

55.0

60.0

 0 5 10 15 20

Epoch

SGD
MN-SGD

Figure 6.2. Evolution of training frame error rate of SGD and MN-SGD for
conventional DNNs (left) and models with bottlenecks of size 256
(right) for the training on the complete Quaero 2011 data

that MN-SGD achieves a lower training frame error rate already in earlier epochs and is
thus advantageous as an optimizer. However, in these experiments, the improvements
on the training data do not transfer to unseen data. The result with MN-SGD and
Newbob/Train is worse than the baseline. Since we use very large models in comparison
to the amount of training data, it is crucial to avoid overfitting and there is nothing to
gain in terms of word error rate by improving the optimization.

Next, we considered models of smaller size with linear bottlenecks. The performance
of such models degrades when they are trained with SGD, see the remaining rows in
Table 6.2. The error rate already slightly degrades with a reduction of the parameters
by a factor of two. Reducing the number of parameters further, increases the error rate
strongly. These results are in line with those of [Sainath & Kingsbury+ 13,Xue & Li+

13].

Using MN-SGD, training behaves completely differently. Up to a certain point, the
error rate decreases with the model size due to improved generalization. The best re-
sult of 18.0 and 23.7 percent word error rate on the development respectively test data
is obtained with a model that is roughly four times smaller than the full model. We
still achieve improvements on the development and test data with a parameter reduc-
tion of 85.6 percent. Even the model with a 64-dimensional bottleneck performs only
marginally worse than the baseline model. This model has only 2.8 million parameters.
For comparison, a fully connected neural network with only a single hidden layer has
10.2 million parameters.

Experiments on the large-scale task

In a second series of experiments, we investigated whether the improvements obtained
on the rather small training set scale to the large training corpus. The gains from using

83

Chapter 6 Mean-Normalized Stochastic Gradient Descent

Table 6.3. Results on the complete Quaero 2011 training data

SGD MN-SGD
Newbob BN Ep. FER [%] WER [%] Ep. FER [%] WER [%]

Train Dev Test Train Dev Test

CV – 17 47.9 15.7 21.1 19 48.0 15.7 20.9
Train – 17 45.9 15.2 20.9 17 45.6 15.5 20.6

Train
512 17 49.2 15.5 20.9 17 45.5 14.9 19.9
256 12 51.8 16.2 21.5 15 48.4 15.2 20.5
128 13 53.5 17.1 22.5 14 50.5 15.7 20.9

linear bottleneck models might be smaller, because overfitting is less severe on the larger
task. The experimental setup was the same as on the small-scale task. Ten percent of
the acoustic training data have been used for cross-validation. The remaining training
set consists of 75.1 million training examples.

Figure 6.2 shows the evolution of the training frame error rate of SGD and MN-
SGD for models with and without linear bottlenecks. The training on the large dataset
shows the same characteristic behavior as observed on the small dataset. The difference
between the two optimization algorithms for conventional DNNs is only minor. Both
algorithms reach almost the same training accuracy. In contrast to SGD however, MN-
SGD is capable of optimizing models with linear bottlenecks from scratch.

The recognition results are shown in Table 6.3. The general behavior is the same
as on the smaller training set. With SGD, the word error rate increases with smaller
model size. In contrast, reducing the model size improves the MN-SGD results. As
expected, a larger bottleneck is required for optimal performance on the larger training
set. With less than half of the parameters, the word error rate is improved from 15.2 to
14.9 percent on the development data and from 20.9 to 19.9 on the test data. The model
size can be reduced up to a factor of about eight without degradation in comparison to
the baseline system.

6.6.2 Offline handwriting recognition

Finally, we verified the efficacy of our approach on the IAM task for offline handwriting
recognition. We applied the same algorithms and the same software as in our speech
recognition system to this task, only the feature extraction part differs. Our baseline is
the IAM 2014 system described in Appendix A.4.2. Among the three tasks considered
in this chapter, IAM is the smallest. The training set contains 3.6 million observations.

The experimental setup was very similar to that on the speech recognition tasks. The
neural networks were trained according to the cross-entropy criterion with the 563 states
of the character models as outputs. The input features were obtained by concatenating
the 24-dimensional features of the GHMM system in a symmetric context window of size

84

Table 6.4. Results on the IAM handwriting recognition task

Alg. Newbob BN #Params. (Red.) Ep. FER [%] WER [%]
Train Dev Test

SGD
CV

- 14.5M
12 9.0 11.1 15.0

Train 8 14.6 11.2 15.3

MN-SGD Train

256 4.6M (68.5%) 10 15.2 11.1 14.6
128 2.7M (81.7%) 11 18.3 11.1 14.6
64 1.7M (88.3%) 15 16.0 11.2 14.8
32 1.2M (91.6%) 12 20.8 11.5 16.1

15. The global mean and variance of the input features were normalized before training.
The baseline model had four 2 048-dimensional hidden layers with sigmoid activation
function and a softmax output layer. In contrast to the speech recognition experiments,
we did not use discriminative pre-training, because we observed that it causes overfitting
on this small database. We used a mini-batch size of 128 for all experiments. We only
performed the most promising experiments on IAM, i.e. we compared the baseline
system trained with SGD and a bottleneck network system trained with MN-SGD.

The experimental results are summarized in Table 6.4. In general, all models achieve
a very similar error rate on the development set, since the error rate of the baseline
model is already very low. The baseline model and the model with a 128-dimensional
bottleneck achieve the same performance on the development set. On the test set, the
bottleneck model improves over the baseline with 14.6 percent word error rate compared
to 15.0 percent word error rate.

6.7 Discussion

In this chapter, we developed a novel stochastic second-order optimization algorithm
and proved its convergence in a convex setting.

In experiments on speech and handwriting recognition tasks, we have shown that
our proposed algorithm is capable of training deep neural networks with a linear bot-
tleneck structure from scratch. Thus, training and recognition are accelerated due to
the reduced size of the models. Further, we found that the linear bottleneck structure
is a very effective means against overfitting. Across all tasks, we obtained consistent
recognition error rate improvements with much smaller models.

Our approach extends the work by [Sainath & Kingsbury+ 13] and [Xue & Li+

13]. Sainath et al. trained linear bottleneck models with SGD from scratch, but this
approach is only effective for the output layer. Xue et al.’s method allows for using linear
bottlenecks between all layers, but it requires training a full model first. Therefore, their
method does not accelerate training. The value of the linear bottleneck structure as a
regularization method has not been identified in [Sainath & Kingsbury+ 13,Xue & Li+

85

Chapter 6 Mean-Normalized Stochastic Gradient Descent

13].
An interesting work related to ours is [Raiko & Valpola+ 12], where zero mean acti-

vations are achieved by adapting the activation functions dynamically. Their approach
requires a network structure with shortcut connections, which bypass the hidden layer.
This is in particular difficult to realize with deep networks. In contrast, we proposed a
general optimization algorithm which can be applied to neural networks with arbitrary
topology.

A limitation of the experimental study in this chapter is that the models are trained
according to frame-discriminative criteria. Sequence-discriminative training of neural
networks is the topic of the following chapter.

6.8 Publications and Joint Work

The work described in this chapter is based on the publication [Wiesler & Richard+

14b]. The author derived the proposed algorithm, contributed the idea to apply it to
linear bottleneck networks, and the idea to proof its convergence using the theorem
by [Sunehag & Trumpf+ 09]. The experiments on the speech recognition task and the
implementation as part of the RASR neural network module [Wiesler & Richard+ 14a]
were performed by A. Richard under the author’s supervision. These experiments were
redone for this thesis for consistency with other chapters and extended by experiments
on the handwriting recognition task. The baseline system for the handwriting recogni-
tion task builds on the system developed by M. Kozielski and P. Doetsch [Kozielski &
Doetsch+ 13].

86

Chapter 7

Sequence-Discriminative Training of Neural
Networks

Acoustic models in hybrid neural-network-HMM speech recognition systems are typ-
ically trained on frame level, usually according to the cross-entropy criterion. In a
number of recent works [Kingsbury 09,Kingsbury & Sainath+ 12,Su & Li+ 13,Veselý &
Ghoshal+ 13,Heigold & McDermott+ 14,McDermott & Heigold+ 14], it has been shown
that neural-network-HMMs can be improved substantially by training them according
to the sequence-discriminative criteria, which we discussed in Chapter 3. Sequence-
discriminative training – or short sequence training – is considered as an essential step
in building state-of-the-art speech recognition systems.

However, sequence-discriminative training of neural networks has turned out to be a
complex technique, which is not well understood yet. Several authors observed problems
with its stability and proposed a variety of solutions. From a practical point of view,
sequence-discriminative training is also challenging because of its high computational
costs.

The goal of this chapter is to gain more empirical insight into this important tech-
nique. Further, we extend our work on training linear bottleneck networks from scratch
presented in the previous chapter. Experiments are performed on a small-scale hand-
writing recognition task and medium to large-scale speech recognition tasks [Wiesler &
Golik+ 15].

7.1 Introduction

Conceptually, sequence training of neural networks is rather straightforward. In com-
parison to conventional frame-based training, only the error signal of the output layer
needs to be changed. The error signal is collected on a word lattice in the same way
as in discriminative training of GHMMs. The forward and the error backpropagation
pass of the neural network remain unchanged.

In practice, sequence training of neural networks has turned out to be a complex
technique and it is not yet possible to draw clear conclusions from previous work about
the best training setup. In particular, some authors found MPE or the closely related
sMBR criterion to perform better than MMI [Veselý & Ghoshal+ 13], while others
found the converse to be true [Su & Li+ 13, McDermott & Heigold+ 14]. In some

87

Chapter 7 Sequence-Discriminative Training of Neural Networks

papers [Heigold & McDermott+ 14,Heigold & McDermott+ 14], only MMI respectively
sMBR has been applied, but their performance has not been compared. In addition,
several authors observed problems with the stability of sequence training and proposed
different modifications of the training criteria [Su & Li+ 13,Veselý & Ghoshal+ 13].

Another debated issue is the choice of the optimization algorithm. Most groups use
SGD on utterance-level [Su & Li+ 13, Veselý & Ghoshal+ 13, Heigold & McDermott+

14]. [Kingsbury & Sainath+ 12] used a parallelized implementation of the HF algorithm,
which we studied in Chapter 5. They found HF not only to be faster than SGD in terms
of wall-clock time, but also to achieve slightly better recognition results. So far, there
has been no comparison of SGD with other batch algorithms in the context of sequence
training.

Thinking of the hidden layers of a neural network as the feature extractor and the
output layer as the classifier, sequence training can be compared with discriminative
training of NN-GHMM-Tandem systems [Hermansky & Ellis+ 00]. While for the latter,
only the classifier is trained sequence-discriminatively, direct sequence training of neural
networks typically optimizes the complete network jointly. It is an interesting question,
whether this additional complexity is beneficial.

In the following, our aim is to shed more light on these open questions. In the next
sections, we recap the sequence-discriminative training criteria and discuss modifica-
tions of them proposed in literature. We briefly discuss the optimization algorithms,
which we considered in this work, in the context of sequence training. Then, we present
our experimental results on speech and handwriting recognition tasks with increasing
complexity.

7.2 Training Criteria

Exactly the same training criteria as for Gaussian and log-linear HMMs can be applied
to neural networks as well. For brevity, we write the neural network as a log-linear
model with a parameterized feature extractor fϑ(x) which is not further specified, i.e.
for an emission model label a and a feature vector x, we have

pθ(a|x) =
1

Z(x)
exp(λ>a fϑ(x) + βa) . (7.1)

Here, Λ = (λ1; . . . ;λA) and β = (β1, . . . , βA) are the weight matrix and the bias vector
of the output layer, ϑ are the parameters of the feature extractor, and θ = (Λ, β, ϑ)
is the tuple with all parameters of the network. The factor Z(x) is the normalization
constant.

We use the notation from Chapter 3, i.e. x = (x1, . . . , xT) is a feature sequence with
reference word sequence w = (w1, . . . , wN). We assume that a Viterbi alignment with
corresponding emission model labels a = (a1, . . . , aT) and a word-pronunciation lattice
L are given.

88

Recall that the cross-entropy criterion is given by

F (CE)(θ) = − 1

T

T∑
t=1

log pθ(at|xt) . (7.2)

With the definition of the utterance-posterior probability as in Eq. (3.23), the sequence-
discriminative MMI criterion is defined as

F (MMI)(θ) = − log pθ(w|x) . (7.3)

The MPE criterion is an instance of MBR with the cost C defined as the approximate
phone error [Povey & Woodland 02]:

F (MPE)(θ) =
∑
π∈L

pθ(π|x) Cw[π] . (7.4)

7.3 Modifications for Robust Training

In several works, problems with the stability of sequence training has been reported.
The following modifications have been proposed to improve the performance of sequence
training.

7.3.1 Cross-entropy smoothing

[Su & Li+ 13] emphasize that lattice sparsity is an inherent cause of instability of
lattice-based sequence training. Even in very dense lattices, only a fraction of the
classes is represented at every frame. Unfavorable scores of unrepresented classes do
not affect the objective function at all. In other words, when the model changes too
much from the one used for lattice generation, there is a strong mismatch between
objective function and recognition error rate. This problem is especially severe with
stochastic optimization algorithms because of their frequent model updates.

As a solution to this problem, Su et al. proposed smoothing the sequence-
discriminative objective function with the frame-level objective function. This yields
for example the smoothed MMI criterion:

F (sm−MMI) = (1− γ)F (MMI) + γF (CE) , (7.5)

with an interpolation factor 0 < γ < 1.

The problem of lattice sparsity can be circumvented completely by computing the
lattices for every utterance on-demand [Heigold & McDermott+ 14]. This approach
however is only feasible within a complex software framework with a heavily parallelized
implementation of asynchronous SGD.

89

Chapter 7 Sequence-Discriminative Training of Neural Networks

7.3.2 Frame-rejection heuristic

The MMI objective function is unbounded, which makes MMI training sensitive to
outliers. [Veselý & Ghoshal+ 13] proposed a frame-rejection heuristic to make MMI
training more robust. According to the heuristic, all frames, where the probability of
the reference state given the whole observation sequence is below a small threshold,
are discarded. Given a lattice with Viterbi alignments a(t,π)t=1,...,T per path π, this
probability is computed as

γt(a) =
∑
π∈L

p(π|x)δ(a, a(t,π)) . (7.6)

This quantity is also known as state occupancy or generalized forward-backward proba-
bility, cf. [Schlüter 00, p38]. A frame is discarded, if

γt(at) < ε (7.7)

for a threshold ε > 0. The state occupancies are computed dynamically for every
utterance. Therefore, the decision whether a frame is discarded or not may differ
between epochs.

7.4 Optimization

The gradient of the sequence-discriminative criteria can be computed by backpropaga-
tion as in cross-entropy training, only the error signal at the output layer is computed
differently. The error signal is accumulated on a word lattice in the same way as in
sequence training of log-linear or Gaussian mixture models.

In general, any gradient-based numerical optimizer can be used for sequence training.
For frame-discriminative training, SGD on a single GPU or asynchronous SGD in a
distributed fashion are the de-facto standard. Most groups also use SGD for sequence
training [Kingsbury 09,Su & Li+ 13,Veselý & Ghoshal+ 13,Heigold & McDermott+ 14].
The advantages of stochastic optimization are less compelling in the case of sequence
training. First, the frequent model updates let the lattices deviate quickly from the
potential search space of the current model, which is the root cause of training instability.
Second, SGD on utterance level is less efficient, because the model updates are more
heterogeneous due to poorer data shuffling and the varying utterance length.

In contrast to frame-discriminative training, sequence training is initialized with a
good model. In this case, batch algorithms benefit strongly from second-order informa-
tion. Finally, batch algorithms can be parallelized straightforwardly and do not require
fiddling with learning rates.

Motivated by its good performance for log-linear models, we evaluate the batch al-
gorithm Rprop [Riedmiller & Braun 93] as an alternative to SGD. Rprop’s advantages
over the HF algorithm used in [Kingsbury & Sainath+ 12] are its small number of tun-
ing parameters, its simplicity, and that it has no computational overhead beyond the
gradient computation.

90

Table 7.1. Experimental results on the IAM handwriting recognition task

Criterion BN Epoch FER [%] WER [%]
Train Dev Test

CE - 12 9.0 11.1 15.0
MMI - 12 43.0 11.0 14.2

CE 128 11 18.3 11.1 14.6
MMI 128 4 46.3 10.6 12.7

7.5 Implementation

We implemented the sequence training in the neural network tool, which is part of the
RASR speech recognition toolkit described in Appendix B. As [Veselý & Ghoshal+ 13],
we chose a hybrid CPU/GPU approach. The neural network forward and backward
pass are performed on GPU. The lattice computations are performed on CPU. For the
lattice computations, we can re-use the discriminative GHMM training code, which has
already been implemented in RASR. Since the neural network forward and backward
pass are the same as in frame-discriminative training, the neural network code can be re-
used as well. The challenge in the implementation is mostly to improve the efficiency of
the CPU code, since this is the the performance bottleneck in a hybrid implementation.
The computation time for sequence training depends highly on the hardware and the
ratio of the size of the model and the lattices. In our experiments, one epoch of sequence
training was roughly twice as expensive as one cross-entropy epoch.

7.6 Experimental Results

In this section, we present our results using sequence training. The experiments were
performed on the same tasks as in the previous chapter, i.e. the handwriting recognition
task IAM, and the English broadcast conversations recognition task Quaero.

7.6.1 Offline handwriting recognition

In our experiments on the IAM handwriting recognition task, we applied the most
straightforward approach with SGD as the optimization algorithm and standard MMI
as the training criterion.

We applied sequence training to the cross-entropy trained neural networks from Sec-
tion 6.6. For comparison, we also report experiments of sequence training with bidi-
rectional LSTM-RNNs, which have been obtained in a joint work1 with P. Voigtländer
and P. Doetsch [Voigtlaender 14, Voigtlaender & Doetsch+ 15]. The LSTM-RNN had
three hidden layers with 500 memory cells for both forward and backward direction.

1See author’s contribution in Appendix E.

91

Chapter 7 Sequence-Discriminative Training of Neural Networks

The network has been trained using backpropagation through time without truncation
and SGD with a batch size of 30 sequences. The conventional four-layer feed-forward
neural network, the network with 128-dimensional bottlenecks, and the LSTM achieved
15.0, 14.6, respectively 14.5 percent word error rates on the test set.

The lattices for the sequence training have been generated by decoding the training
data with a unigram language model, the training lexicon, and the cross-entropy trained
neural networks. The size of the lattices has been reduced using forward-backward
pruning, and afterwards the force-aligned reference has been merged into the lattice.
The average number of lattice arcs per reference word was about fifty. The lattices
have been kept fixed for the complete training. The language model for sequence
training was the same as the one used for lattice generation. The sequence training
has been initialized with the cross-entropy model. We used fixed SGD learning rates
between 1e-3 and 1e-5. For each training, the best epoch has been determined on the
development set.

Already with this simple setup, sequence training improves the feed-forward network
by about five percent relative, see Table 7.1. We also observed that – as expected
– the frame error rate of the sequence-discriminatively trained model is higher than
that of the frame-discriminatively trained model. This sequence-trained neural network
already outperforms the cross-entropy trained LSTM. As demonstrated in [Voigtlaender
& Doetsch+ 15], the LSTM can be improved by sequence training as well using exactly
the same approach, and then achieves an error rate of 13.5 percent word error rate,
cf. Table A.6.

Analogously, we also applied sequence training to the bottleneck network from Chap-
ter 6. For optimization we used MN-SGD instead of SGD. Apart from that, the training
setup was identical. As can be seen in Table 7.1, we obtain an even higher relative im-
provement on the already stronger cross-entropy baseline. The obtained result of 12.7
percent word error rate even outperforms the sequence-discriminatively trained LSTM
network. To compare this model with the latest state-of-the-art, we further applied the
open vocabulary decoding technique described in [Kozielski & Rybach+ 13]. The result
of 11.9 percent word error rate on the test set is to our knowledge the best published
result on this database so far. The results by [Voigtlaender & Doetsch+ 15, Doetsch
& Kozielski+ 14,Kozielski & Doetsch+ 13] are directly comparable to our result, since
they use exactly the same feature extraction, lexicon, language model, and decoder
setup. The fact that our rather simple system outperforms those obtained with a more
sophisticated LSTM-RNN architecture highlights the importance of regularization for
neural network training, in particular in the case of limited training data as on this
task.

7.6.2 Conversational speech recognition

This section presents our experiments on the two variants of the English Quaero 2011
task described in Appendix A.2.2. The setup of the speech recognition system is the
same as in Chapter 6.

92

Table 7.2. Comparison of the proposed system to results reported by other
groups on the IAM database.

System WER [%]
Dev Test

Our system (BN-DNN) 8.9 11.9

[Voigtlaender & Doetsch+ 15] (LSTM, MMI) 8.7 12.7
[Doetsch & Kozielski+ 14] (modified LSTM) 8.4 12.2
[Kozielski & Doetsch+ 13] (LSTM/GHMM Tandem) 9.5 13.3

[Pham & Bluche+ 14] (LSTM, dropout) 11.2 13.6
[Graves & Liwicki+ 09] (LSTM, CTC) - 25.9
[Bertolami & Bunke 08] (GHMM ensemble) 26.9 32.9

Although we use the same algorithms and the same implementation for our speech
and handwriting recognition systems, the tasks have different characteristics, which
make the application of sequence training to conversational speech recognition more
challenging.

First of all, the amount of training data differs strongly for the tasks under consid-
eration. With our feature extraction, the number of training examples for the acoustic
respectively visual model is 3.5 million for the handwriting task and roughly 75 million
for the speech recognition task. Therefore, computational efficiency plays an important
role. The language model used for the speech recognition task has been trained on 3.7
billion running words, in comparison to just three million words for the handwriting
task, see Appendix A. With a stronger language model, improvements of the acoustic
model provide smaller gains in terms of the overall performance of the system. Second,
the output layer of the speech models is much larger, because of the use of context-
dependent models. Thus lattice sparsity is more severe. Third, conversational speech
transcriptions often contain errors, in particular with frequent speaker changes. This is
problematic, because sequence training is known to be sensitive to transcription errors,
see e.g. [Wang & Gales+ 07]. Finally, conversational speech contains different kinds of
noises and speech disfluencies, which are difficult to model.

Experiments on the small-scale task

Our initial setup for the sequence training on Quaero was the same as the one for the
handwriting recognition task, except that we used a weaker lattice pruning to avoid
lattice sparsity. For all speech recognition experiments, the average lattice density was
between 300 and 500, which is high in comparison to the lattices typically used for
discriminative GHMM training at RWTH.

While on the handwriting recognition task, sequence training in a straightforward
way already improved the system, we observed a strong degradation of the models on

93

Chapter 7 Sequence-Discriminative Training of Neural Networks

Table 7.3. Number of parameters and word error rates of the three
cross-entropy baseline systems on the Quaero/50h task

Model Number of parameters WER [%]
All Output layer Dev Test

Shallow NN 10.2M 9.2M 21.8 28.5
6-layer DNN 31.2M 9.2M 18.5 24.6
256-bottleneck-DNN 7.9M 1.2M 18.0 23.7

 20

 22

 24

 26

 28

 30

 32

 34

 0 1 2 3

W
E

R
 [

%
]

Epoch

MMI/fr+smooth
MMI/fr

MMI
MMI/smooth

Figure 7.1. Evolution of the word error rate with different variants of MMI
on Quaero/50h. fr stands for frame rejection and smooth for
cross-entropy smoothing

the speech task. Our first results were therefore obtained in the most controlled setup –
we only trained the output layer of a shallow network, which has just one hidden layer
with 2 048 sigmoid units. With cross-entropy training, this model achieves an error rate
of 28.5 percent on the test data, see Table 7.3.

Training modifications Figure 7.1 shows the evolution of the word error rate with
different MMI variants. It can be seen that cross-entropy smoothing is essential to sta-
bilize training. We observed the same behavior with MPE training (not shown in the
figure). The only MMI configuration that provided improvements was the combination
of cross-entropy smoothing and the frame rejection heuristic. The frame rejection heuris-
tic threshold was set to 1e-6, which reduced the amount of training data by roughly
five percent. All following results were obtained with cross-entropy smoothing with
interpolation factor 0.1 and additionally the frame rejection heuristic with threshold

94

Table 7.4. Results with the shallow network with different training criteria
and different language models on Quaero/50h.

Criterion Language model WER [%]
Dev Test

CE - 21.8 28.5

MPE
Unigram 21.0 27.4

4-gram
20.3 26.8

MMI 21.0 27.5

1e-6 in case of MMI.

Lattice generation Next, we inspected the lattices more closely. In our standard
setup, the lattices are created by decoding the training data with the training lexicon
and a unigram language model. We identified two issues with this setup. First, in our
training lexicon, short word fragments are modeled with a garbage model phoneme.
Such short word fragments appear frequently in conversational speech, for example
in false starts like “nat- natural” or “wou- should”. Since the word fragments are not
contained in the recognition lexicon, the garbage model can be discarded in testing. We
observed that a large number of the lattice-arcs have a garbage model pronunciation.
Therefore, sequence training focuses on discriminating the garbage model from the
reference state, although the garbage model is not used in the recognition lexicon at
all. We fixed this by adding a large penalty on the garbage model in the network used
for lattice generation. Second, we found that arcs with short words like “I” or “a” and
disfluencies like “um” or “huh” are overrepresented in the lattices. This is a consequence
of using a unigram language model and can be avoided with a higher-order language
model, see Table 7.4. Note that this observation is in contrast to results reported
in literature on discriminative training where a unigram language model is preferred,
e.g. [Schlüter & Müller+ 99, Povey 04, Heigold 10]. We conjecture that a higher-order
language model is preferable on spontaneous speech tasks, where the word boundaries
are not acoustically distinct.

Training criterion Finally, we found MPE to perform clearly better than MMI.
With the best lattice configuration, MPE achieves a word error rate of 26.8 percent in
comparison to 27.5 percent with MMI training, see Table 7.4.

In the next set of experiments, we applied sequence training to the deep neural
networks from Chapter 6. Our primary interest is the benefit of the bottleneck network
structure for sequence-trained models. Further, we compared the performance of Rprop
with SGD and we evaluated the impact of including the hidden layers in the sequence
training. According to the findings in the experiments with the shallow network, we

95

Chapter 7 Sequence-Discriminative Training of Neural Networks

Table 7.5. Results on the Quaero/50h task

DNN Bottleneck-DNN
Crit. Alg. Layers trained Ep. WER [%] Ep. WER [%]

Dev Test Dev Test

CE (MN-)SGD All 26 18.5 24.6 26 18.0 23.7

MPE
(MN-)SGD All 11 17.6 23.5 10 17.5 23.2
SGD Output 14 17.8 23.7 11 17.5 23.2

MPE Rprop
All 29 17.5 23.3 31 17.4 23.0
Output 24 17.5 23.3 18 17.6 23.1

used four-gram lattices and cross-entropy smoothed MPE for these experiments. The
results are shown in Table 7.5.

Optimization algorithm We applied Rprop with the standard hyperparameters
from [Riedmiller & Braun 93]. The initial step size has been set to a small value which
ensures a stable optimization start. Rprop is compared with either MN-SGD for the
bottleneck network with all layers included in the optimization or SGD in all other
cases. The results show that Rprop achieves the lowest error rate in all scenarios. As
expected, Rprop requires more epochs than SGD. On the other hand, we ran SGD
with multiple learning rates in parallel, which is not necessary for Rprop. Further, the
gradient computation required for Rprop can be distributed easily to multiple machines.
In our experiments, we used Rprop with ten GPUs. With this degree of parallelization,
we have an almost linear speed-up. In comparison to SGD on a single GPU, Rprop is
faster by a factor of about three in wall-clock time.

Bottleneck structure Next, we investigated whether the improvements obtained
with bottleneck networks persist after sequence training. We applied sequence training
only to the model with a bottleneck dimension of 256, because this model had the
lowest error rate after cross-entropy training. The results are given in Table 7.5. The
improvements from sequence training are smaller than with the conventional deep neural
network. Still, a small but consistent improvement of the bottleneck topology remains.

Output vs. all layers One could expect it to be important to include the hidden
layers in sequence training, because they amount to more than seventy percent of the
parameters of the DNN and more than eighty percent of the bottleneck DNN. However,
training the complete network only contributes to a rather small improvement of at most
0.2 percent word error rate. This justifies the typical approach taken in NN-GHMM
Tandem systems, where only the GMM is trained sequence-discriminatively.

This observation would allow for reducing the computational complexity strongly by
storing the activations of the last hidden layer and only training the log-linear output

96

Table 7.6. Results on the complete Quaero 2011 task

DNN Bottleneck-DNN
Crit. Alg. Layers trained Ep. WER [%] Ep. WER [%]

Dev Test Dev Test

CE (MN-)SGD All 17 15.2 20.9 17 14.9 19.9

MPE Rprop
All 36 14.1 19.2 41 14.0 18.9
Output 31 14.2 19.1 27 14.1 19.1

layer. In particular when using a linear bottleneck, one could train only 1.2 million pa-
rameters sequence-discriminatively in comparison to the 31.2 million parameters of the
complete DNN without linear bottlenecks. However, we did not exploit this possibility
in this work.

7.6.3 Experiments on the large-scale task

Finally, we applied sequence training to the complete Quaero 2011 task. The baseline
models are the conventional six-layer DNN and the model with 512-dimensional bottle-
necks from Chapter 6. Again, we used four-gram lattices and cross-entropy smoothed
MPE. For optimization, we used Rprop with ten graphics processing units (GPUs).
The results are shown in Table 7.6. Sequence training improves the conventional DNN
from 20.9 to 19.2 percent word error rate, which is a relative reduction of 8.1 percent.
The bottleneck model is improved by 5.0 percent relative. Again, the improvement of
the bottleneck model is smaller, but a slight gain of the bottleneck structure persists.

7.7 Discussion

Sequence training has been shown to give substantial improvements on state-of-the-art
speech recognition systems. However, effective sequence training remains a complex
engineering task and there is no common agreement on the best training configuration.

In this chapter, we presented experiments with our implementation of sequence train-
ing. Our experiments provide more empirical evidence on the best choice of the training
criterion, training enhancements, and the optimization algorithm.

We observed that sequence training with simple MMI and SGD optimization already
improves our handwriting recognition system on the IAM task. On the more diffi-
cult conversational speech recognition task, sequence training in a straightforward way
degraded the performance of the system. In particular, we found the cross-entropy
smoothing proposed by [Su & Li+ 13] to be essential for obtaining improvements. Su et
al. only evaluated this technique with stochastic optimization and only applied it to
MMI. So far, their idea has not been taken up by other authors. It is not exactly clear
under which conditions cross-entropy smoothing is required to avoid lattice sparsity.

97

Chapter 7 Sequence-Discriminative Training of Neural Networks

One factor which impacts lattice sparsity is the size of the output layer. Still, [Kings-
bury & Sainath+ 12] and [Veselý & Ghoshal+ 13] did not require smoothing for sequence
training of DNNs with large output layers. One reason might be that their lattices are
generated with a WFST decoder, while we use a dynamic decoder. In our opinion, this
is an important issue, which requires further analysis.

The question which optimization algorithm should be used does not have a simple
answer. [McDermott & Heigold+ 14] applied sequence training on very large datasets
and found that asynchronous SGD converges already before the whole data set is pro-
cessed even once. On the other hand, Rprop, which has been used in this work, can
be parallelized straightforwardly, and does not require tuning the learning rate. While
asynchronous SGD is non-deterministic and the result depends on factors as network
latency, Rprop is deterministic. This is a desirable property for reproducibility of
scientific results. Furthermore, training with Rprop resulted in a better recognition
performance than SGD. This observation is in line with the results by [Kingsbury &
Sainath+ 12,Saon & Soltau 14], where the batch algorithm Hessian-free has been found
to be slightly more accurate than SGD. Overall, Rprop is a good choice in terms of
efficiency for small to medium-scale tasks. Rprop is also useful if optimal performance
or deterministic behavior is desired. On very large-scale tasks in the order of thousands
of hours of acoustic training data, asynchronous SGD seems to be preferable.

Finally, we extended our work on neural networks with a linear bottleneck structure.
The sequence-trained bottleneck model achieved the best published result on the IAM
database we are aware of. This simple approach outperforms a much more complex
sequence-discriminatively trained LSTM-RNN. Clearly, RNNs offer more opportunities
for further improvements. Still, this competitive result shows the efficiency of the
bottleneck network structure as a regularization method. The observation on the speech
recognition tasks is similar. A consistent gain due to the bottleneck structure persists,
although the gain is here smaller than with only cross-entropy training.

7.8 Publications and Joint Work

This chapter is based on the publication [Wiesler & Golik+ 15]. The author realized the
software implementation, performed the systematic series of experiments, and analyzed
the results. P. Golik integrated the code into the official RASR release. Additional
experiments on the large-scale speech recognition task and the handwriting recognition
task were performed in the course of this thesis.

98

Chapter 8

Scientific Contributions

The aim of this work was to investigate discriminative models for sequence recognition
with a focus on optimization methods. It resulted in the following contributions that
cover different aspects of modeling and training:1

Training an LVCSR system discriminatively from scratch using convex opti-
mization

Discriminative training of Gaussian mixture HMMs requires a maximum-likelihood
trained initialization. The discriminative training itself involves many approximations
and heuristics such as the use of word lattices. This leads to much engineering work in
practice. As an alternative, we developed a hybrid log-linear HMM speech recognition
system suitable for LVCSR. The training of the model is convex, which allowed us to
train the model discriminatively from scratch. The log-linear system achieved compa-
rable performance to a discriminatively trained Gaussian mixture system, but with a
simpler lattice-free training. The main steps required to achieve this performance on
an LVCSR task were the use of sparse features and the application of our convergence
analysis of log-linear training.

In parallel to our work, hybrid neural-network HMMs have become the new state-of-
the art in speech recognition. Neural networks jointly learn the classifier and the feature
space. Thereby, they overcome the main disadvantage of log-linear models: the manual
definition of the feature space. The success of neural networks shows that enforcing
training convexity was too restricting, but the direction of hybrid discriminative HMMs
with context-dependent states as classes was the right direction.

Publications: [Wiesler & Nußbaum+ 09,Wiesler & Richard+ 11,Wiesler & Schlüter+

12,Wiesler & Richard+ 13,Heigold & Schlüter+ 12]

Convergence analysis of log-linear training

We theoretically analyzed the condition number of the optimization problem in log-
linear training. The analysis allows for drawing practical conclusions on how the condi-
tioning of the optimization problem can be improved. We validated the analysis empiri-
cally on handwriting recognition (Chapter 4) and speech recognition tasks (Chapter 3).

1Compare also Appendix E for details on author’s contributions.

99

Chapter 8 Scientific Contributions

Our study is more general than a previous result in literature, which has been derived
for analyzing neural network training [LeCun & Kanter+ 90]. The convergence analy-
sis is also the motivation for the novel stochastic second-order optimization algorithm,
which we developed in this work.

Publications: [Wiesler & Ney 11,Wiesler & Schlüter+ 11]

Evaluation of Hessian-Free optimization for large-scale cross-entropy train-
ing of DNNs

The Hessian-free algorithm [Martens 10] has been tailored specifically for neural network
training. In contrast to other second-order algorithms, it is based on a full second-order
model of the objective function. In the original work [Martens 10], the algorithm has
only been applied to small-scale tasks and has not been compared to stochastic gra-
dient descent. In speech recognition, Hessian-free optimization has received attention,
since [Kingsbury & Sainath+ 12] achieved gains in wall-clock time and error rate by
applying the algorithm to sequence-discriminative training. In this work, we evaluated
the use of Hessian-free optimization for large-scale cross-entropy training. We found
that the algorithm is not feasible for large-scale training of deep neural networks from
scratch. With an appropriate initialization, Hessian-free can achieve lower training
frame error rates as stochastic gradient descent, but these improvements did not carry
over to unseen data. However, we could reduce the size of the model slightly with
Hessian-free optimization without increase in error rate.

Publication: [Wiesler & Li+ 13]

Optimization of linear bottleneck networks from scratch using a novel
stochastic second-order optimization algorithm

We developed a novel stochastic second-order optimization algorithm and proved its
convergence in a convex setting. The algorithm is motivated by our convergence analysis
of log-linear training. The algorithm has negligible overhead in comparison to stochastic
gradient descent and does not require additional tuning of hyperparameters.

Empirically, we showed that our proposed algorithm is capable of training deep neural
networks with a linear bottleneck structure from scratch. Training and evaluation of
the networks are accelerated due to the reduced size of the models. Further, we found
that the linear bottleneck structure is a very effective regularization method. Across
all considered tasks, we obtained consistent recognition error rate improvements with
much smaller models.

Publication: [Wiesler & Richard+ 14b]

100

Investigations on sequence-discriminative training of neural networks

Sequence-discriminative training of neural networks is a key technique in building state-
of-the-art speech recognition systems. However, effective sequence training remains
a complex engineering task and there is no common agreement on the best training
configuration. Our experiments provide more empirical evidence on the best choice of
the training criterion, training enhancements, and the optimization algorithm. Further,
we extended our work on training linear bottleneck networks from scratch. A consistent
gain due to the bottleneck structure persists after sequence-discriminative training.

In a joint work, sequence-discriminative training has also been show to be effective
for recurrent neural networks with LSTM cells.

Publications: [Wiesler & Golik+ 15,Voigtlaender & Doetsch+ 15]

Development of open source software for neural network training

In the course of this thesis, a complex speech recognition software package has been
extended by components for neural network training and hybrid NN-HMM recognition.
The software package is freely available for academic use. The neural network implemen-
tation is flexible w.r.t. model structure, training criterion, and optimization algorithm.
We demonstrated the efficiency of the software by an application to a real-world task
and by comparing its performance with a well-proven neural network tool.

Publication: [Wiesler & Richard+ 14a]

101

Chapter 9

Outlook

Our work could touch only a few issues in the emerging research area of neural networks
in speech recognition. Possible future directions related to the findings in our work could
include the following topics:

Analysis of the objective function in neural network training

Our work contributed to a better theoretical understanding of training convex log-linear
models. With the resurgence of neural networks, a natural direction is the theoretical
analysis of the objective function of multi-layer neural networks. Of course, this problem
is much harder due to the non-convexity. First steps in this direction have been taken
in [Dauphin & Pascanu+ 14] and [Choromanska & Henaff+ 15]. However, many ques-
tions remain open: How can (unrealistic) assumptions be weakened? Can the better
understanding be used to actually improve training of neural networks?

Model reduction

With the training method introduced in our work, the size of deep neural networks can
be reduced strongly without decrease in performance. For using deep neural networks in
production, controlling model size is of great practical relevance. Another interesting
approach to this problem proposed in literature is known as model compression or
knowledge distillation [Bucila & Caruana+ 06, Li & Zhao+ 14, Hinton & Vinyals+ 15],
where a small model is learned with the outputs of a large model (or an ensemble of
models) as targets. It would be interesting to compare this approach with ours or
possibly to combine them.

Training criteria

In our experiments, we observed that sequence-discriminative training of neural net-
works provides substantial improvements over frame-discriminative training. Still, this
technique requires a considerable engineering effort. An easier-to-use training criterion
defined on sequence-level would be desirable. One interesting approach in this direction
is the lattice-free connectionist temporal classification training [Graves & Fernández+

06,Sak & Senior+ 15c].

Another interesting problem is how sequence-discriminative training can be made
more robust to transcription errors. In practical applications, unsupervised or lightly

103

Chapter 9 Outlook

supervised in-domain data is typically abundant, but transcribing it carefully is expen-
sive. In semi-supervised training, this data is transcribed automatically using a speech
recognition system, cf. [Lamel & Gauvain+ 02]. The data is then filtered based on
confidences and heuristics, see e.g. [Kapralova & Alex+ 14]. Can instead the training
algorithm directly account for the unreliability of the transcriptions?

Recurrent neural networks

Recurrent neural networks are a wide topic, which has only been touched briefly in
this work. In speech recognition, recurrent neural networks are of special interest,
because they are sequential models. In principle, this enables integrating all components
of a speech recognition system into the recurrent network. This direction has been
explored for example in [Graves & Mohamed+ 13, Hannun & Case+ 14]. It is an open
question, which classical speech recognition techniques are still required in such an
integrated framework. For instance, context-dependent modeling of phonemes still
gives a slight gain, but much less than in HMM-based speech recognition systems [Sak
& Senior+ 15b]. On the other hand, it has been shown that the improvements by
sequence-discriminative training for recurrent networks are still in the same range as for
feed-forward networks [Sak & Vinyals+ 14,Voigtlaender & Doetsch+ 15,Sak & Senior+

15a].
Since the recurrency makes optimization more difficult, it would also be interesting

to study optimization in the context of recurrent networks, and in particular to adapt
our proposed stochastic second-order optimization algorithm to recurrent networks.

104

Appendix A

Corpora and Systems

This appendix summarizes the information about the different tasks and baseline sys-
tems used in this work.

For the speech recognition experiments, we use a common acoustic front end con-
sisting of MFCC features derived from a bank of 20 filters. The MFCC features are
normalized by a vocal tract length normalization and augmented with a voicedness fea-
ture. Feature vectors from nine consecutive frames are concatenated and projected to
a lower-dimensional feature space by means of an LDA.

The baseline acoustic models consist of Gaussian mixture hidden Markov models. A
pronunciation is modeled by a sequence of triphones. Each triphone is modeled by a
three-state HMM with left-to-right topology, with the exception of silence, which is
modeled by a single-state HMM. The transition probabilities of the same type are tied,
i.e. all loop, forward, and skip transitions have the same probability. Only the transition
probabilities of the silence state are treated separately. Transitions leaving a word are
penalized with an additional cost, the word penalty. The transition probabilities and
the transition scale are not trained but manually tuned to minimize recognition error
rate on the development data.

The Gaussian mixtures have a globally pooled diagonal covariance matrix. A pho-
netic decision tree is used to determine the tying of the emission model. Initial acoustic
models are trained according to the maximum likelihood criterion using the EM algo-
rithm with Viterbi approximation and a splitting procedure. The maximum likelihood
model is then used as the initialization of an MPE training. The MPE objective is
optimized using Rprop. The best MPE iteration is selected on the development set.

A.1 Wall Street Journal

The WSJ0 corpus is a well-known corpus of American English read speech. It is available
at the Linguistic Data Consortium (LDC93S6A). The corpus consists of business journal
texts, read by American speakers. The training data consists of 15 hours of speech and
the evaluation corpus of 0.7 hours of speech. Since the official WSJ0 corpus does not
provide a development set, 410 sentences were extracted from ten new speakers of the
North American Business (NAB) task and used as a development set. The task has a
closed vocabulary of 5k words, i.e. all words in the development and evaluation corpus
are known. The corpus statistics are summarized in Table A.1.

105

Appendix A Corpora and Systems

Table A.1. Details of the WSJ0 system

Train Dev Eval

Duration [h] 15 0.7 0.7
#Running words 129k 7k 5k

OOV [%] - 0.0 0.0
PPL - 58 53

For all experiments on the WSJ task, we used the default acoustic front end described
above with an LDA target dimension of 33. The Gaussian mixture baseline system has
phonetic decision tree with 1 501 leaves. The triphone context is limited by the word
boundaries. The Gaussian mixture model has about 223k densities.

A trigram language model has been used for all recognitions. The maximum likeli-
hood baseline system achieved a word error rate of 3.5 percent on the evaluation data.
With a subsequent MPE training, the GHMM result has been improved to 3.2 percent
word error rate.1

A.2 Quaero English

The Quaero English corpus has been collected in the course of the Quaero project.2

Quaero was a research project, funded by the French government, with the goal of auto-
matic processing of general multimedia data in various languages. Speech recognition
was one of the research topics of the project. The goal was to develop speech recogni-
tion systems for conversational data as it is typically found on the web, for example in
podcasts. The baseline systems used in this work are simplified versions of the English
evaluation systems, which have been built as part of RWTH Aachen’s participation in
the project [Sundermeyer & Nußbaum-Thom+ 11]. RWTH’s English evaluation system
performed best among all submissions in the yearly evaluations from 2010 until the end
of the project in 2013.

We distinguish between three different versions of the corpus, which are described
below.

A.2.1 Quaero 2010

The Quaero 2010 corpus contains the acoustic and text training data, which has been
available in the 2010 evaluation campaign. The audio data consists of 103 hours of
broadcast conversations. Details of the training and test sets are shown in Table A.2.

1Thanks to Markus Nußbaum-Thom for providing the baseline system for this task.
2http://www.quaero.org

106

http://www.quaero.org

Table A.2. Details of the Quaero English systems

Corpus Duration [h] #Words OOV [%] PPL

Quaero 2010

Train 103 855k - -
Dev2010 3.3 39k 0.3 151
Eval2010 3.7 41k 0.3 149
Eval2011 3.3 35k 0.4 157

Quaero 2011

Train-50h 50 300k - -
Train-Full 234 1.7M - -
Dev2011 3.7 41k 0.3 132
Eval2011 3.3 35k 0.4 144

The text training data contains newspaper articles, blog data, and the transcriptions
of the acoustic training data. In total, it has a size of 3.1 billion running words.

We used the default feature extraction described above with an LDA target dimension
of 45. The phonetic decision tree has 4 501 leaves. The Gaussian mixture model has
roughly one million densities. The triphones include across-word context and word-
boundary information.

The recognition lexicon consists of the 150k most frequent words in the text training
data. The pronunciations are based on the BEEP pronunciation dictionary [Robinson
95]. Missing pronunciations were generated using automatic grapheme to phoneme
conversion [Bisani & Ney 03]. The out of vocabulary (OOV) rate is below 0.4 percent
on all test corpora.

A smoothed four-gram language model has been trained on the text training data.
The language model has been obtained by pruning the large language model to 50.4
million n-grams.

The development corpus from the Quaero 2010 evaluation has been used for tuning
the recognition system. The evaluation corpora from 2010 and 2011 have been used
as test sets. The recognition results of the GHMM baseline system with maximum
likelihood and MPE training are shown in Table A.3.

A.2.2 Quaero 2011

The Quaero 2011 corpus builds on the Quaero 2010 corpus, but contains additional
acoustic and text training data, which has been provided in the Quaero 2011 evaluation.
After 2011, no additional training data has been provided within the project. Hence,
the evaluation systems from 2011, 2012, and 2013 are all trained on the Quaero 2011
corpus. The total amount of acoustic data is 234 hours. The text data has a size of 3.7
billion running words.

In the Quaero 2011 systems, the feature extraction pipeline is the same as in the

107

Appendix A Corpora and Systems

Table A.3. Results of the GHMM baseline models with ML and MPE
training on the Quaero English tasks

WER [%]
Corpus GHMM/ML GHMM/MPE

Quaero 2010
Dev2010 25.5 24.0
Eval2010 25.1 24.0
Eval2011 32.2 30.6

Quaero 2011 / 50h
Dev2011 24.4 23.6
Eval2011 31.6 30.2

Quaero 2011 / Full
Dev2011 22.1 20.4
Eval2011 28.6 26.2

default setup, except that the voicedness feature has not been used. The final feature
dimension and the number of phonetic decision tree leaves is the same as in the Quaero
2010 system. The recognition lexicon is also the same as in the Quaero 2010 system.
A new four-gram language model has been trained on the extended text training data.
The pruned language model contains 47.7 million n-grams. Details on the amount of
training data and the perplexity of the language model are given in Table A.2. The
recognition systems were tuned on the Quaero 2011 development corpus, which coincides
with the evaluation corpus from 2010. The evaluation corpus from 2011 has been used
for testing.

At RWTH Aachen, a 50 hour subset of the training corpus has been selected as
a rather small benchmark task for acoustic modeling. In this work, we performed
experiments with acoustic models trained on both, the 50 hour subset and the complete
training corpus. The recognition results of the GHMM baseline systems with maximum
likelihood and MPE training are shown in Table A.3.

A.3 Isolated Handwritten Digit Recognition

We consider two databases for handwritten digit recognition: the USPS and the MNIST
database. Both are widely used reference datasets for handwritten digit recognition and
allow for fast experiments due to their small size.

The USPS database consists of isolated images of handwritten digits taken from US
mail envelopes. The images were normalized and scaled to 16×16 pixels. The task is
to classify the images to the digits from 0 to 9, i.e. there are ten classes. The training
set contains 7 291 images. The test set contains 2 007 images.

MNIST is another dataset for handwritten digit classification. It is one of the most
widely used machine learning tasks. The dataset contains 70 000 images of handwritten

108

Table A.4. Details of the IAM dataset

Train Development Test

#Running words 54k 9k 25k
#Lines 6.1k 0.9k 2.7k
#Writers 283 57 162

Table A.5. Details of the IAM handwriting recognition systems

IAM 2011 IAM 2014
Validation Test Development Test

OOV [%] 3.9 3.4 3.9 3.4
PPL 394 440 378 231

WER GHMM/ML [%] 33.5 39.4 13.1 18.3
WER GHMM/MPE [%] 24.1 29.3 12.2 14.9

digits. 60 000 are intended for training and 10 000 for testing. The resolution of the
images is 28×28 pixels.

A.4 Offline Continuous Handwriting Recognition

The IAM database [Marti & Bunke 02] contains images of handwritten English text
and provides four tasks. We apply our methods to the open-vocabulary line recognition
task, i.e. the task is to recognize the text from line images only. Information from
movement of the pen tip is not available. The vocabulary of the development and test
set is unconstrained. The database is split into a training, a development, and a test
set. The corpus statistics are summarized in Table A.4. All words are composed of
79 symbols, which consists of upper- and lowercase characters, punctuation, quotation
marks, a special symbol for crossed out words, and a white-space model.

The Lancaster-Oslo-Bergen, Brown and Wellington corpus and the transcriptions of
the training data are used for training the language model and selecting the lexicon,
as proposed in [Bertolami & Bunke 08]. The total amount of text training data is 3.3
million running words. The recognition lexicon has 50k words. The language model is
a Kneser-Ney smoothed trigram.

We consider two baseline systems on the IAM database. The first system, which we
refer to as IAM 2011, is described in [Dreuw & Heigold+ 11, Dreuw 12]. The second
one includes recent improvements by our group and is based on the work described
in [Kozielski & Doetsch+ 13].

109

Appendix A Corpora and Systems

A.4.1 The IAM 2011 system

In the IAM 2011 system, the feature preprocessing consists only of basic deslanting and
size normalization, as it is commonly applied in handwriting recognition. An image
slice is extracted at every position. Seven features in a sliding window are concatenated
and projected to a 30-dimensional vector by a principal component analysis. The 78
characters are modeled by five-state left-to-right HMMs, resulting in 390 distinct states
plus one state for the whitespace model. The emission probabilities of the generative
baseline system are modeled by GMMs with 25k mixture components. The baseline
results are shown in Table A.5. The maximum likelihood model achieves an error rate of
39.4 percent on the test data, which is comparable to the baseline results in [Bertolami
& Bunke 08, España Boquera & Castro-Bleda+ 11]. The results is improved to 29.3
percent word error rate with MPE training.

A.4.2 The IAM 2014 system

The IAM 2014 system is strongly improved over the IAM 2011 system. The main reasons
for the better performance are improvements in the feature preprocessing, a character
length modeling, and a better language model trained on the same data [Kozielski &
Doetsch+ 13].

The features obtained from the improved preprocessing pipeline are 24-dimensional.
With character length modeling, the number of distinct HMM states is 563. The statis-
tics of the IAM 2014 system are shown in Table A.5. The word error rate of the IAM
2014 system is 14.9 percent on the test data.

Note that although the IAM 2014 system outperforms the IAM 2011 system by a
large margin, the IAM 2011 system was competitive at the time of its development,
compare Table 7.2.

A.5 Overview of Experimental Results

Table A.6 gives an overview of our main experimental results on three tasks, which
are used throughout this work: the IAM handwriting recognition task based on the
2014 system and the English broadcast conversations recognition task based on the
2011 system with the complete acoustic training data (Quaero/Full) and the fifty hour
subset (Quaero/50h). The results are ordered by the type of the model and the training
criterion. The Gaussian mixture model baselines were partly trained by other members
of the group.

The results with log-linear models with polynomial features have been added for
sake of completeness. The features were in this case third-order polynomials and the
models have been trained using stochastic gradient descent by incrementally increasing
the polynomial order. One can observe that the approach does not scale well to larger
datasets. Details on the result with sparse features can be found in Chapter 3.

110

Table A.6. Overview of experimental results

Method IAM Quaero/50h Quaero/Full
Model Training Criterion Dev Test Dev Test Dev Test

GMM
ML 13.1 18.3 24.4 31.6 22.1 28.6
MMI 12.5 15.4 24.1 31.2 21.7 28.1
MPE 12.2 14.9 23.6 30.2 20.4 26.2

LL/polynomial CE 12.5 16.5 24.2 31.8 22.2 29.1
LL/sparse CE - - 23.6 30.6 - -

DNN
CE 11.1 15.0 18.5 24.6 15.2 20.9
MMI/MPE 11.0 14.2 17.5 23.3 14.1 19.2

BN-DNN
CE 11.1 14.6 18.0 23.7 14.9 19.9
MMI/MPE 10.6 12.7 17.4 23.0 14.0 18.9

LSTM-RNN
CE 10.9 14.5 - - - -
MMI 10.4 13.5 - - - -

The cross-entropy results with deep neural networks and bottleneck networks can be
found in Chapter 6. The corresponding results using sequence-discriminative training
(MMI for the handwriting task and MPE for the speech recognition tasks) are described
in Chapter 7.

The results using LSTM-RNNs are given for comparison with the feed-forward net-
work results on IAM, see Section 7.6.1. Details on these result can be found in [Voigt-
laender 14] and the corresponding publication [Voigtlaender & Doetsch+ 15].

111

Appendix B

Implementation of Neural Networks in the
RASR Toolkit

At RWTH Aachen University, the speech recognition toolkit RASR has been developed
and actively used for more than fourteen years. The toolkit has been made publicly
available1 in 2008 [Rybach & Gollan+ 09] with the aim of facilitating research in this
area and making scientific results reproducible. Within the scope of this work, RASR
has been extended by a neural network module [Wiesler & Richard+ 14a]. In particular,
the MN-SGD optimization algorithm and the sequence training algorithms discussed in
Chapter 6 and Chapter 7 are part of the toolkit.

In this chapter, we give an overview on our implementation of neural networks in
the RASR toolkit and compare its performance with QuickNet, an efficient publicly
available neural network software.

B.1 Implementation

The support of neural networks in an open source toolkit is challenging for two reasons.
First, neural networks are a highly active research topic. We therefore wrote our neural
network code base as generic as possible in order to allow for rapid integration of new
concepts. This is achieved by decoupling different software parts as much as possible
while maintaining clean interfaces that allow to modify and extend single aspects of
neural networks. Second, the computation time required for training neural networks
and using them in recognition is critical. Since our goal is to apply our methods to real-
life tasks, the implementation must be efficient. In our code, efficiency is achieved by
supporting CPU multithreading and general purpose computing on GPUs. The GPU
implementation makes use of the CUBLAS library and own CUDA kernels2 . For CPU
computations, highly optimized matrix libraries following the BLAS standard can be
used, for example Intel MKL or ACML.3

In the following, the main features of the neural network implementation in RASR
are described.

1see http://www-i6.informatik.rwth-aachen.de/rwth-asr
2see http://www.nvidia.com/object/cuda_home_new.html
3see https://software.intel.com/en-us/intel-mkl and
http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/

113

http://www-i6.informatik.rwth-aachen.de/rwth-asr
http://www.nvidia.com/object/cuda_home_new.html
https://software.intel.com/en-us/intel-mkl
http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/

Appendix B Implementation of Neural Networks in the RASR Toolkit

B.1.1 Models

RASR supports feed-forward networks of a very general topology. The networks can
have an arbitrary number of layers of different sizes and different activation functions.
Each layer may have multiple inputs from other layers. In general, the network must
be representable by a directed acyclic graph. In contrast, many other neural network
implementations such as QuickNet only allow for a simple linear structure. The non-
linear network structure enables for example the use of skip-connections or the joint
training of hierarchical models [Veselý & Karafiát+ 11]. The type of each layer can
be chosen independently. Currently, RASR provides the commonly used activation
functions sigmoid, tanh, linear and softmax as well as the more recent rectified linear
units (ReLU) [Nair & Hinton 10].

B.1.2 Frame-discriminative training

The structure of the neural network training code is similar to RASR’s implementation
of Gaussian mixture estimation. The FeedForwardTrainer has a NeuralNetwork, an
Estimator, a Statistics object, and a Regularizer. Given a mini-batch of training
examples, the trainer computes the sufficient statistics based on a forward and an
error backpropagation pass, updates the statistics, and performs an estimation step. If
available, all these operations are performed on a GPU without synchronization to the
main memory, thus avoiding expensive communication.

The available frame-discriminative training criteria are cross entropy, squared error,
and binary divergence [Solla & Levin+ 88]. Optionally, regularization parameters w.r.t.
`2- or `1-norm, momentum, and learning rates can be set individually for each layer.

While many neural network tools implement only stochastic gradient descent, RASR
supports a variety of optimization algorithms. Currently, the supported estimators
include basic SGD, SGD with momentum, and the MN-SGD algorithm developed in
this work. In addition, batch estimation with gradient descent and Rprop [Riedmiller
& Braun 93] is possible.

Almost all training components can be configured independently. In particular, we do
not only allow “natural pairings” of training criteria and output-layer, e.g. softmax with
cross-entropy or identity with squared-error as in QuickNet. More exotic combinations
like softmax-outputs with squared-error criterion are possible as well [Golik & Doetsch+

13].

A difficulty in the implementation of stochastic optimization algorithms is that they
require i.i.d. training examples, which is simulated by shuffling the training data. For
relatively small datasets, simply all training examples can be loaded into main memory
and then accessed in random order. For larger datasets, we use a twofold randomization.
We load as many training utterances as possible in random order into a buffer, and then
shuffle the buffer on frame-level.

114

Table B.1. Evaluation of QuickNet and RASR

WER [%]
QuickNet learning rates RASR learning rates

Training using Dev Test Dev Test

QuickNet 19.6 26.2 19.4 25.9
RASR 19.8 25.7 19.2 25.4

B.1.3 Sequence-discriminative training

The available sequence-discriminative criteria include MMI and MPE, optionally with
cross-entropy smoothing and frame rejection heuristic as discussed in Chapter 7. The
lattice computations required for computing the error signal at the output layer are
performed on CPU. All neural network computations are performed on a GPU, if avail-
able.

All optimization algorithms, which are available for frame-discriminative training,
can be applied in sequence-discriminative training as well. Stochastic optimization
algorithms are applied on utterance level.

B.1.4 Recognition

RASR comes with a dynamic decoder that is based on the history-conditioned lexical
tree approach [Ney & Ortmanns 00]. The generic code structure of RASR makes it easy
to implement a hybrid NN-HMM model in the decoder. The decoder uses an abstract
FeatureScorer for computing all required scores. The neural network feature scorer
performs a forward pass of the network and converts the state posteriors to likelihood
scores. In case of a softmax output layer, the expensive softmax activation function is
not evaluated, because the normalization term is a constant in the search problem and
can therefore be discarded. The feature scorer supports batching, i.e. multiple features
are processed at once, which strongly speeds up matrix multiplications.

B.1.5 Feature extraction

RASR provides a variety of signal analysis and preprocessing methods. Amongst others,
RASR supports MFCC, PLP, Gammatone, and MRASTA [Hermansky & Fousek 05]
features.

As described in Section B.1.2, stochastic optimization algorithms require that the
features are loaded into a buffer and shuffled. Typical features for speech applications
are obtained by stacking several consecutive frames in a sliding window. Buffering the
windowed features directly thus increases the memory requirements proportional to the
window size, which is typically in the order of 10 to 20. Instead, RASR can buffer only
the central frames and construct the windowed features on-the-fly when generating the
mini-batch.

115

Appendix B Implementation of Neural Networks in the RASR Toolkit

Table B.2. Runtime analysis of RASR and QuickNet

Model Hardware Implementation Time/Epoch [m] Speedup

1x2048
GPU

QuickNet 36.0
RASR 17.1 2.1

CPU
QuickNet 616.1
RASR 187.0 3.3

6x2048
GPU

QuickNet 58.2
RASR 37.1 1.8

CPU
QuickNet 1773.3
RASR 549.3 3.2

B.2 Experimental Comparison with QuickNet

In this section, we present experimental results which demonstrate the usefulness of
RASR’s neural network implementation on real-world tasks. We compare RASR with
QuickNet in order to verify the implementation.

Experiments have been performed on the 50 hour subset of the English Quaero corpus,
which is described in Section A.2.2. The experimental setup is the same as in Chapter 6,
except that we did not include the three states of the garbage model in the neural
network training. We evaluate two types of neural networks: a shallow neural network
with one hidden layer of 2 048 sigmoid units and a deep network with six hidden layers
of the same size. The number of network outputs is 4 498. All networks were trained
according to the cross-entropy criterion using stochastic gradient descent with a mini-
batch size of 512. The deep network has been initialized using layerwise pre-training.

As mentioned in Chapter 6, RASR uses a modification of the QuickNet learning rate
schedule Newbob. For a fair comparison we ran RASR and QuickNet with both learning
rate configurations. We aimed at keeping the QuickNet and RASR setups comparable
at all levels. We used exactly the same training data and feature extraction for both
implementations. All recognitions were performed with RASR using the same search
parameters.

Table B.1 shows the word error rates of RASR and QuickNet in experiments with
deep neural networks. Although both implementations use the same algorithms, it is
important to compare their performance, because the numerical stability of the code
and implementation details can impact the results. The results in Table B.1 confirm
that the RASR learning rates are slightly better than the default Newbob learning rates
in QuickNet. Further, in three out of four experiments, the model trained using RASR
achieved better results. The differences may not be significant, but we can conclude
that the results obtained with RASR are competitive.

116

In order to be able to train large models for real-world tasks and to tune systems,
an efficient implementation is required. Table B.2 summarizes the wall-clock time per
training epoch for the shallow and the deep network with RASR and QuickNet. The
runtime analysis has been performed on an an Nvidia Tesla K20c and a twelve-core
AMD Opteron (2.3GHz). It can be seen that RASR is faster than QuickNet by a factor
of 2.3 for the shallow network. The difference between both implementations is less
pronounced for the deep network, but RASR is still 1.8 times faster than QuickNet.

Comparing RASR’s GPU and CPU implementations, the training on GPU is faster
by a factor of 11 for the shallow network and 15 for the deep network. The gain of
using a GPU may be smaller on a faster CPU. Nevertheless, there is a clear advantage
of using a GPU for training deep neural networks.

B.3 Summary

In this chapter, we gave a detailed description of the neural network implementation in
our publicly available speech recognition toolkit RASR. The implementation served as
the basis for our research on neural networks. By making it publicly available to the
scientific community, we aim at allowing for a better reproducibility of our results and
facilitating research in this area in general.

117

Appendix C

Detailed Calculations

C.1 Chapter 6

Lemma C.1. Assume the notation of Section 6.2. The gradient of

F̃ = F ◦ φ−1 , (C.1)

is

∇W F̃(W, b) = ∇WF
(
φ−1(W, b)

)
+ a · ∇bF

(
φ−1(W, b)

)>
, (C.2)

∇bF̃(W, b) = ∇bF
(
φ−1(W, b)

)
. (C.3)

Proof. Recall that φ−1 is defined as

φ−1(W, b) = (W, b+W>a) . (C.4)

In the following, we use the shortcut

(W̃ , b̃) = φ−1(W, b) . (C.5)

We begin with the partial derivatives with respect to the weights:

∂F̃
∂wi,j

(W, b) =
∑
i′,j′

∂F
∂w̃i′,j′

(W̃ , b̃) ·
∂w̃i′,j′

∂wi,j
(W, b) (C.6)

+
∑
j′

∂F
∂b̃j′

(W̃ , b̃) ·
∂b̃j′

∂wi,j
(W, b) (C.7)

=
∑
i′,j′

∂F
∂w̃i′,j′

(W̃ , b̃) · δi′,i · δj′,j (C.8)

+
∑
j′

∂F
∂b̃j′

(W̃ , b̃) · δj′,j · ai (C.9)

=
∂F
∂w̃i,j

(W̃ , b̃) +
∂F
∂b̃j

(W̃ , b̃) · ai . (C.10)

119

Appendix C Detailed Calculations

Similarly, the partial derivatives with respect to the biases are:

∂F̃
∂bj

(W, b) =
∑
i′,j′

∂F
∂w̃i′,j′

(W̃ , b̃) ·
∂w̃i′,j′

∂bj
(W, b) (C.11)

+
∑
j′

∂F
∂b̃j′

(W̃ , b̃) ·
∂b̃j′

∂bj
(W, b) (C.12)

=
∑
j′

∂F
∂b̃j′

(W̃ , b̃) · δj′,j (C.13)

=
∂F
∂b̃j

(W̃ , b̃) . (C.14)

120

Appendix D

Symbols and Acronyms

In this appendix, all relevant acronyms and mathematical symbols which are used in
this thesis are defined for convenience.

D.1 Symbols

General Mathematical Notation

an1 short-hand notation for a finite sequence, an1 = (a1, . . . , an)
A⊗B Kronecker product of two matrices A and B
A> transpose of a matrix A
δi,j Kronecker delta
E expectation of a random variable
exp natural exponential function
∇f gradient of a function f
∂f
∂x partial derivative of a function f w.r.t. a variable x
∇2f Hessian matrix of a function f
In identity matrix of size n
inf infimum
κ(A) condition number of a positive definite matrix A
log natural logarithm
N set of natural numbers (including zero)
‖x‖p p-norm of a vector x, p ≥ 1
‖x‖ Euclidean norm of a vector x, i.e. ‖x‖ = ‖x‖2
N (·|µ,Σ) normal distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n

R set of real numbers
Rn n-dimensional vector space over R
Rm×n set of m× n-dimensional real matrices
σ(A) spectrum of matrix A
ϑj(A) j-th eigenvalue of a real and symmetric matrix A in ascending order

121

Appendix D Symbols and Acronyms

Special Symbols

a, a′ emission model label, typically given by the phonetic tree
aT1 ,a sequence of emission model labels, e.g. aT1 = (a1, . . . , aT)
A state tying, maps HMM state to emission model label
B mini-batch

b(l) bias vector of layer l in a neural network
c, c̄ class index
C number of classes
ca,l mixture weight of a GMM, where a is the emission model label and l the

index of the mixture component
Cw[π] word-pronunciation cost function, depending on reference w
D dimension of observation space
η, ηi learning rate
F objective function (training criterion), to be minimized

F (CE) cross-entropy (CE) objective function (with hard labels)

F (MMI) sequence-discriminative maximum mutual information (MMI) objective
function

F (MBR) minimum Bayes risk (MBR) objective function

F (MPE) minimum phone error (MPE) objective function
f feature function of log-linear model
J number of features of log-linear model
λc parameters of log-linear model for class c
Λ parameters of log-linear model
L word lattice
L(wN1) sub-lattice of L, containing only paths with word sequence wN1
La number of mixture components of the GMM for label a
Lev(·, ·) Levenshtein distance
µa,l mean of a GMM, where a is the label and l the index of the mixture

component
πN1 ,π word-pronunciation sequence, path in a lattice
r speech segment index
R number of speech segments
R regularization term
s HMM state
sT1 , s HMM state sequence, e.g. sT1 = (s1, . . . , sT)
Σ covariance matrix of a Gaussian distribution
σ non-linearity in a neural network
θ parameters of a neural network

W (l) weight matrix of layer l in a neural network
w, v word
wN1 ,w word sequence, e.g. wN1 = (w1, . . . , wN)

122

ω(π) function mapping from a word-pronunciation sequence to the correspond-
ing word sequence

x, x′ feature vector
xT1 ,x sequence of feature vectors, e.g. xT1 = (x1, . . . , xT)

123

Appendix D Symbols and Acronyms

D.2 Acronyms

AM acoustic model

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm
BN bottleneck

CE cross-entropy
CG conjugate gradient
CMLLR constrained maximum likelihood linear regression
CPU central processing unit
CRF conditional random field
CTC connectionist temporal classification
CV cross-validation

DNN deep neural network

EM expectation maximization

FER frame error rate

GHMM Gaussian-mixture-HMM
GIS generalized iterative scaling
GMM Gaussian mixture model
GPU graphics processing unit

HCRF hidden CRF
HF Hessian-free
HMM hidden Markov model

i.i.d. independent and identically distributed
IAM handwriting database provided by the Institut für

Informatik und angewandte Mathematik, University
of Bern

IIS improved iterative scaling

L-BFGS limited-memory BFGS
LDA linear discriminant analysis
LL log-linear

124

LM language model
LSTM long short-term memory
LVCSR large vocabulary continuous speech recognition

MBR minimum Bayes risk
MEMM maximum entropy Markov model
MFCC Mel-frequency cepstral coefficients
ML maximum likelihood
MMI maximum mutual information
MN-SGD mean-normalized stochastic gradient descent
MNIST Mixed National Institute of Standards and Technol-

ogy
MPE minimum phone error
MPFE minimum phone frame error

NN neural network

oLBFGS online L-BFGS
OOV out of vocabulary
OW-Rprop orthant-wise Rprop

PLP perceptual linear prediction
PPL perplexity

RASR RWTH Aachen University Automatic Speech Recog-
nition Toolkit

RBM restricted Boltzmann machine
RNN recurrent neural network
Rprop resilient backpropagation
RWTH Rheinish-Westfälische Technische Hochschule

SGD stochastic gradient descent
sMBR state-level minimum Bayes risk
SMDR3 Microsoft Short Message Dictation Database
SVD singular value decomposition
SVM support vector machine

USPS U.S. Postal Service

125

Appendix D Symbols and Acronyms

WER word error rate
WFST weighted finite state transducer
WSJ Wall Street Journal

126

Appendix E

Publications and Joint Work

This thesis is based on several publications, which have been co-authored by other
members of the RWTH Aachen speech recognition group. All publications have been
supervised and revised by Prof. Dr.-Ing. H. Ney and Dr. rer. nat. R. Schlüter (with
the exception of [Wiesler & Li+ 13]). In the following, the author’s contribution is
described as required by the university’s dissertation rules.

[Wiesler & Nußbaum+ 09] S. Wiesler and G. Heigold jointly developed the
idea of scaling log-liner models to large-scale tasks using sparse clustering features.
M. Nußbaum-Thom contributed the alignment for the from-scratch training. The soft-
ware implementation of the hybrid log-linear approach is by G. Heigold. S. Wiesler
performed the experiments, the analysis of the results, and wrote the manuscript.

[Wiesler & Richard+ 11], [Wiesler & Schlüter+ 12] S. Wiesler contributed
the ideas for the publications, in particular the OW-Rprop optimization algorithm and
the acceleration technique described in [Wiesler & Schlüter+ 12], and implemented the
methods. The experiments have been performed jointly by S. Wiesler and A. Richard.
The manuscripts have been written by S. Wiesler.

[Wiesler & Richard+ 13] S. Wiesler designed the publication, implemented the
framework for stochastic optimization, and wrote the manuscript. A. Richard imple-
mented specific optimization algorithms. The experiments were performed jointly by
S. Wiesler and A. Richard. The manuscript has been written by S. Wiesler.

[Heigold & Schlüter+ 12] S. Wiesler wrote the sections Optimization, Extended
Baum-Welch, Rprop, and Hybrid Approach Using Log-Linear Models. The results on
the WSJ task (Table 6) are by S. Wiesler.

[Wiesler & Ney 11], [Wiesler & Schlüter+ 11] S. Wiesler contributed the idea
for the convergence analysis, derived the theory, performed the experiments, and wrote
the manuscripts.

[Wiesler & Li+ 13] S. Wiesler contributed the idea for applying the HF algorithm
and implemented the algorithm in the Microsoft DNN training tool. The experiments
on MNIST were performed by S. Wiesler. The speech recognition experiments were per-

127

Appendix E Publications and Joint Work

formed jointly by S. Wiesler and J. Xue. The analysis of the results and the manuscript
are by S. Wiesler. The work was supervised by J. Li and J. Xue.

[Wiesler & Richard+ 14a] S. Wiesler designed the implementation described in
the publication and realized a major part of it. A. Richard, who supported the imple-
mentation, has been supervised by S. Wiesler. The experimental evaluation has been
carried out by A. Richard and P. Golik. The sections Introduction, Implementation,
and Conclusion have been written by S. Wiesler.

[Wiesler & Richard+ 14b] S. Wiesler derived the proposed algorithm, contributed
the idea to apply it to linear bottleneck networks, and the idea for the convergence proof.
The experiments and the implementation, which builds on [Wiesler & Richard+ 14a],
were performed by A. Richard under S. Wiesler’s supervision. S. Wiesler wrote the
manuscript, which has been revised by all co-authors.

[Wiesler & Golik+ 15] S. Wiesler realized the implementation described in the
publication, performed the systematic series of experiments and their analysis, and
wrote the manuscript. The integration of the code into the official RASR release package
has been performed by P. Golik. S. Wiesler wrote the manuscript, which has been
revised by all co-authors.

[Voigtlaender & Doetsch+ 15] The publication has been designed jointly by
P. Doetsch, P. Voigtländer, and S. Wiesler. The sequence training code has been writ-
ten by S. Wiesler, the Theano-based LSTM software by P. Doetsch, and the interface
by P. Voigtländer. The sequence training experiments with feed-forward networks have
been performed by S. Wiesler and the experiments with LSTM’s by P. Voigtländer.
The manuscript has been written jointly by P. Voigtländer, P. Doetsch, and S. Wiesler.

128

List of Figures

1.1 Basic architecture of a statistical speech recognition system 2
1.2 Illustration of an HMM as a graphical model. 4
1.3 Depiction of the Bakis HMM topology. 5
1.4 Example word lattice . 10
1.5 Illustration of a neural network. 13

3.1 Objective function of SGD, oLBFGS, and the diagonal Hessian method
on the training data . 45

4.1 Illustration of the “zig-zag” behavior of gradient descent 50
4.2 Training objective function on IAM . 58

6.1 Illustration of a conventional neural network layer and its counterpart
with a linear bottleneck . 79

6.2 Evolution of training frame error rate of SGD and MN-SGD for conven-
tional DNNs and models with bottlenecks 83

7.1 Evolution of the word error rate with different variants of MMI 94

129

List of Tables

3.1 Results on the WSJ corpus . 40
3.2 Results on the English Quaero 2010 corpus 43
3.3 Results on the English Quaero 2011 corpus 44
3.4 Comparison of optimization algorithms on the English Quaero 2010 corpus 44

4.1 Results on the USPS task . 57
4.2 Results on the IAM database . 60

5.1 Results with the HF algorithm on MNIST 68
5.2 Results on the short message dictation task 71

6.1 Number of parameters of bottleneck networks 82
6.2 Results on the Quaero/50h task . 82
6.3 Results on the complete Quaero 2011 training data 84
6.4 Results on the IAM handwriting recognition task 85

7.1 Experimental results on the IAM handwriting recognition task 91
7.2 Comparison of the proposed system to results reported by other groups

on the IAM database. 93
7.3 Number of parameters and word error rates of the three cross-entropy

baseline systems on the Quaero/50h task 93
7.4 Results with the shallow network with different training criteria and dif-

ferent language models on Quaero/50h. 94
7.5 Results on the Quaero/50h task . 95
7.6 Results on the complete Quaero 2011 task 97

A.1 Details of the WSJ0 system . 106
A.2 Details of the Quaero English systems 107
A.3 Results of the GHMM baseline models on the Quaero English tasks . . . 108
A.4 Details of the IAM dataset . 109
A.5 Details of the IAM handwriting recognition systems 109
A.6 Overview of experimental results . 111

B.1 Evaluation of QuickNet and RASR . 115
B.2 Runtime analysis of RASR and QuickNet 116

131

Bibliography

[Aizerman & Braverman+ 64] A. Aizerman, E.M. Braverman, L. Rozoner: Theoret-
ical foundations of the potential function method in pattern recognition learning.
Automation and remote control, Vol. 25, pp. 821–837, 1964.

[Allauzen & Mohri 03] C. Allauzen, M. Mohri: Efficient algorithms for testing the
twins property. J. of Automata, Languages, and Combinatorics, Vol. 8, No. 2, 2003.

[Alleva & Huang+ 96] P. Alleva, X.D. Huang, M.Y. Hwang: Improvements on the
pronunciation prefix tree search organization. In Proc. of the IEEE Int. Conf. on
Acoust., Speech, and Signal Process. (ICASSP), pp. 133–136, Atlanta, GA, USA,
May 1996.

[Anastasiadis & Magoulas+ 05] A.D. Anastasiadis, G.D. Magoulas, M.N. Vrahatis:
New globally convergent training scheme based on the resilient propagation algo-
rithm. Neurocomputing, Vol. 64, pp. 253–270, 2005.

[Andrew & Gao 07] G. Andrew, J. Gao: Scalable training of L1-regularized log-linear
models. In Proc. of the Int. Conf. on Mach. Learning (ICML), pp. 33–40, Corvallis,
OR, USA, June 2007.

[Aubert 02] X.L. Aubert: An overview of decoding techniques for large vocabulary
continuous speech recognition. Computer Speech and Language, Vol. 16, No. 1, pp. 89–
114, 2002.

[Bahl & Brown+ 86] L. Bahl, P. Brown, P. de Souza, R. Mercer: Maximum mutual
information estimation of hidden Markov model parameters for speech recognition.
In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP),
pp. 49–52, Tokyo, Japan, May 1986.

[Bahl & Jelinek+ 83] L.R. Bahl, F. Jelinek, R.L. Mercer: A maximum likelihood ap-
proach to continuous speech recognition. IEEE Trans. on Pattern Anal. and Mach.
Intell. (PAMI), Vol. 5, pp. 179–190, March 1983.

[Baker 75] J.K. Baker: Stochastic modeling for automatic speech understanding. In
D.R. Reddy, editor, Speech Recognition, pp. 512–542. Academic Press, New York,
NY, USA, 1975.

[Bakis 76] R. Bakis: Continuous speech recognition via centisecond acoustic states.
The J. of the Acoustical Soc. of America, Vol. 59, No. S1, pp. S97–S97, 1976.

133

Appendix E Bibliography

[Baum 72] L.E. Baum: An Inequality and Associated Maximization Technique in Sta-
tistical Estimation for Probabilistic Functions of Markov Processes. In O. Shisha,
editor, Inequalities, Vol. 3, pp. 1–8. Academic Press, New York, NY, 1972.

[Baum & Eagon 67] L.E. Baum, J. Eagon: An inequality with applications to statis-
tical estimation for probabilistic functions of Markov processes and to a model for
ecology. Bulletin of the Amer. Math. Soc., Vol. 73, No. 3, pp. 360–363, 1967.

[Bayes 63] T. Bayes: An essay towards solving a problem in the doctrine of chances. By
the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton,
AMFRS. Philosophical Transactions of the Royal Society, Vol. 53, pp. 370–418, 1763.
reprinted in Biometrika, vol. 45, no. 3/4, pp. 293–315, December 1958.

[Bellman 57] R.E. Bellman: Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1957.

[Bengio & Ducharme+ 01] Y. Bengio, R. Ducharme, P. Vincent: A neural probabilistic
language model. In Advances in Neural Inform. Process. Syst. (NIPS), pp. 932–938,
Denver, CO, USA, Dec. 2001.

[Berger & Pietra+ 96] A.L. Berger, V.J.D. Pietra, S.A.D. Pietra: A maximum entropy
approach to natural language processing. Computational Linguistics, Vol. 22, No. 1,
pp. 39–71, 1996.

[Bertolami & Bunke 08] R. Bertolami, H. Bunke: Hidden Markov model-based ensem-
ble methods for offline handwritten text line recognition. Pattern Recognition, Vol. 41,
No. 11, pp. 3452–3460, 2008.

[Bisani & Ney 03] M. Bisani, H. Ney: Multigram-based grapheme-to-phoneme conver-
sion for LVCSR. In Proc. of the European Conf. on Speech Commun. and Technology
(Eurospeech), pp. 933–936, Geneva, Switzerland, Sept. 2003.

[Bishop 06] C.M. Bishop: Pattern Recognition and Machine Learning, Vol. 1. Springer,
2006.

[Bordes & Bottou+ 09] A. Bordes, L. Bottou, P. Gallinari: SGD-QN: careful quasi-
Newton stochastic gradient descent. J. of Mach. Learning Research, Vol. 10, pp. 1737–
1754, 2009.

[Boser & Guyon+ 92] B.E. Boser, I.M. Guyon, V.N. Vapnik: A training algorithm for
optimal margin classifiers. In Proc. of the Ann. Workshop on Computational Learning
Theory (COLT), pp. 144–152, Pittsburgh, PA, USA, July 1992.

[Bottou 91] L. Bottou: Une approche théorique de l’apprentissage connexionniste: ap-
plications à la reconnaissance de la parole. Ph.D. thesis, Université de Paris XI, Orsay,
France, 1991.

134

Appendix E Bibliography

[Bottou 98] L. Bottou: Online learning and stochastic approximations. In D. Saad,
editor, Online Learning in Neural Networks, pp. 9–43. Cambridge University Press,
Cambridge, UK, 1998.

[Bottou & Bousquet 08] L. Bottou, O. Bousquet: The tradeoffs of large scale learn-
ing. In Advances in Neural Inform. Process. Syst. (NIPS), pp. 161–168, Vancouver,
Canada, Dec. 2008.

[Bottou & Lin 07] L. Bottou, C.J. Lin: Support vector machine solvers. In L. Bottou,
O. Chapelle, D. DeCoste, J. Weston, editors, Large Scale Kernel Machines, pp. 301–
320. MIT Press, Cambridge, MA, USA, 2007.

[Bourlard & Morgan 94] H.A. Bourlard, N. Morgan: Connectionist speech recognition:
a hybrid approach, Vol. 247. Kluwer Academic Publishers, 1994.

[Boyd & Vandenberghe 09] S. Boyd, L. Vandenberghe: Convex Optimization. Cam-
bridge University Press, 2009.

[Boyd & Vandenberghe 14] S. Boyd, L. Vandenberghe: Subgradients. Stanford Uni-
versity Lecture slides. Retrieved September 10, 2014 from http://stanford.edu/

class/ee364b/lectures/subgradients_notes.pdf, May 2014.

[Bridle 90] J.S. Bridle: Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocomputing, pp.
227–236. Springer, 1990.

[Bryson & Denham+ 63] A.E. Bryson, W.F. Denham, S.E. Dreyfus: Optimal program-
ming problems with inequality constraints. AIAA journal, Vol. 1, No. 11, pp. 25–44,
1963.

[Bucila & Caruana+ 06] C. Bucila, R. Caruana, A. Niculescu-Mizil: Model compres-
sion. In Proc. of the Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD),
pp. 535–541, Philadelphia, PA, USA, Aug. 2006.

[Burr 86] D.J. Burr: A neural network digit recognizer. In Proc. of the IEEE Int. Conf.
of Syst., Man and Cybernetics, pp. 1621–1625, Atlanta, GA, USA, Oct. 1986.

[Chapelle 07] O. Chapelle: Training a support vector machine in the primal. Neural
Computation, Vol. 19, No. 5, pp. 1155–1178, 2007.

[Choromanska & Henaff+ 15] A. Choromanska, M. Henaff, M. Mathieu, G.B. Arous,
Y. LeCun: The loss surfaces of multilayer networks. In Proc. of the Int. Conf. on
Artificial Intell. and Stat. (AISTATS), pp. 192–204, San Diego, CA, USA, May 2015.

[Cohn 07] T.A. Cohn: Scaling conditional random fields for natural language processing.
Ph.D. thesis, University of Melbourne, Melbourne, Australia, Jan. 2007.

135

http://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf
http://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

Appendix E Bibliography

[Cortes & Vapnik 95] C. Cortes, V. Vapnik: Support-vector networks. Mach. Learning,
Vol. 20, No. 3, pp. 273–297, 1995.

[Dahl & Ranzato+ 10] G.E. Dahl, M. Ranzato, A. Mohamed, G.E. Hinton: Phone
recognition with the mean-covariance restricted Boltzmann machine. In Advances in
Neural Inform. Process. Syst. (NIPS), pp. 469–477, Vancouver, Canada, Dec. 2010.

[Dahl & Yu+ 12] G.E. Dahl, D. Yu, L. Deng, A. Acero: Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition. IEEE Trans. on Audio,
Speech, and Language Process., Vol. 20, No. 1, pp. 30–42, 2012.

[Darroch & Ratcliff 72] J.N. Darroch, D. Ratcliff: Generalized iterative scaling for log-
linear models. Ann. of the Math. Stat., Vol. 43, No. 5, pp. 1470–1480, 1972.

[Dauphin & Pascanu+ 14] Y.N. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli,
Y. Bengio: Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. In Advances in Neural Inform. Process. Syst. (NIPS), pp.
2933–2941, Montreal, Canada, Dec. 2014.

[Davis & Mermelstein 80] S. Davis, P. Mermelstein: Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spoken sentences. IEEE
Trans. on Acoust., Speech, and Signal Process., Vol. ASSP-28, No. 4, pp. 357 – 366,
Aug. 1980.

[Dean & Corrado+ 12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le,
M.Z. Mao, M. Ranzato, A.W. Senior, P.A. Tucker, K. Yang, A.Y. Ng: Large scale
distributed deep networks. In Advances in Neural Inform. Process. Syst. (NIPS), pp.
1232–1240, Lake Tahoe, NV, USA, Dec. 2012.

[Dempster & Laird+ 77] A. Dempster, N. Laird, D. Rubin: Maximum likelihood from
incomplete data via the EM algorithm. J. of the Roy. Statistical Soc. Series B
(Methodological), Vol. 39, No. B, pp. 1 – 38, 1977.

[Do & Artières 10] T.M.T. Do, T. Artières: Neural conditional random fields. In Proc.
of the Int. Conf. on Artificial Intell. and Stat. (AISTATS), pp. 177–184, Sardinia,
Italy, May 2010.

[Doetsch & Kozielski+ 14] P. Doetsch, M. Kozielski, H. Ney: Fast and robust training
of recurrent neural networks for offline handwriting recognition. In Proc. of the Int.
Conf. on Frontiers in Handwriting Recognition (ICFHR), pp. 279–284, Crete, Greece,
Sept. 2014.

[Dreuw 12] P. Dreuw: Probabilistic sequence models for image sequence processing and
recognition. Ph.D. thesis, RWTH Aachen University, Aachen, Germany, April 2012.

[Dreuw & Heigold+ 11] P. Dreuw, G. Heigold, H. Ney: Confidence and margin-based
MMI/MPE discriminative training for offline handwriting recognition. Int. J. on
Document Anal. and Recognition, Vol. 14, No. 3, pp. 273–288, April 2011.

136

Appendix E Bibliography

[Duchi & Hazan+ 11] J. Duchi, E. Hazan, Y. Singer: Adaptive subgradient methods for
online learning and stochastic optimization. J. of Mach. Learning Research, Vol. 12,
pp. 2121–2159, 2011.

[Eide & Gish 96] E. Eide, H. Gish: A parametric approach to vocal tract length nor-
malization. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process.
(ICASSP), pp. 346–348, Atlanta, GA, USA, May 1996.

[Esling 10] J.H. Esling: Phonetic Notation, pp. 678–702. Blackwell Publishing Ltd.,
2010.

[España Boquera & Castro-Bleda+ 11] S. España Boquera, M. Castro-Bleda, J. Gorbe-
Moya, F. Zamora-Martinez: Improving offline handwritten text recognition with
hybrid HMM/ANN models. IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI),
Vol. 33, No. 4, pp. 767–779, April 2011.

[Evermann & Woodland 00] G. Evermann, P. Woodland: Posterior probability decod-
ing, confidence estimation and system combination. In Proc. of the NIST Speech
Transcription Workshop, College Park, MD, USA, 2000.

[Fisher 36] R.A. Fisher: The use of multiple measurements in taxonomic problems.
Annals of Eugenics, Vol. 7, No. 179-188, 1936.

[Fontaine & Ris+ 97] V. Fontaine, C. Ris, J.M. Boite: Nonlinear discriminant analysis
for improved speech recognition. In Proc. of the European Conf. on Speech Commun.
and Technology (Eurospeech), Vol. 2, pp. 2071–2074, Rhodos, Greece, Sept. 1997.

[Fosler-Lussier & Morris 08] E. Fosler-Lussier, J. Morris: Crandem systems: condi-
tional random field acoustic models for hidden Markov models. In Proc. of the IEEE
Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 4049–4052, Las
Vegas, NV, USA, March 2008.

[Gales 98] M.J. Gales: Maximum likelihood linear transformations for HMM-based
speech recognition. Computer Speech and Language, Vol. 12, No. 2, pp. 75–98, 1998.

[Geman & Bienenstock+ 92] S. Geman, E. Bienenstock, R. Doursat: Neural networks
and the bias/variance dilemma. Neural Computation, Vol. 4, No. 1, pp. 1–58, 1992.

[Generet & Ney+ 95] M. Generet, H. Ney, F. Wessel: Extensions to absolute discount-
ing for language modeling. In Proc. of the European Conf. on Speech Commun. and
Technology (Eurospeech), pp. 1245–1248, Madrid, Spain, Sept. 1995.

[Gibson & Hain 06] M. Gibson, T. Hain: Hypothesis spaces for minimum Bayes risk
training in large vocabulary speech recognition. In Proc. of the Ann. Conf. of the Int.
Speech Commun. Assoc. (Interspeech), pp. 2406–2409, Pittsburgh, PA, USA, Sept.
2006.

137

Appendix E Bibliography

[Glorot & Bengio 10] X. Glorot, Y. Bengio: Understanding the difficulty of training
deep feedforward neural networks. In Proc. of the Int. Conf. on Artificial Intell. and
Stat. (AISTATS), pp. 249–256, Sardinia, Italy, May 2010.

[Gold & Lippmann+ 87] B. Gold, R. Lippmann, M. Malpass: Some neural net recog-
nition results on isolated words. In Proc. of Int. Conf. on Neural Networks (ICNN),
San Diego, CA, USA, June 1987.

[Golik & Doetsch+ 13] P. Golik, P. Doetsch, H. Ney: Cross-entropy vs. squared error
training: a theoretical and experimental comparison. In Proc. of the Ann. Conf. of
the Int. Speech Commun. Assoc. (Interspeech), pp. 1756–1760, Lyon, France, Aug.
2013.

[Graves & Fernández+ 06] A. Graves, S. Fernández, F.J. Gomez, J. Schmidhuber: Con-
nectionist temporal classification: labelling unsegmented sequence data with recur-
rent neural networks. In Proc. of the Int. Conf. on Mach. Learning (ICML), pp.
369–376, Pittsburgh, PA, USA, June 2006.

[Graves & Liwicki+ 09] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke,
J. Schmidhuber: A novel connectionist system for unconstrained handwriting recog-
nition. IEEE Trans. on Pattern Anal. and Mach. Intell. (PAMI), Vol. 31, No. 5,
pp. 855–868, 2009.

[Graves & Mohamed+ 13] A. Graves, A. Mohamed, G.E. Hinton: Speech recognition
with deep recurrent neural networks. In Proc. of the IEEE Int. Conf. on Acoust.,
Speech, and Signal Process. (ICASSP), pp. 6645–6649, Vancouver, Canada, May
2013.

[Grezl & Karafiát+ 07] F. Grezl, M. Karafiát, S. Kontár, J. Cernockỳ: Probabilistic
and bottle-neck features for LVCSR of meetings. In Proc. of the IEEE Int. Conf.
on Acoust., Speech, and Signal Process. (ICASSP), pp. 757–760, Honolulu, HI, USA,
April 2007.

[Griewank 12] A. Griewank: Who invented the reverse mode of differentiation? Docu-
menta Matematica, Vol. Optimization Stories, pp. 389–400, 2012.

[Gunawardana & Mahajan+ 05] A. Gunawardana, M. Mahajan, A. Acero, J.C. Platt:
Hidden conditional random fields for phone classification. In Proc. of the European
Conf. on Speech Commun. and Technology (Eurospeech), pp. 1117–1120, Lisbon, Por-
tugal, Sept. 2005.

[Häb-Umbach & Ney 92] R. Häb-Umbach, H. Ney: Linear discriminant analysis for
improved large vocabulary continuous speech recognition. In Proc. of the IEEE Int.
Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 13–16, San Francisco,
CA, USA, March 1992.

138

Appendix E Bibliography

[Hannun & Case+ 14] A.Y. Hannun, C. Case, J. Casper, B.C. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A.Y. Ng: Deep speech:
scaling up end-to-end speech recognition, 2014. arXiv preprint http://arxiv.org/

abs/1412.5567.

[Hart & Nilsson+ 68] P.E. Hart, N.J. Nilsson, B. Raphael: A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. on Syst. Sci. and
Cybernetics, Vol. 4, No. 2, pp. 100–107, 1968.

[Heigold 10] G. Heigold: A log-linear discriminative modeling framework for speech
recognition. Ph.D. thesis, RWTH Aachen University, Aachen, Germany, June 2010.

[Heigold & Deselaers+ 08] G. Heigold, T. Deselaers, R. Schlüter, H. Ney: Modified
MMI/MPE: a direct evaluation of the margin in speech recognition. In Proc. of the
Int. Conf. on Mach. Learning (ICML), pp. 384–391, Helsinki, Finland, June 2008.

[Heigold & McDermott+ 14] G. Heigold, E. McDermott, V. Vanhoucke, A. Senior,
M. Bacchiani: Asynchronous stochastic optimization for sequence training of deep
neural networks. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 5624–5628, Florence, Italy, May 2014.

[Heigold & Ney+ 11] G. Heigold, H. Ney, P. Lehnen, T. Gass, R. Schlüter: Equivalence
of generative and log-linear models. IEEE Trans. on Audio, Speech, and Language
Process., Vol. 19, No. 5, pp. 1138–1148, July 2011.

[Heigold & Rybach+ 09] G. Heigold, D. Rybach, R. Schlüter, H. Ney: Investigations
on convex optimization using log-linear HMMs for digit string recognition. In Proc.
of the Ann. Conf. of the Int. Speech Commun. Assoc. (Interspeech), pp. 216–219,
Brighton, UK, Sept. 2009.

[Heigold & Schlüter+ 12] G. Heigold, R. Schlüter, H. Ney, S. Wiesler: Discriminative
training for automatic speech recognition: modeling, criteria, optimization, imple-
mentation, and performance. IEEE Signal Process. Mag., Vol. 29, No. 6, pp. 58–69,
Nov. 2012.

[Heigold & Wiesler+ 10] G. Heigold, S. Wiesler, M. Nußbaum-Thom, P. Lehnen,
R. Schlüter, H. Ney: Discriminative HMMS, log-linear models, and CRFS: What
is the difference? In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 5546–5549, Dallas, TX, USA, March 2010.

[Heigold & Zweig+ 09] G. Heigold, G. Zweig, X. Li, P. Nguyen: A flat direct model for
speech recognition. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 3861–3864, Taipei, Taiwan, April 2009.

[Hermansky 90] H. Hermansky: Perceptual linear predictive (PLP) analysis of speech.
J. of the Acoustical Soc. of America, Vol. 87, No. 4, pp. 1738 – 1752, June 1990.

139

http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567

Appendix E Bibliography

[Hermansky & Ellis+ 00] H. Hermansky, D.P.W. Ellis, S. Sharma: Tandem connection-
ist feature extraction for conventional HMM systems. In Proc. of the IEEE Int. Conf.
on Acoust., Speech, and Signal Process. (ICASSP), pp. 1635–1638, Istanbul, Turkey,
June 2000.

[Hermansky & Fousek 05] H. Hermansky, P. Fousek: Multi-resolution RASTA filtering
for TANDEM-based ASR. In Proc. of the European Conf. on Speech Commun. and
Technology (Eurospeech), pp. 361–364, Lisbon, Portugal, Sept. 2005.

[Hestenes & Stiefel 52] M.R. Hestenes, E. Stiefel: Methods of conjugate gradients for
solving linear systems. J. of Research of the Nat. Inst. of Standards, Vol. 49, No. 6,
pp. 409–436, 1952.

[Hifny & Renals+ 05] Y. Hifny, S. Renals, N.D. Lawrence: A hybrid Maxent/HMM
based ASR system. In Proc. of the European Conf. on Speech Commun. and Tech-
nology (Eurospeech), pp. 3017–3020, Lisbon, Portugal, Sept. 2005.

[Hifny & Renals 09] Y. Hifny, S. Renals: Speech recognition using augmented condi-
tional random fields. IEEE Trans. on Audio, Speech, and Language Process., Vol. 17,
No. 2, pp. 354–365, 2009.

[Hinton & Osindero+ 06] G. Hinton, S. Osindero, Y.W. Teh: A fast learning algorithm
for deep belief nets. Neural Computation, Vol. 18, No. 7, pp. 1527–1554, 2006.

[Hinton & Salakhutdinov 06] G.E. Hinton, R.R. Salakhutdinov: Reducing the dimen-
sionality of data with neural networks. Science, Vol. 313, No. 5786, pp. 504–507,
2006.

[Hinton & Vinyals+ 15] G. Hinton, O. Vinyals, J. Dean: Distilling the knowledge in a
neural network, 2015. arXiv preprint http://arxiv.org/abs/1503.02531v1.

[Hon & Lee 91] H.W. Hon, K.F. Lee: Recent progress in robust vocabulary-
independent speech recognition. In Proc. of the DARPA Speech and Natural Language
Process. Workshop, pp. 258–263, Pacific Grove, CA, USA, Feb. 1991.

[Horn & Johnson 94] R. Horn, C. Johnson: Topics in Matrix Analysis. Cambridge
University Press, 1994.

[Horn & Johnson 05] R. Horn, C. Johnson: Matrix Analysis. Cambridge University
Press, 2005.

[Huang & Zweig+ 14] Z. Huang, G. Zweig, B. Dumoulin: Cache based recurrent neural
network language model inference for first pass speech recognition. In Proc. of the
IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 6404 – 6408,
Florence, Italy, May 2014.

[Igel & Hüsken 03] C. Igel, M. Hüsken: Empirical evaluation of the improved Rprop
learning algorithms. Neurocomputing, Vol. 50, pp. 105–123, 2003.

140

http://arxiv.org/abs/1503.02531v1

Appendix E Bibliography

[Jaakkola & Haussler 99] T. Jaakkola, D. Haussler: Exploiting generative models in
discriminative classifiers. In Advances in Neural Inform. Process. Syst. (NIPS), pp.
487–493, Denver, CO, USA, Dec. 1999.

[Jaitly & Hinton 13] N. Jaitly, G.E. Hinton: Vocal tract length perturbation (VTLP)
improves speech recognition. In Proc. of the ICML Workshop on Deep Learning for
Audio, Speech and Language Process., Atlanta, GA, USA, June 2013.

[Jaitly & Nguyen+ 12] N. Jaitly, P. Nguyen, A.W. Senior, V. Vanhoucke: Application
of pretrained deep neural networks to large vocabulary speech recognition. In Proc.
of the Ann. Conf. of the Int. Speech Commun. Assoc. (Interspeech), Portland, OR,
USA, Sept. 2012.

[Jaynes 57] E.T. Jaynes: Information theory and statistical mechanics. Physical Review,
Vol. 106, pp. 620–630, May 1957.

[Jelinek 69] F. Jelinek: A fast sequential decoding algorithm using a stack. IBM J. of
Research and Develop., Vol. 13, pp. 675–685, Nov. 1969.

[Johnson 04] D. Johnson: QuickNet, Speech Group at ICSI, Berkeley. http://www.

icsi.berkeley.edu/Speech/qn.html.

[Kaiser & Horvat+ 00] J. Kaiser, B. Horvat, Z. Kacic: A novel loss function for the
overall risk criterion based discriminative training of HMM models. In Proc. of the
Int. Conf. on Spoken Language Process. (ICSLP), pp. 887–890, Beijing, China, Oct.
2000.

[Kaiser & Horvat+ 02] J. Kaiser, B. Horvat, Z. Kacic: Overall risk criterion estimation
of hidden Markov model parameters. Speech Commun., Vol. 38, No. 3–4, pp. 383–398,
2002.

[Kanthak & Ney+ 02] S. Kanthak, H. Ney, M. Riley, M. Mohri: A comparison of two
LVR search optimization techniques. In Proc. of the Int. Conf. on Spoken Language
Process. (ICSLP), pp. 1309–1312, Denver, CO, USA, Sept. 2002.

[Kanthak & Schütz+ 00] S. Kanthak, K. Schütz, H. Ney: Using SIMD instructions for
fast likelihood calculation in LVCSR. In Proc. of the IEEE Int. Conf. on Acoust.,
Speech, and Signal Process. (ICASSP), pp. 1531–1534, Istanbul, Turkey, June 2000.

[Kapralova & Alex+ 14] O. Kapralova, J. Alex, E. Weinstein, P.J. Moreno, O. Siohan:
A big data approach to acoustic model training corpus selection. In Proc. of the Ann.
Conf. of the Int. Speech Commun. Assoc. (Interspeech), pp. 2083–2087, Singapore,
Sept. 2014.

[Katz 87] S.M. Katz: Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Trans. on Speech and Audio Process.,
Vol. 35, pp. 400–401, March 1987.

141

http://www.icsi.berkeley.edu/Speech/qn.html
http://www.icsi.berkeley.edu/Speech/qn.html

Appendix E Bibliography

[Kingsbury 09] B. Kingsbury: Lattice-based optimization of sequence classification
criteria for neural-network acoustic modeling. In Proc. of the IEEE Int. Conf. on
Acoust., Speech, and Signal Process. (ICASSP), pp. 3761–3764, Taipei, Taiwan, April
2009.

[Kingsbury & Sainath+ 12] B. Kingsbury, T.N. Sainath, H. Soltau: Scalable minimum
Bayes risk training of deep neural network acoustic models using distributed Hessian-
free Optimization. In Proc. of the Ann. Conf. of the Int. Speech Commun. Assoc.
(Interspeech), pp. 10–13, Portland, OR, USA, Sept. 2012.

[Kira & Rendell 92] K. Kira, L.A. Rendell: A practical approach to feature selection.
In Proc. of the Int. Workshop on Mach. Learning, pp. 249–256, Aberdeen, Great
Britain, 1992.

[Kneser & Ney 95] R. Kneser, H. Ney: Improved backing-off for m-gram language
modeling. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process.
(ICASSP), pp. 181–184, Detroit, MI, USA, May 1995.

[Kononenko 94] I. Kononenko: Estimating attributes: analysis and extensions of RE-
LIEF. In Proc. of the European Conf. on Mach. Learning (ECML), pp. 171–182,
Catania, Italy, April 1994.

[Kozielski & Doetsch+ 13] M. Kozielski, P. Doetsch, H. Ney: Improvements in RWTH’s
system for off-line handwriting recognition. In Proc. of the Int. Conf. on Document
Anal. and Recognition (ICDAR), pp. 935–939, Washington DC, USA, Aug. 2013.

[Kozielski & Rybach+ 13] M. Kozielski, D. Rybach, S. Hahn, R. Schlüter, H. Ney:
Open vocabulary handwriting recognition using combined word-level and character-
level language models. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 8257–8261, Vancouver, Canada, May 2013.

[Kubo & Wiesler+ 11] Y. Kubo, S. Wiesler, R. Schlüter, H. Ney, S. Watanabe, A. Naka-
mura, T. Kobayashi: Subspace pursuit method for kernel-log-linear models. In Proc.
of the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 4500–
4503, Prague, Czech Republic, May 2011.

[Kuo & Gao 06] H.K.J. Kuo, Y. Gao: Maximum entropy direct models for speech
recognition. IEEE Trans. on Audio, Speech, and Language Process., Vol. 14, No. 3,
pp. 873–881, 2006.

[Lafferty & McCallum+ 01] J.D. Lafferty, A. McCallum, F.C.N. Pereira: Conditional
random fields: probabilistic models for segmenting and labeling sequence data. In
Proc. of the Int. Conf. on Mach. Learning (ICML), pp. 282–289, Williamstown, MA,
USA, July 2001.

142

Appendix E Bibliography

[Lamel & Gauvain+ 02] L. Lamel, J. Gauvain, G. Adda: Lightly supervised and un-
supervised acoustic model training. Computer Speech and Language, Vol. 16, No. 1,
pp. 115–129, 2002.

[Layton & Gales 06] M.I. Layton, M.J. Gales: Augmented statistical models for speech
recognition. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process.
(ICASSP), pp. 129–.132, Tolouse, France, May 2006.

[LeCun & Bottou+ 98] Y. LeCun, L. Bottou, G.B. Orr, K.R. Müller: Efficient Back-
Prop. In Neural Networks: Tricks of the Trade, pp. 9–50. Springer, 1998.

[LeCun & Kanter+ 90] Y. LeCun, I. Kanter, S. Solla: Second order properties of error
surfaces: Learning time and generalization. In Advances in Neural Inform. Process.
Syst. (NIPS), pp. 918–924, Denver, CO, USA, Nov. 1990.

[LeCun & Kanter+ 91] Y. LeCun, I. Kanter, S. Solla: Eigenvalues of covariance ma-
trices: application to neural-network learning. Physical Review, Vol. 66, No. 18,
pp. 2396–2399, May 1991.

[Levenshtein 66] V.I. Levenshtein: Binary codes capable of correcting deletions, inser-
tions, and reversals. Doklady Soviet Physics, Vol. 10, pp. 707 – 710, 1966.

[Li & Zhao+ 14] J. Li, R. Zhao, J. Huang, Y. Gong: Learning small-size DNN with
output-distribution-based criteria. In Proc. of the Ann. Conf. of the Int. Speech
Commun. Assoc. (Interspeech), pp. 1910–1914, Singapore, Sept. 2014.

[Liu & Nocedal 89] D. Liu, J. Nocedal: On the limited memory BFGS method for
large-scale optimization. Math. Programming, Vol. 45, No. 1, pp. 503–528, 1989.

[Lowerre 76] B. Lowerre: A comparative performance analysis of speech understanding
systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, 1976.

[Luenberger & Ye 08] D. Luenberger, Y. Ye: Linear and Nonlinear Programming.
Springer Verlag, 2008.

[Macherey & Ney 03] W. Macherey, H. Ney: A comparative study on maximum en-
tropy and discriminative training for acoustic modeling in automatic speech recog-
nition. In Proc. of the European Conf. on Speech Commun. and Technology (Eu-
rospeech), pp. 493–496, Geneva, Switzerland, Sept. 2003.

[Malouf 02] R. Malouf: A comparison of algorithms for maximum entropy parame-
ter estimation. In Proc. of the Conf. on Computational Natural Language Learning
(CoNLL), pp. 1–7, Aug. 2002.

[Martens 10] J. Martens: Deep learning via Hessian-free optimization. In Proc. of the
Int. Conf. on Mach. Learning (ICML), pp. 735–742, Haifa, Israel, June 2010.

143

Appendix E Bibliography

[Marti & Bunke 02] U. Marti, H. Bunke: The IAM-database: an English sentence
database for offline handwriting recognition. Int. J. on Document Anal. and Recog-
nition, Vol. 5, No. 1, pp. 39–46, 2002.

[McCallum & Freitag+ 00] A. McCallum, D. Freitag, F.C. Pereira: Maximum entropy
Markov models for information extraction and segmentation. In Proc. of the Int.
Conf. on Mach. Learning (ICML), pp. 591–598, Stanford, CA, USA, July 2000.

[McDermott & Heigold+ 14] E. McDermott, G. Heigold, P. Moreno, A. Senior, M. Bac-
chiani: Asynchronous stochastic optimization for sequence training of deep neural
networks: towards big data. In Proc. of the Ann. Conf. of the Int. Speech Commun.
Assoc. (Interspeech), pp. 1224–1228, Singapore, Sept. 2014.

[Mikolov & Karafiát+ 10] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, S. Khudan-
pur: Recurrent neural network based language model. In Proc. of the Ann. Conf.
of the Int. Speech Commun. Assoc. (Interspeech), pp. 1045–1048, Makuhari, Japan,
Aug. 2010.

[Minka 01] T. Minka: Algorithms for maximum-likelihood logistic regression. Technical
report, Carnegie Mellon University, 2001.

[Mohamed & Dahl+ 09] A.r. Mohamed, G. Dahl, G. Hinton: Deep belief networks for
phone recognition. In NIPS Workshop on Deep Learning for Speech Recognition and
Related Applications, Whistler, Canada, Dec. 2009.

[Mohamed & Dahl+ 12] A.r. Mohamed, G.E. Dahl, G. Hinton: Acoustic modeling
using deep belief networks. IEEE Trans. on Audio, Speech, and Language Process.,
Vol. 20, No. 1, pp. 14–22, 2012.

[Mohri & Riley 97] M. Mohri, M. Riley: Weighted determinization and minimization
for large vocabulary speech recognition. In eurospeech1997, pp. 131–134, Rhodes,
Greece, Sept. 1997.

[Moré & Sorensen 83] J.J. Moré, D.C. Sorensen: Computing a trust region step. SIAM
J. on Scientific and Statistical Computing, Vol. 4, No. 3, pp. 553–572, 1983.

[Morgan & Bourlard 89] N. Morgan, H. Bourlard: Generalization and parameter es-
timation in feedforward nets: some experiments. In Advances in Neural Inform.
Process. Syst. (NIPS), pp. 630–637, Denver, CO, USA, Nov. 1989.

[Nair & Hinton 10] V. Nair, G.E. Hinton: Rectified linear units improve restricted
Boltzmann machines. In Proc. of the Int. Conf. on Mach. Learning (ICML), pp.
807–814, Haifa, Israel, June 2010.

[Ney 84] H. Ney: The use of a one-stage dynamic programming algorithm for connected
word recognition. IEEE Trans. on Speech and Audio Process., Vol. 32, No. 2, pp. 263–
271, April 1984.

144

Appendix E Bibliography

[Ney 90] H. Ney: Acoustic modeling of phoneme units for continuous speech recog-
nition. In Proc. of the European Signal Process. Conf. (EUSIPCO), pp. 65–72,
Barcelona, Spain, Sept. 1990.

[Ney & Aubert 96] H. Ney, X. Aubert: Dynamic programming search strategies: From
digit strings to large vocabulary word graphs. In C.H. Lee, F. Soong, K. Paliwal,
editors, Automatic Speech and Speaker Recognition, Vol. 355 of The Kluwer Interna-
tional Series in Engineering and Computer Science, pp. 385–411. Springer US, 1996.

[Ney & Essen+ 94] H. Ney, U. Essen, R. Kneser: On structuring probabilistic depen-
dencies in language modeling. Computer Speech and Language, Vol. 2, No. 8, pp. 1–38,
1994.

[Ney & Häb-Umbach+ 92] H. Ney, R. Häb-Umbach, B.H. Tran, M. Oerder: Improve-
ments in beam search for 10000-word continuous speech recognition. In Proc. of the
IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 9–12, San
Francisco, CA, USA, March 1992.

[Ney & Mergel+ 87] H. Ney, D. Mergel, A. Noll, A. Paeseler: A data-driven organiza-
tion of the dynamic programming beam search for continuous speech recognition. In
Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp.
833–836, Dallas, TX, USA, April 1987.

[Ney & Ortmanns 00] H. Ney, S. Ortmanns: Progress in dynamic programming search
for LVCSR. Proc. of the IEEE, Vol. 88, No. 8, pp. 1224–1240, Aug. 2000.

[Ng 04] A.Y. Ng: Feature selection, L1 vs. L2 regularization, and rotational invariance.
In Proc. of the Int. Conf. on Mach. Learning (ICML), 78, Banff, Canada, June 2004.

[Nocedal & Wright 06] J. Nocedal, S.J. Wright: Numerical Optimization. Numerical
optimization, Vol. 2, 2006.

[Nolden & Ney+ 11] D. Nolden, H. Ney, R. Schlüter: Exploiting sparseness of backing-
off language models for efficient look-ahead in LVCSR. In Proc. of the IEEE Int.
Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 4684–4687, Prague,
Czech Republic, May 2011.

[Nolden & Schlüter+ 11] D. Nolden, R. Schlüter, H. Ney: Acoustic look-ahead for more
efficient decoding in LVCSR. In Proc. of the Ann. Conf. of the Int. Speech Commun.
Assoc. (Interspeech), pp. 893–896, Florence, Italy, Aug. 2011.

[Normandin 96] Y. Normandin: Maximum Mutual Information Estimation of Hidden
Markov Models. In C.H. Lee, F.K. Soong, K.K. Paliwal, editors, Automatic Speech
and Speaker Recognition: Advanced Topics, pp. 57–81. Springer, 1996.

[Notay 90] Y. Notay: Solving positive (semi)definite linear systems by preconditioned
iterative methods. In Preconditioned Conjugate Gradient Methods, Vol. 1457 of Lec-
ture Notes in Mathematics, pp. 105–125. Springer, 1990.

145

Appendix E Bibliography

[Odell & Valtchev+ 94] J.J. Odell, V. Valtchev, P.C. Woodland, S.J. Young: A one-
pass decoder design for large vocabulary recognition. In Proc. of the ARPA Spoken
Language Technology Workshop, pp. 405–410, Plainsboro, NJ, USA, March 1994.

[Ortmanns & Eiden+ 98] S. Ortmanns, A. Eiden, H. Ney: Improved lexical tree search
for large vocabulary recognition. In Proc. of the IEEE Int. Conf. on Acoust., Speech,
and Signal Process. (ICASSP), pp. 817–820, Seattle, WA, USA, May 1998.

[Ortmanns & Ney 95] S. Ortmanns, H. Ney: An experimental study of the search
space for 20000-word speech recognition. In Proc. of the European Conf. on Speech
Commun. and Technology (Eurospeech), pp. 901–904, Madrid, Spain, Sept. 1995.

[Ortmanns & Ney+ 97] S. Ortmanns, H. Ney, X. Aubert: A word graph algorithm
for large vocabulary continuous speech recognition. Computer Speech and Language,
Vol. 11, No. 1, pp. 43–72, Jan. 1997.

[Ortmanns & Ney 00] S. Ortmanns, H. Ney: Look-ahead techniques for fast beam
search. Computer Speech and Language, Vol. 14, No. 1, pp. 15–32, Jan. 2000.

[Palaz & Collobert+ 13] D. Palaz, R. Collobert, M. Magimai.-Doss: Estimating
phoneme class conditional probabilities from raw speech signal using convolutional
neural networks. In Proc. of the Ann. Conf. of the Int. Speech Commun. Assoc.
(Interspeech), pp. 1766–1770, Lyon, France, Aug. 2013.

[Paul 91] D.B. Paul: Algorithms for an optimal A∗ search and linearizing the search
in the stack decoder. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 693–696, Toronto, Canada, May 1991.

[Pearlmutter 94] B.A. Pearlmutter: Fast exact multiplication by the Hessian. Neural
Computation, Vol. 6, No. 1, pp. 147–160, 1994.

[Peeling & Moore+ 86] S. Peeling, R. Moore, M. Tomlinson: The multi-layer percep-
tron as a tool for speech pattern processing research. In Proc. of the Conf. on Speech
and Hearing, pp. 307–314, Edinburgh, Great Britain, Nov. 1986.

[Pham & Bluche+ 14] V. Pham, T. Bluche, C. Kermorvant, J. Louradour: Dropout
improves recurrent neural networks for handwriting recognition. In Proc. of the Int.
Conf. on Frontiers in Handwriting Recognition (ICFHR), pp. 285–290, Crete, Greece,
Sept. 2014.

[Plaut & Nowlan+ 86] D. Plaut, S. Nowlan, G. Hinton: Experiments on learning by
back propagation. Technical Report CMU-CS-86-126, Carnegie Mellon University,
1986.

[Povey 04] D. Povey: Discriminative training for large vocabulary speech recognition.
Ph.D. thesis, Cambridge University, Cambridge, UK, 2004.

146

Appendix E Bibliography

[Povey & Kingsbury+ 05] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau,
G. Zweig: fMPE: discriminatively trained features for speech recognition. In Proc. of
the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 961–964,
Philadelphia, PA, USA, March 2005.

[Povey & Woodland 02] D. Povey, P.C. Woodland: Minimum phone error and I-
smoothing for improved discriminative training. In Proc. of the IEEE Int. Conf.
on Acoust., Speech, and Signal Process. (ICASSP), pp. 105 – 108, Orlando, FL, USA,
May 2002.

[Rabiner & Juang 86] L. Rabiner, B.H. Juang: An introduction to hidden Markov
models. IEEE Trans. on Acoust., Speech, and Signal Process., Vol. 3, No. 1, pp. 4–
16, 1986.

[Rabiner & Schafer 79] L.R. Rabiner, R.W. Schafer: Digital Processing of Speech Sig-
nals. Prentice-Hall Signal Processing Series, Englewood Cliffs, NJ, 1979.

[Ragni & Gales 11] A. Ragni, M.J. Gales: Derivative kernels for noise robust ASR.
In Proc. of the IEEE Workshop on Automat. Speech Recognition and Understanding
(ASRU), pp. 119–124, Waikoloa, HI, USA, Dec. 2011.

[Raiko & Valpola+ 12] T. Raiko, H. Valpola, Y. LeCun: Deep learning made easier by
linear transformations in perceptrons. In Proc. of the Int. Conf. on Artificial Intell.
and Stat. (AISTATS), pp. 924–932, La Palma, Spain, April 2012.

[Ratnaparkhi et al. 96] A. Ratnaparkhi et al.: A maximum entropy model for part-of-
speech tagging. In Proc. of the Conf. on Empirical Methods in Natural Language
Process. (EMNLP), pp. 133–142, Philadelphia, PA, USA, May 1996.

[Riedmiller & Braun 93] M. Riedmiller, H. Braun: A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In Proc. of Int. Conf. on Neural
Networks (ICNN), pp. 586–591, San Francisco, CA, USA, March 1993.

[Robbins & Monro 51] H. Robbins, S. Monro: A stochastic approximation method.
Ann. of the Math. Stat., Vol. 22, No. 3, pp. 400–407, 1951.

[Robbins & Siegmund 71] H.E. Robbins, D.O. Siegmund: A convergence theorem for
non negative almost supermartingales and some applications. In Proc. Symp. Opti-
mizing Methods in Statistics, pp. 233–257, Ohio, USA, March 1971.

[Robinson 95] T. Robinson: BEEP - The British English Example Pronunciation Dic-
tionary. ftp://svr-ftp.eng.cam.ac.uk/comp.speech/dictionaries/, 1995.

[Rosenfeld 94] R. Rosenfeld: Adaptive statistical language modeling: a maximum en-
tropy approach. Ph.D. thesis, Carnegie Mellon University, 1994.

[Rudin 76] W. Rudin: Principles of mathematical analysis. McGraw-Hill New York,
1976.

147

Appendix E Bibliography

[Rumelhart & Hinton+ 86] D.E. Rumelhart, G.E. Hinton, R.J. Williams: Learning
representations by back-propagating errors. Nature, Vol. 323, No. 6088, pp. 533–536,
1986.

[Rybach 14] D. Rybach: Investigations on search methods for speech recognition using
weighted finite-state transducers. Ph.D. thesis, RWTH Aachen University, Aachen,
Germany, April 2014.

[Rybach & Gollan+ 09] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf,
R. Schlüter, H. Ney: The RWTH Aachen University open source speech recognition
system. In Proc. of the Ann. Conf. of the Int. Speech Commun. Assoc. (Interspeech),
pp. 2111–2114, Brighton, UK, Sept. 2009.

[Sainath & Kingsbury+ 11] T.N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek,
P. Novák, A. rahman Mohamed: Making deep belief networks effective for large vo-
cabulary continuous speech recognition. In Proc. of the IEEE Workshop on Automat.
Speech Recognition and Understanding (ASRU), pp. 30–35, Waikoloa, HI, USA, Dec.
2011.

[Sainath & Kingsbury+ 13] T.N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy,
B. Ramabhadran: Low-rank matrix factorization for deep neural network training
with high-dimensional output targets. In Proc. of the IEEE Int. Conf. on Acoust.,
Speech, and Signal Process. (ICASSP), Vancouver, Canada, May 2013.

[Sak & Senior+ 15a] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays,
J. Schalkwyk: Learning acoustic frame labeling for speech recognition with recur-
rent neural networks. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 4280–4284, Brisbane, Australia, April 2015.

[Sak & Senior+ 15b] H. Sak, A.W. Senior, K. Rao, F. Beaufays: Fast and accurate
recurrent neural network acoustic models for speech recognition, 2015. arXiv preprint
http://arxiv.org/abs/1507.06947.

[Sak & Senior+ 15c] H. Sak, A.W. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays,
J. Schalkwyk: Learning acoustic frame labeling for speech recognition with recurrent
neural networks. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), pp. 4280–4284, Brisbane, Australia, April 2015.

[Sak & Vinyals+ 14] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott,
R. Monga, M. Mao: Sequence discriminative distributed training of long short-term
memory recurrent neural networks. In Proc. of the Ann. Conf. of the Int. Speech
Commun. Assoc. (Interspeech), pp. 1209–1213, Singapore, Sept. 2014.

[Salakhutdinov & Roweis+ 03] R. Salakhutdinov, S. Roweis, Z. Ghahramani: On the
convergence of bound optimization algorithms. In Proc. of the Conf. on Uncertainty
in Artificial Intell. (UAI), pp. 509–516, Acapulco, Mexico, Aug. 2003.

148

http://arxiv.org/abs/1507.06947

Appendix E Bibliography

[Saon & Soltau 14] G. Saon, H. Soltau: A comparison of two optimization techniques
for sequence discriminative training of deep neural networks. In Proc. of the IEEE Int.
Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 5567–5571, Florence,
Italy, May 2014.

[Schlüter 00] R. Schlüter: Investigations on discriminative training criteria. Ph.D.
thesis, RWTH Aachen University, Aachen, Germany, Sept. 2000.

[Schlüter & Müller+ 99] R. Schlüter, B. Müller, F. Wessel, H. Ney: Interdependence
of language models and discriminative training. In Proc. of the IEEE Workshop on
Automat. Speech Recognition and Understanding (ASRU), pp. 119–122, Keystone,
CO, USA, Dec. 1999.

[Schmidhuber 14] J. Schmidhuber: Deep learning in neural networks: an overview.
Technical Report IDSIA-03-14 / arXiv:1404.7828v1 [cs.NE], The Swiss AI Lab IDSIA,
April 2014.

[Schraudolph 02] N.N. Schraudolph: Fast curvature matrix-vector products for second-
order gradient descent. Neural Computation, Vol. 14, No. 7, pp. 1723–1738, 2002.

[Schraudolph & Yu+ 07] N.N. Schraudolph, J. Yu, S. Günter: A stochastic quasi-
Newton method for online convex optimization. In Proc. of the Int. Conf. on Artificial
Intell. and Stat. (AISTATS), pp. 436–443, San Juan, Puerto Rico, March 2007.

[Schwenk 07] H. Schwenk: Continuous space language models. Computer Speech and
Language, Vol. 21, No. 3, pp. 492–518, 2007.

[Seide & Fu+ 14] F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech DNNs. In
Proc. of the Ann. Conf. of the Int. Speech Commun. Assoc. (Interspeech), pp. 1058–
1062, Singapore, Sept. 2014.

[Seide & Li+ 11a] F. Seide, G. Li, X. Chen, D. Yu: Feature engineering in context-
dependent deep neural networks for conversational speech transcription. In Proc. of
the IEEE Workshop on Automat. Speech Recognition and Understanding (ASRU),
pp. 24–29, Waikoloa, HI, USA, Dec. 2011.

[Seide & Li+ 11b] F. Seide, G. Li, D. Yu: Conversational speech transcription using
context-dependent deep neural networks. In Proc. of the Ann. Conf. of the Int. Speech
Commun. Assoc. (Interspeech), pp. 437–440, Florence, Italy, Aug. 2011.

[Senior & Heigold+ 13] A. Senior, G. Heigold, M. Ranzato, K. Yang: An empirical
study of learning rates in deep neural networks for speech recognition. In Proc. of
the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 6724–
6728, Vancouver, Canada, May 2013.

149

Appendix E Bibliography

[Sha & Pereira 03] F. Sha, F.C.N. Pereira: Shallow parsing with conditional random
fields. In Proc. of the Human Language Technology Conf. of the North Amer. Chapter
of the Assoc. for Computational Linguistics (HLT-NAACL), pp. 134–141, Edmonton,
Canada, May 2003.

[Shalev-Shwartz & Singer+ 07] S. Shalev-Shwartz, Y. Singer, N. Srebro: Pegasos: pri-
mal estimated sub-gradient solver for SVM. In Proc. of the Int. Conf. on Mach.
Learning (ICML), pp. 807–814, Corvallis, OR, USA, June 2007.

[Sixtus 03] A. Sixtus: Across-word phoneme models for large vocabulary continuous
speech recognition. Ph.D. thesis, RWTH Aachen, Jan. 2003.

[Sixtus & Ortmanns 99] A. Sixtus, S. Ortmanns: High quality word graphs using
forward-backward pruning. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and
Signal Process. (ICASSP), pp. 593–596, Phoenix, AZ, USA, March 1999.

[Solla & Levin+ 88] S.A. Solla, E. Levin, M. Fleisher: Accelerated learning in layered
neural networks. Complex Systems, Vol. 2, No. 6, pp. 625–639, Dec. 1988.

[Steihaug 83] T. Steihaug: The conjugate gradient method and trust regions in large
scale optimization. SIAM J. on Numerical Analysis, Vol. 20, No. 3, pp. 626–637,
1983.

[Strom 15] N. Strom: Scalable distributed DNN training using commodity GPU cloud
computing. In Proc. of the Ann. Conf. of the Int. Speech Commun. Assoc. (Inter-
speech), pp. 1488–1492, Dresden, Germany, Sept. 2015.

[Su & Li+ 13] H. Su, G. Li, D. Yu, F. Seide: Error back propagation for sequence
training of context-dependent deep networks for conversational speech transcription.
In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP),
pp. 6664–6668, Vancouver, Canada, May 2013.

[Sundermeyer & Nußbaum-Thom+ 11] M. Sundermeyer, M. Nußbaum-Thom,
S. Wiesler, C. Plahl, A. El-Desoky Mousa, S. Hahn, D. Nolden, R. Schlüter,
H. Ney: The RWTH 2010 Quaero ASR evaluation system for English, French, and
German. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process.
(ICASSP), pp. 2212–2215, Prague, Czech Republic, May 2011.

[Sundermeyer & Schlüter+ 12] M. Sundermeyer, R. Schlüter, H. Ney: LSTM Neural
Networks for Language Modeling. In Proc. of the Ann. Conf. of the Int. Speech
Commun. Assoc. (Interspeech), pp. 194–197, Portland, OR, USA, Sept. 2012.

[Sunehag & Trumpf+ 09] P. Sunehag, J. Trumpf, S.V.N. Vishwanathan, N.N. Schrau-
dolph: Variable metric stochastic approximation theory. In Proceedings of the Twelfth
International Conference on Artificial Intelligence and Statistics, AISTATS 2009,
Clearwater Beach, Florida, USA, April 16-18, 2009, pp. 560–566, Clearwater Beach,
FL, USA, April 2009.

150

Appendix E Bibliography

[Sutton & McCallum 12] C. Sutton, A. McCallum: An introduction to conditional
random fields. Found. and Trends in Mach. Learning, Vol. 4, No. 4, pp. 267–373,
2012.

[Tibshirani 96] R. Tibshirani: Regression shrinkage and selection via the lasso. J. of
the Roy. Statistical Soc. Series B (Methodological), Vol. 58, No. 1, pp. 267–288, 1996.

[Tsochantaridis & Joachims+ 05] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Al-
tun: Large margin methods for structured and interdependent output variables. J.
of Mach. Learning Research, Vol. 6, pp. 1453–1484, 2005.

[Tüske & Golik+ 14] Z. Tüske, P. Golik, R. Schlüter, H. Ney: Acoustic modeling with
deep neural networks using raw time signal for LVCSR. In Proc. of the Ann. Conf. of
the Int. Speech Commun. Assoc. (Interspeech), pp. 890–894, Singapore, Sept. 2014.

[Valtchev & Odell+ 97] V. Valtchev, J. Odell, P.C. Woodland, S.J. Young: MMIE
training of large vocabulary recognition systems. Speech Commun., Vol. 22, No. 4,
pp. 303–314, 1997.

[van Dalen & Ragni+ 13] R.C. van Dalen, A. Ragni, M.J.F. Gales: Efficient decoding
with generative score-spaces using the expectation semiring. In Proc. of the IEEE Int.
Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 7619–7623, Vancouver,
Canada, May 2013.

[Veselý & Ghoshal+ 13] K. Veselý, A. Ghoshal, L. Burget, D. Povey: Sequence-
discriminative training of deep neural networks. In Proc. of the Ann. Conf. of the
Int. Speech Commun. Assoc. (Interspeech), pp. 2345–2349, Lyon, France, Aug. 2013.

[Veselý & Karafiát+ 11] K. Veselý, M. Karafiát, F. Grézl: Convolutive bottleneck net-
work features for LVCSR. In Proc. of the IEEE Workshop on Automat. Speech
Recognition and Understanding (ASRU), pp. 42–47, Waikoloa, HI, USA, Dec. 2011.

[Vishwanathan & Schraudolph+ 06] S. Vishwanathan, N. Schraudolph, M. Schmidt,
K. Murphy: Accelerated training of conditional random fields with stochastic gra-
dient methods. In Proc. of the Int. Conf. on Mach. Learning (ICML), pp. 969–976,
Pittsburgh, PA, USA, June 2006.

[Viterbi 67] A. Viterbi: Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Trans. on Inform. Theory, Vol. 13, pp. 260–269,
1967.

[Voigtlaender 14] P. Voigtlaender: Sequence training of recurrent neural networks for
Handwriting Recognition. Bachelor’s thesis, RWTH Aachen University, 2014.

[Voigtlaender & Doetsch+ 15] P. Voigtlaender, P. Doetsch, S. Wiesler, R. Schlüter,
H. Ney: Sequence-discriminative training of recurrent neural networks. In Proc.
of the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 2100–
2104, Brisbane, Australia, April 2015.

151

Appendix E Bibliography

[Waibel & Hanazawa+ 89] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K. Lang:
Phoneme recognition using time-delay neural networks. IEEE Trans. on Acoust.,
Speech, and Signal Process., Vol. 37, No. 3, pp. 328–339, Mar 1989.

[Wallach 03] H. Wallach: Efficient training of conditional random fields. In Proc. Ann.
Computational Linguistics United Kingdom Research Colloquium, Edinburgh, Great
Britain, 2003.

[Wang & Gales+ 07] L. Wang, M.J.F. Gales, P.C. Woodland: Unsupervised training
for mandarin broadcast news and conversation transcription. In Proc. of the IEEE
Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 353–356, Honolulu,
HI, USA, April 2007.

[Welling & Kanthak+ 99] L. Welling, S. Kanthak, H. Ney: Improved methods for vocal
tract normalization. In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal
Process. (ICASSP), Vol. 2, pp. 761–764. IEEE, March 1999.

[Wiesler & Golik+ 15] S. Wiesler, P. Golik, R. Schlüter, H. Ney: Investigations on
sequence training of neural networks. In Proc. of the IEEE Int. Conf. on Acoust.,
Speech, and Signal Process. (ICASSP), pp. 4565–4569, Brisbane, Australia, April
2015.

[Wiesler & Li+ 13] S. Wiesler, J. Li, J. Xue: Investigations on Hessian-free optimiza-
tion for cross-entropy training of deep neural networks. In Proc. of the Ann. Conf.
of the Int. Speech Commun. Assoc. (Interspeech), pp. 3317–3321, Lyon, France, Aug.
2013.

[Wiesler & Ney 11] S. Wiesler, H. Ney: A convergence analysis of log-linear training.
In Advances in Neural Inform. Process. Syst. (NIPS), pp. 657–665, Granada, Spain,
Dec. 2011.

[Wiesler & Nußbaum+ 09] S. Wiesler, M. Nußbaum, G. Heigold, R. Schlüter, H. Ney:
Investigations on features for log-linear acoustic models in continuous speech recog-
nition. In Proc. of the IEEE Workshop on Automat. Speech Recognition and Under-
standing (ASRU), pp. 52–57, Merano, Italy, Dec. 2009.

[Wiesler & Richard+ 11] S. Wiesler, A. Richard, Y. Kubo, R. Schlüter, H. Ney: Feature
selection for log-linear acoustic models. In Proc. of the IEEE Int. Conf. on Acoust.,
Speech, and Signal Process. (ICASSP), pp. 5324–5327, Prague, Czech Republic, May
2011.

[Wiesler & Richard+ 13] S. Wiesler, A. Richard, R. Schlüter, H. Ney: A critical eval-
uation of stochastic algorithms for convex optimization. In Proc. of the IEEE Int.
Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 6955–6959, Vancouver,
Canada, May 2013.

152

Appendix E Bibliography

[Wiesler & Richard+ 14a] S. Wiesler, A. Richard, P. Golik, R. Schlüter, H. Ney:
RASR/NN: The RWTH neural network toolkit for speech recognition. In Proc. of the
IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 3313–3317,
Florence, Italy, May 2014.

[Wiesler & Richard+ 14b] S. Wiesler, A. Richard, R. Schlüter, H. Ney: Mean-
normalized stochastic gradient for large-scale deep learning. In Proc. of the IEEE
Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), pp. 180–184, Florence,
Italy, May 2014.

[Wiesler & Schlüter+ 11] S. Wiesler, R. Schlüter, H. Ney: A convergence analysis of log-
linear training and its application to speech recognition. In Proc. of the IEEE Work-
shop on Automat. Speech Recognition and Understanding (ASRU), pp. 1–6, Waikoloa,
HI, USA, Dec. 2011.

[Wiesler & Schlüter+ 12] S. Wiesler, R. Schlüter, H. Ney: Accelerated batch learning
of convex log-linear models for LVCSR. In Proc. of the Ann. Conf. of the Int. Speech
Commun. Assoc. (Interspeech), pp. 1207–1210, Portland, OR, USA, Sept. 2012.

[Wolfe 69] P. Wolfe: Convergence conditions for ascent methods. SIAM Review, Vol. 11,
No. 2, pp. 226–235, 1969.

[Woodland & Povey 02] P.C. Woodland, D. Povey: Large scale discriminative training
of hidden Markov models for speech recognition. Computer Speech and Language,
Vol. 16, No. 1, pp. 25–47, 2002.

[Xue & Li+ 13] J. Xue, J. Li, Y. Gong: Restructuring of deep neural network acoustic
models with singular value decomposition. In Proc. of the Ann. Conf. of the Int.
Speech Commun. Assoc. (Interspeech), pp. 2365–2368, Lyon, France, Aug. 2013.

[Young 92] S.J. Young: The general use of tying in phoneme based HMM recognizers.
In Proc. of the IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP),
pp. 569–572, San Francisco, CA, USA, March 1992.

[Young & Odell+ 94] S.J. Young, J. Odell, P.C. Woodland: Tree-based state tying for
high accuracy acoustic modelling. In Proc. of the Workshop on Human Language
Technology (HLT), pp. 307–312, Plainsboro, NJ, USA, March 1994.

[Yu & Deng+ 09] D. Yu, L. Deng, A. Acero: Using continuous features in the maximum
entropy model. Pattern Recognition Letters, Vol. 30, No. 14, pp. 1295–1300, 2009.

[Zhang & Ragni+ 10] S.X. Zhang, A. Ragni, M.J. Gales: Structured log linear models
for noise robust speech recognition. IEEE Signal Process. Lett., Vol. 17, No. 11,
pp. 945–948, Nov. 2010.

[Zheng & Stolcke 05] J. Zheng, A. Stolcke: Improved discriminative training using
phone lattices. In Proc. of the European Conf. on Speech Commun. and Technology
(Eurospeech), pp. 2125–2128, Lisbon, Portugal, Sept. 2005.

153

Appendix E Bibliography

[Zweig & Nguyen 09] G. Zweig, P. Nguyen: A segmental CRF approach to large vo-
cabulary continuous speech recognition. In Proc. of the IEEE Workshop on Automat.
Speech Recognition and Understanding (ASRU), pp. 152–157, Merano, Italy, Dec.
2009.

154

	Assurance
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Statistical Speech Recognition
	1.2 Feature Extraction
	1.3 Acoustic Model
	1.4 Language Modeling
	1.5 Search
	1.6 Log-Linear Model Combination
	1.7 Word Lattices
	1.8 Performance Measurement
	1.9 Acoustic Modeling using Neural Networks
	1.9.1 Neural networks
	1.9.2 Neural network training
	1.9.3 Log-linear models
	1.9.4 The hybrid approach

	1.10 Related Work
	1.11 Document Structure

	2 Scientific Goals
	3 Convex Log-Linear Acoustic Models for Large-Scale Speech Recognition
	3.1 Preliminaries
	3.2 Modeling
	3.2.1 Frame-level model
	3.2.2 Sequence-level model

	3.3 Training Criteria
	3.3.1 Cross-entropy
	3.3.2 Sequence-discriminative maximum mutual information
	3.3.3 Minimum Bayes risk
	3.3.4 Regularization

	3.4 Features
	3.4.1 Polynomial features
	3.4.2 Clustering features
	3.4.3 Feature selection

	3.5 Parameter Optimization
	3.5.1 Gradient descent and Newton's method
	3.5.2 L-BFGS
	3.5.3 Rprop
	3.5.4 Orthant-wise Rprop for 1-regularized training
	3.5.5 Growth transformations
	3.5.6 Stochastic gradient descent
	3.5.7 Stochastic second-order algorithms
	3.5.8 Convergence properties
	3.5.9 Implicit feature transformation

	3.6 Experimental Results
	3.6.1 Comparison of features
	3.6.2 Feature selection
	3.6.3 Experiments on LVCSR
	3.6.4 Comparison of optimization algorithms

	3.7 Discussion
	3.8 Publications and Joint Work

	4 Convergence Analysis of Log-Linear Training
	4.1 Introduction
	4.2 Formal Analysis
	4.2.1 Preliminaries
	4.2.2 The case without regularization
	4.2.3 Spectrum of the uncentered covariance matrix
	4.2.4 The case with regularization

	4.3 Experimental Results
	4.3.1 Handwritten digit recognition
	4.3.2 Handwritten text recognition

	4.4 Relation to Prior Work
	4.5 Discussion
	4.6 Publications and Joint Work

	5 Hessian-Free Optimization for Cross-Entropy Training
	5.1 Introduction
	5.2 Martens' Hessian-Free Algorithm
	5.3 Empirical Analysis on Handwritten Digit Recognition
	5.4 Experimental Results on Speech Recognition
	5.5 Discussion
	5.6 Publications and Joint Work

	6 Mean-Normalized Stochastic Gradient Descent
	6.1 Introduction
	6.2 Derivation of the Algorithm
	6.3 Convergence Proof
	6.4 Improving Generalization Ability by Low-Rank Factorization
	6.5 Learning Rate Strategies
	6.6 Experimental Results
	6.6.1 Conversational speech recognition
	6.6.2 Offline handwriting recognition

	6.7 Discussion
	6.8 Publications and Joint Work

	7 Sequence-Discriminative Training of Neural Networks
	7.1 Introduction
	7.2 Training Criteria
	7.3 Modifications for Robust Training
	7.3.1 Cross-entropy smoothing
	7.3.2 Frame-rejection heuristic

	7.4 Optimization
	7.5 Implementation
	7.6 Experimental Results
	7.6.1 Offline handwriting recognition
	7.6.2 Conversational speech recognition
	7.6.3 Experiments on the large-scale task

	7.7 Discussion
	7.8 Publications and Joint Work

	8 Scientific Contributions
	9 Outlook
	A Corpora and Systems
	A.1 Wall Street Journal
	A.2 Quaero English
	A.2.1 Quaero 2010
	A.2.2 Quaero 2011

	A.3 Isolated Handwritten Digit Recognition
	A.4 Offline Continuous Handwriting Recognition
	A.4.1 The IAM 2011 system
	A.4.2 The IAM 2014 system

	A.5 Overview of Experimental Results

	B Implementation of Neural Networks in the RASR Toolkit
	B.1 Implementation
	B.1.1 Models
	B.1.2 Frame-discriminative training
	B.1.3 Sequence-discriminative training
	B.1.4 Recognition
	B.1.5 Feature extraction

	B.2 Experimental Comparison with QuickNet
	B.3 Summary

	C Detailed Calculations
	C.1 Chapter 6

	D Symbols and Acronyms
	D.1 Symbols
	D.2 Acronyms

	E Publications and Joint Work
	List of Figures
	List of Tables
	Bibliography

