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Abstract In this paper we present an invariant statistical approach to
classifying medical radiographs, being an important step in the RWTH
Aachen — University of Technology IRMA system (Image Retrieval in
Medical Applications). We propose a Bayesian classifier based on Gaus-
sian kernel densities, where invariance is incorporated by using invariant
distance measures. The performance of the classifier is evaluated on a
dataset of 1,617 radiographs coming from daily routine. The obtained
error rate of 7.6% is significantly better than the results reported in
other works, using the same dataset. Furthermore, the presented proba-
bilistic framework is also applicable to other (multi-) object recognition
tasks.

1 Introduction

The importance of digital image retrieval techniques increases in the emerging
fields of medical imaging and picture archiving and communication systems. Up
to now, textual index entries are mandatory to retrieve medical images from a
hospital archive, even if the archive is DICOM-compliant (Digital Imaging and
Communications in Medicine) [1]. Furthermore, queries of diagnostic relevance
include searching for organs, their relative locations and other distinct features
like morphological appearances. Therefore, common retrieval systems cannot
guarantee a meaningful query completion when used within medical context [2].
In contrast to this, the IRMA system - a joint project between three RWTH
Aachen — University of Technology institutes - is being developed for use in
daily clinical routine. This paper deals with the image classification step within
the IRMA system, which is crucial, as the retrieval system needs to be familiar
with the anatomical region presented in a given image in order to be able to
answer complex medical queries. Detailed information on the motivation and the
architecture of the IRMA system is given in [2]. We present a general probabilistic
framework for object recognition and show its effectivity for the special case of
radiograph classification, where invariance is incorporated by using invariant
distance measures.

2 The IRMA database & feature analysis

The radiograph database used in our experiments consists of medical radiograph
images taken from daily routine, which are secondary digital (that is they have
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Figurel. Example radiographs taken from the IRMA database, scaled to common
height. Top-left to bottom-right: abdomen, limbs, breast, skull, chest and spine.

been scanned from conventional film-based radiographs using 256 grayscales, cp.
Fig. 1). The sizes of the anonymized images range from about 200 x 200 pix-
els to about 2,500 x 2,500 pixels and all images were labeled into six classes
by an expert. The corpus consists of 110 abdomen, 706 limbs, 103 breast, 110
skull, 410 chest and 178 spine radiographs, summing up to a total of 1,617 im-
ages. Furthermore, a smaller set of 332 images exists which is used to test the
generalization abilities of the classifier. To speed up the classification process,
the original images are scaled down to a common height of 32 pixels (keeping
the original aspect ratio). In the experiments, we make use of appearance based
pattern recognition, that is each pixel of an image is interpreted as a feature.
Furthermore, because there are only 1,617 images available, we make use of a
leaving-one-out approach (L-1-0), that is to classify an image we use the remain-
ing 1,616 images as references.

3 Classification

In many cases, classification of an observation z € IR” is performed using the
Bayesian decision rule

v — r(@) = argmax (p(k)p(e )} (1)

where p(k) is the prior probability of class k and p(z|k) is the class-conditional
probability for the observation z given class k [5, 3, 6]. Here, direct application
of this rule is impossible, as the image sizes vary, resulting in different feature
vector dimensions. Thus, we have to find the correct position of the object within
the observed image, interpreting the remaining pixels as background. For this
problem, we present a general, statistical multi-object recognition approach in
the following, where M denotes the hypothesized number of objects present in
a scene and radiograph classification will then be performed as the special case
M = 1. We assume that the scene to be classified contains an unknown number
m = 0,..., M of objects belonging to the classes ki, ..., kar, abbreviated as kM in
the following. Furthermore, reference models p(z|u,) exist for each of the known
objects, po representing background. These references are subject to certain
transformations (such as the position of the object in the image, its scale etc.).
That is, given transformation parameters 9}/, the m-th reference is mapped to

Py = (s D) (2)



Furthermore, the original scene is implicitly partitioned into M + 1 regions I},
where I, is assumed to contain the m-th object and Iy represents the back-
ground. The idea is now to hypothesize all unknown parameters, i.e. M, kM 91
and IM and to look for the hypothesis which best explains the given scene. Note
that this means that any pixel in the scene has to be assigned either to an object
or to the background class. Formally, the approach can be written as

M
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where {z;;} denotes the scene to get classified and z7,, is the feature vector ex-
tracted from I,,. For radiograph classification, the ‘scene’ equals the radiograph
to be classified and we assume M = 1. Furthermore, the only transformation
regarded for the reference images in our experiments is horizontal shift (vertical
shifts do not occur as all images are scaled to the same height). A very simple
background model is used, assuming a constant background of grayvalue zero.
Furthermore, a penalty term is introduced, based on the different sizes of ob-
servation and reference image (preferring images of roughly the same size). To
model the references py, (zr,, |i@(u,, ,9m)), kernel densities (with class specific
standard deviations) are used and the the prior probabilities p(k) are modeled
via relative frequencies. More information on these models can be found in [3].
Note that in this work, all images were scaled down to a common size. Thus,
Bayes rule was applied unchanged as given in Eq. (1). The statistical frame-
work presented above is entirely new and also suited for other (multi-) object
recognition tasks.

4 Invariant distance measures

In our experiments, the Mahalanobis distance present in the Gaussian kernel
density approach is replaced by invariant distance measures. To compensate for
global image transformations, single sided tangent distance is used as proposed
by SIMARD in 1993. Due to space limitations, we cannot go into details of tan-
gent distance here, more information about it can be found in [4] or [5]. In our
experiments, we used a total of seven tangents (six for affine transformations
and one for additive illumination variations [3]). To compensate for local image
transformations, such as varying scribor positions or the presence/ absence of
pathologies, the following image distortion model was used:

When calculating the distance between two images x and u, small local de-
formations are allowed. That is, the image distortion model does not compute
the squared error between a pixel (i, 7) in x and its counterpart in u, but it looks
for the ‘best-fitting’ pixel in g within a certain neighbourhood R;; around the
corresponding pixel:
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for images with dimension I x J. The cost function C(i,4’, j,j') models the costs
for deforming a source pixel (i, ) in the input image to a target pixel (i, j') in
the reference image. In the experiments, a weighted Euclidean distance between
source and target pixel was used. Thus, short-ranged transformations are pre-
ferred to (most probably unwanted) long-range transformations. Furthermore, a
region size R;; = (2r + 1) x (2r + 1) was used with r = 1.

Note that tangent distance and the proposed distortion model can be easily
combined to distorted tangent distance. In that case, tangent distance is used to
register the (sub)images and the distortion distance ist then computed between
the registered images.

5 Results

The experiments were started by using Mahalanobis distance within the classifier
presented above, resulting in an error rate of 14.0%. Using single-sided tangent
distance for recognition, this error rate could be reduced to 13.3%. Interest-
ingly, using the image distortion model with a region size r = 1 significantly
outperformed tangent distance on this particular dataset, yielding an error rate
of 12.1%. In another experiment, it was investigated on the question whether
the improvements of tangent distance and the image distortion model are addi-
tive. This sounds reasonable, as tangent distance compensates for global image
transformations, whereas the image distortion model deals with local image per-
turbations. Indeed, using distorted tangent distance as proposed in Section 4, the
error rate could be further reduced to 10.4%.

In another experiment, a thresholding approach was applied using S = 5000
(that is, the maximum local distance between two pixels was restricted to a max-
imum value S), in combination with the different distance measures discussed
above. Doing so, the best error rate could be significantly reduced from 10.4% to
8.2%. Astonishingly, the result of tangent distance in that case is only slightly
better than that of Mahalanobis distance (11.1% vs. 11.2%). One thing to be
learned from this is that using the thresholding approach possibly mimics the be-
haviour of tangent distance in this particular application. It should also be noted
that in previous experiments all IRMA images were scaled down to a common
size of 32x32 pixels prior to classification (more information on that approach is
given in [3]). In these experiments, tangent distance significantly outperformed
Mahalanobis distance (with and without the thresholding approach). Thus, it
seems possible that the main effect of tangent distance is the compensation of
image shifts (which is now inherent to the classification approach by optimizing
over all possible image positions). Surprisingly, not regarding background pix-
els at all improved the error rate to 7.6%. In that case, only the penalty term
based on different image sizes between observation and reference was used. An
overview of the results obtained on the radiograph database is given in Table 1.
Note that no other group reports error rates of below 29% on the same dataset.
More information on this topic can be found in [7, 3]. To make sure that no
overfitting occurred in the experiments, 332 previously unseen radiographs were
used as test images and the 1,617 images of the IRMA database as references,



Distance Measure Thresholding

no| yes
Mahalanobis Distance 14.0| 11.2
Tangent Distance 13.3| 111
Image Distortion Model 12.1 9.0
Distorted Tangent Distance| 10.4 8.2

Tablel. L-1-0 IRMA error rates [%)] for kernel densities and background model with
respect to varying distance measures (with and without thresholding for S=5000).

using the optimal parameter set determined on the IRMA images. The obtained
error rate of 9.0% shows, that the classifier proposed here generalizes very well.

6 Conclusion and outlook

In this paper, we presented a probabilistic framework for (multi-) object recogni-
tion and proved its effectivity by applying it to radiograph classification (being a
single-object recognition task), obtaining an excellent result of 7.6%. Invariance
was incorporated into the appearance based approach by using invariant dis-
tance measures. The proposed distorted tangent distance, being an extension of
SIMARD’s tangent distance, proved to be especially effective here. The presented
approach also obtained promising results in multi-object digit recognition. These
results will be published elsewhere.
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