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t In this paper we present an invariant statisti
al approa
h to
lassifying medi
al radiographs, being an important step in the RWTHAa
hen { University of Te
hnology IRMA system (Image Retrieval inMedi
al Appli
ations). We propose a Bayesian 
lassi�er based on Gaus-sian kernel densities, where invarian
e is in
orporated by using invariantdistan
e measures. The performan
e of the 
lassi�er is evaluated on adataset of 1,617 radiographs 
oming from daily routine. The obtainederror rate of 7.6% is signi�
antly better than the results reported inother works, using the same dataset. Furthermore, the presented proba-bilisti
 framework is also appli
able to other (multi-) obje
t re
ognitiontasks.1 Introdu
tionThe importan
e of digital image retrieval te
hniques in
reases in the emerging�elds of medi
al imaging and pi
ture ar
hiving and 
ommuni
ation systems. Upto now, textual index entries are mandatory to retrieve medi
al images from ahospital ar
hive, even if the ar
hive is DICOM-
ompliant (Digital Imaging andCommuni
ations in Medi
ine) [1℄. Furthermore, queries of diagnosti
 relevan
ein
lude sear
hing for organs, their relative lo
ations and other distin
t featureslike morphologi
al appearan
es. Therefore, 
ommon retrieval systems 
annotguarantee a meaningful query 
ompletion when used within medi
al 
ontext [2℄.In 
ontrast to this, the IRMA system - a joint proje
t between three RWTHAa
hen { University of Te
hnology institutes - is being developed for use indaily 
lini
al routine. This paper deals with the image 
lassi�
ation step withinthe IRMA system, whi
h is 
ru
ial, as the retrieval system needs to be familiarwith the anatomi
al region presented in a given image in order to be able toanswer 
omplex medi
al queries. Detailed information on the motivation and thear
hite
ture of the IRMA system is given in [2℄. We present a general probabilisti
framework for obje
t re
ognition and show its e�e
tivity for the spe
ial 
ase ofradiograph 
lassi�
ation, where invarian
e is in
orporated by using invariantdistan
e measures.2 The IRMA database & feature analysisThe radiograph database used in our experiments 
onsists of medi
al radiographimages taken from daily routine, whi
h are se
ondary digital (that is they have



Figure1. Example radiographs taken from the IRMA database, s
aled to 
ommonheight. Top-left to bottom-right: abdomen, limbs, breast, skull, 
hest and spine.been s
anned from 
onventional �lm-based radiographs using 256 grays
ales, 
p.Fig. 1). The sizes of the anonymized images range from about 200 � 200 pix-els to about 2; 500 � 2; 500 pixels and all images were labeled into six 
lassesby an expert. The 
orpus 
onsists of 110 abdomen, 706 limbs, 103 breast, 110skull, 410 
hest and 178 spine radiographs, summing up to a total of 1,617 im-ages. Furthermore, a smaller set of 332 images exists whi
h is used to test thegeneralization abilities of the 
lassi�er. To speed up the 
lassi�
ation pro
ess,the original images are s
aled down to a 
ommon height of 32 pixels (keepingthe original aspe
t ratio). In the experiments, we make use of appearan
e basedpattern re
ognition, that is ea
h pixel of an image is interpreted as a feature.Furthermore, be
ause there are only 1,617 images available, we make use of aleaving-one-out approa
h (L-1-o), that is to 
lassify an image we use the remain-ing 1,616 images as referen
es.3 Classi�
ationIn many 
ases, 
lassi�
ation of an observation x 2 IRD is performed using theBayesian de
ision rulex 7�! r(x) = argmaxk fp(k)p(xjk)g ; (1)where p(k) is the prior probability of 
lass k and p(xjk) is the 
lass-
onditionalprobability for the observation x given 
lass k [5, 3, 6℄. Here, dire
t appli
ationof this rule is impossible, as the image sizes vary, resulting in di�erent featureve
tor dimensions. Thus, we have to �nd the 
orre
t position of the obje
t withinthe observed image, interpreting the remaining pixels as ba
kground. For thisproblem, we present a general, statisti
al multi-obje
t re
ognition approa
h inthe following, where M denotes the hypothesized number of obje
ts present ina s
ene and radiograph 
lassi�
ation will then be performed as the spe
ial 
aseM = 1. We assume that the s
ene to be 
lassi�ed 
ontains an unknown numberm = 0; :::;M of obje
ts belonging to the 
lasses k1; :::; kM , abbreviated as kM1 inthe following. Furthermore, referen
e models p(xj�k) exist for ea
h of the knownobje
ts, �0 representing ba
kground. These referen
es are subje
t to 
ertaintransformations (su
h as the position of the obje
t in the image, its s
ale et
.).That is, given transformation parameters #M1 , the m-th referen
e is mapped to�km ! ~�(�km ; #m): (2)



Furthermore, the original s
ene is impli
itly partitioned into M +1 regions IM0 ,where Im is assumed to 
ontain the m-th obje
t and I0 represents the ba
k-ground. The idea is now to hypothesize all unknown parameters, i.e. M;kM1 ; #M1and IM0 and to look for the hypothesis whi
h best explains the given s
ene. Notethat this means that any pixel in the s
ene has to be assigned either to an obje
tor to the ba
kground 
lass. Formally, the approa
h 
an be written asr(fxijg) = argmaxM;kM1 ;#M1 ;IM0 8<:p(kM1 ) Y(i;j)2I0 p0(xij j�0) MYm=1 pkm(xIm j~�(�km ; #m))9=; (3)where fxijg denotes the s
ene to get 
lassi�ed and xIm is the feature ve
tor ex-tra
ted from Im. For radiograph 
lassi�
ation, the `s
ene' equals the radiographto be 
lassi�ed and we assume M = 1. Furthermore, the only transformationregarded for the referen
e images in our experiments is horizontal shift (verti
alshifts do not o

ur as all images are s
aled to the same height). A very simpleba
kground model is used, assuming a 
onstant ba
kground of grayvalue zero.Furthermore, a penalty term is introdu
ed, based on the di�erent sizes of ob-servation and referen
e image (preferring images of roughly the same size). Tomodel the referen
es pkm(xIm j~�(�km ; #m)), kernel densities (with 
lass spe
i�
standard deviations) are used and the the prior probabilities p(k) are modeledvia relative frequen
ies. More information on these models 
an be found in [3℄.Note that in this work, all images were s
aled down to a 
ommon size. Thus,Bayes rule was applied un
hanged as given in Eq. (1). The statisti
al frame-work presented above is entirely new and also suited for other (multi-) obje
tre
ognition tasks.4 Invariant distan
e measuresIn our experiments, the Mahalanobis distan
e present in the Gaussian kerneldensity approa
h is repla
ed by invariant distan
e measures. To 
ompensate forglobal image transformations, single sided tangent distan
e is used as proposedby Simard in 1993. Due to spa
e limitations, we 
annot go into details of tan-gent distan
e here, more information about it 
an be found in [4℄ or [5℄. In ourexperiments, we used a total of seven tangents (six for aÆne transformationsand one for additive illumination variations [3℄). To 
ompensate for lo
al imagetransformations, su
h as varying s
ribor positions or the presen
e/ absen
e ofpathologies, the following image distortion model was used:When 
al
ulating the distan
e between two images x and �, small lo
al de-formations are allowed. That is, the image distortion model does not 
omputethe squared error between a pixel (i; j) in x and its 
ounterpart in �, but it looksfor the `best-�tting' pixel in � within a 
ertain neighbourhood Rij around the
orresponding pixel:Ddist(x; �) = IXi=1 JXj=1 min(i0;j0)2Rijfkxij � �i0j0k2 + C(i; i0; j; j0)g (4)



for images with dimension I�J . The 
ost fun
tion C(i; i0; j; j0) models the 
ostsfor deforming a sour
e pixel (i; j) in the input image to a target pixel (i0; j0) inthe referen
e image. In the experiments, a weighted Eu
lidean distan
e betweensour
e and target pixel was used. Thus, short-ranged transformations are pre-ferred to (most probably unwanted) long-range transformations. Furthermore, aregion size Rij = (2r + 1)� (2r + 1) was used with r = 1.Note that tangent distan
e and the proposed distortion model 
an be easily
ombined to distorted tangent distan
e. In that 
ase, tangent distan
e is used toregister the (sub)images and the distortion distan
e ist then 
omputed betweenthe registered images.5 ResultsThe experiments were started by using Mahalanobis distan
e within the 
lassi�erpresented above, resulting in an error rate of 14.0%. Using single-sided tangentdistan
e for re
ognition, this error rate 
ould be redu
ed to 13.3%. Interest-ingly, using the image distortion model with a region size r = 1 signi�
antlyoutperformed tangent distan
e on this parti
ular dataset, yielding an error rateof 12.1%. In another experiment, it was investigated on the question whetherthe improvements of tangent distan
e and the image distortion model are addi-tive. This sounds reasonable, as tangent distan
e 
ompensates for global imagetransformations, whereas the image distortion model deals with lo
al image per-turbations. Indeed, using distorted tangent distan
e as proposed in Se
tion 4, theerror rate 
ould be further redu
ed to 10.4%.In another experiment, a thresholding approa
h was applied using S = 5000(that is, the maximum lo
al distan
e between two pixels was restri
ted to a max-imum value S), in 
ombination with the di�erent distan
e measures dis
ussedabove. Doing so, the best error rate 
ould be signi�
antly redu
ed from 10.4% to8.2%. Astonishingly, the result of tangent distan
e in that 
ase is only slightlybetter than that of Mahalanobis distan
e (11.1% vs. 11.2%). One thing to belearned from this is that using the thresholding approa
h possibly mimi
s the be-haviour of tangent distan
e in this parti
ular appli
ation. It should also be notedthat in previous experiments all IRMA images were s
aled down to a 
ommonsize of 32�32 pixels prior to 
lassi�
ation (more information on that approa
h isgiven in [3℄). In these experiments, tangent distan
e signi�
antly outperformedMahalanobis distan
e (with and without the thresholding approa
h). Thus, itseems possible that the main e�e
t of tangent distan
e is the 
ompensation ofimage shifts (whi
h is now inherent to the 
lassi�
ation approa
h by optimizingover all possible image positions). Surprisingly, not regarding ba
kground pix-els at all improved the error rate to 7.6%. In that 
ase, only the penalty termbased on di�erent image sizes between observation and referen
e was used. Anoverview of the results obtained on the radiograph database is given in Table 1.Note that no other group reports error rates of below 29% on the same dataset.More information on this topi
 
an be found in [7, 3℄. To make sure that noover�tting o

urred in the experiments, 332 previously unseen radiographs wereused as test images and the 1,617 images of the IRMA database as referen
es,



Distan
e Measure Thresholdingno yesMahalanobis Distan
e 14.0 11.2Tangent Distan
e 13.3 11.1Image Distortion Model 12.1 9.0Distorted Tangent Distan
e 10.4 8.2Table1. L-1-0 IRMA error rates [%℄ for kernel densities and ba
kground model withrespe
t to varying distan
e measures (with and without thresholding for S=5000).using the optimal parameter set determined on the IRMA images. The obtainederror rate of 9:0% shows, that the 
lassi�er proposed here generalizes very well.6 Con
lusion and outlookIn this paper, we presented a probabilisti
 framework for (multi-) obje
t re
ogni-tion and proved its e�e
tivity by applying it to radiograph 
lassi�
ation (being asingle-obje
t re
ognition task), obtaining an ex
ellent result of 7.6%. Invarian
ewas in
orporated into the appearan
e based approa
h by using invariant dis-tan
e measures. The proposed distorted tangent distan
e, being an extension ofSimard's tangent distan
e, proved to be espe
ially e�e
tive here. The presentedapproa
h also obtained promising results in multi-obje
t digit re
ognition. Theseresults will be published elsewhere.Referen
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