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Abstract

In this work we evaluate the utility of synthetic data for train-

ing automatic speech recognition (ASR). We use the ASR

training data to train a text-to-speech (TTS) system similar to

FastSpeech-2. With this TTS we reproduce the original training

data, training ASR systems solely on synthetic data. For ASR,

we use three different architectures, attention-based encoder-

decoder, hybrid deep neural network hidden Markov model and

a Gaussian mixture hidden Markov model, showing the differ-

ent sensitivity of the models to synthetic data generation. In

order to extend previous work, we present a number of ablation

studies on the effectiveness of synthetic vs. real training data

for ASR. In particular we focus on how the gap between train-

ing on synthetic and real data changes by varying the speaker

embedding or by scaling the model size. For the latter we show

that the TTS models generalize well, even when training scores

indicate overfitting.

Index Terms: synthetic data generation, text-to-speech, speech

recognition, semi-supervised training

1. Introduction

Current literature shows the capability of synthetic data to com-

plement real data and thus improve automatic speech recog-

nition (ASR) training through various ways and techniques

[1, 2, 3, 4, 5] . Commonly end-to-end architectures are trained

with a combination of real and synthetic data, where especially

models like the attention-based encoder-decoder (AED) benefit

from the additional synthetic data [2, 4, 5]. However, we still

lack a good understanding of how well synthetic data is able to

replace real data. To this end, we suggest to use synthetic train-

ing data only to analyze and compare its ASR training utility

against real data. Such a study helps to gain further insight on

the discrepancy between synthetic and real data. Recent work

has presented large TTS systems trained on much more data

than typically available for academically defined tasks [6, p. 5].

But even with such an industrial scale system it was not possi-

ble to create synthetic data that is equally utilizable to real data.

In this work we explore the corresponding performance gap for

three ASR architectures: A classic Gaussian mixture based sys-

tem using hidden Markov model (GMM-HMM), a hybrid deep

neural network HMM (Hybrid) [7] and an AED [8] system. A

lot of previous work on synthetic data analysis was done on

data generated by autoregressive text-to-speech (TTS) models,

like Tacotron-2 [9], with the exception of [10]. In this work

we focus on a simple non-autoregressive TTS model which is

similar to FastSpeech, but with a BLSTM-decoder, and an en-

coder with mixed convolutions and BLSTM. There are more re-

cent architectures which exhibit strong performance on standard

TTS tasks. However, we consider a more simple and established

TTS architecture that we know from previous experiments [11]

to work on ASR-specific training data and thus is expected to

be better suited for our analysis. The contributions of this work

are as follows:

• Investigating how robust traditional ASR approaches such

as GMM-HMM react to synthetic data compared to a more

modern Hybrid or AED system.

• Quantifying the impact of low-quality Griffin & Lim vocod-

ing for the usability of audio data.

• Showing how simply increasing the number of TTS model

parameters already improves the usability of the synthetic

data for ASR.

• Showing that in the context of this work, more sophisti-

cated speaker embedding systems greatly influence the per-

formance.

Especially, the effect of hyper-parameter tuning rarely is cov-

ered in TTS-literature due to the expensive MOS evaluations

this would ensue. A large scale comparison of training various

ASR architectures with both real and synthetic data has been

done in [2]. We extend [2] and [11] through analyzing the ef-

fect of ASR performance by using synthetic data only for ASR

training. Our work and software is publicly accessible and will

remain as such 1.

2. Speech Synthesis

As TTS system we use the non-autoregressive (NAR) model

from [11], which is closely related to [12], extended with Gaus-

sian Upsampling [13]. It consists of a phoneme encoder, dura-

tion predictor and a feature decoder, which follow exactly the

design as in [11]. For both duration prediction and decoding

we pass a speaker embedding to enable multi speaker capabil-

ities. In the simplest case this is generated by look-up table

on the speaker ID which is learned during training, but we also

investigate different more elaborate approaches, by generating

fixed speaker embeddings through stronger pre-trained models.

Training is done on the reference durations, extracted from a

given alignment. As spectrogram targets we use globally nor-

malized 80-dimensional log-mel features with frame shift 12.5

ms and window size of 50 ms. The spectrogram predictions

are transformed into 512-dimensional linear features for Grif-

fin & Lim (G&L) vocoding [14] via a pre-trained bi-directional

LSTM (BiLSTM) network. As validated in the baseline ex-

periments of this paper, simple G&L vocoding does not reduce

the quality of the generated audio for ASR training. Counting

both neural models, our architecture consists of 63M parame-

ters. The phoneme set consists of ARPA-BET phoneme sym-

1https://github.com/rwth-i6/returnn-experiments/tree/master/
2024-pure-synthetic-data

http://arxiv.org/abs/2407.17997v1


Table 1: Evaluation on LibriSpeech dev-clean and dev-other corpora. Only data from LibriSpeech train-clean-100 is used for TTS

training. Vocoding only used features extracted from the real data, vocoded by Griffin-Lim. TTS-Durations indicates whether the model

predicts phoneme durations via the duration predictor or is fed the ground truth durations from the alignment.

Data
Silence

Removal
TTS-

Durations
Data

Length

WER [%]

GMM-HMM AED Hybrid

clean other clean other other

Real
No - 100.6h 8.1 25.9 7.5 18.9 15.0

Yes - 88.7h 8.7 28.0 7.8 20.3 15.5

Vocoding No - 100.6h 8.7 27.7 7.6 19.4 15.2

Only Yes - 88.7h 9.5 28.8 8.0 20.1 16.1

Synthetic Yes
pred. 81.1h 10.0 32.2 14.1 37.6 26.2

real 88.3h 9.7 32.2 10.9 31.8 26.8

bols without stress marker. We mark word boundaries and pos-

sible silence with a [space] token between the last phoneme

of a word and the first of the next respectively.

3. Speech Recognition

Our GMM-HMM model is implemented in RASR [16], which

is functionally close to the Montreal forced aligner (MFA) com-

monly used for TTS works such as FastSpeech-2 [17]. Training

parameters are optimized on LibriSpeech-100h with focus on

ASR performance. The overall training consists of the several

steps, which in more detail are explained in [11]. In this work

we use the GMM-HMM twofold. First we use the alignments

produced by the system as ground truth alignments for duration

prediction in our TTS. For this we calculate the Viterbi path for

our best alignment, setting a duration of zero for [space] to-

kens where no silence was aligned. For recognition, we use the

model together with a pre-trained 4-gram count-based language

model (LM) from the LibriSpeech [18] dataset.

On top of the GMM-HMM we use a Hybrid model which

predicts the frame-label posterior probability by a neural net-

work. We use the final alignment output from the ASR GMM-

HMM as training targets. The neural network (NN) consists of

a stack of 8 1024-dimensional BiLSTM layers followed by a

linear layer with softmax activation and output size 12001 to

match the corresponding CART [19] labels. In total the model

consists of 210M parameters. For recognition we again use the

LibriSpeech 4-gram LM.

Our last model is an AED model as used in [11] with 12

conformer blocks as encoder and single layer LSTM for the de-

coder, resulting in 98M parameters. We use BPE labels [21]

with 2k merge operations as the output units. Different from

the TTS model we use a frame shift to 10 ms and the win-

dow size to 25 ms for the feature extraction. The models uses

a downsampling factor of 6. To improve training stability we

increase the number of encoder layers over time, starting with

2 layers which are increased by 2 every 5 sub-epochs begin-

ning the first increase after 10 sub-epochs reaching full model

size at 10 full epochs (30 sub-epochs). For data augmenta-

tion we use SpecAgument [20] and apply speed-pertubation

via librosa.resample()2 uniformly distributing scales 0.9/1.0/1.1

among the input. Recognition results are without the use of an

external language model.

2https://librosa.org/doc/latest/generated/librosa.resample.html
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Figure 1: Experiment pipeline for synthetic data training.

4. Pipeline

In general our pipeline consists of 5 steps analogue to [11],

which is visualized Figure 1. First the aligner is trained on the

pre-processed data and a forced alignment generated as duration

reference for the TTS model. With that the TTS is trained and

used for generation of synthetic data. Afterwards the ASR mod-

els are trained on the generated data for a final evaluation. We

remove unnatural long silence portions by using the silence fil-

ter from FFmpeg3 with a threshold of -50dB. Synthesis is done

on two portions of data, the TTS training data and a similar

amount of unseen text data. Synthesizing the data seen during

TTS allows our analysis to be done with as little TTS errors as

possible, while using unseen data helps verifying the validity of

our results. In the baseline case we randomize the speaker ID,

using speaker IDs of train-clean-100. The synthesized data is

then used to train the different ASR systems without any ad-

ditional real data. Similar to [11], we additionally let the TTS

model synthesize the data with access to the target durations

which were seen during training. We denote this in the tables

by marking the durations as real durations.

5. Experiments

5.1. Data and Training

For all our experiments we use the the train-clean-100 subset

of LibriSpeech as supervised training data. While common lit-

erature usually synthesizes an unseen part of train-clean-360

[1, 2, 4], we also conduct experiments on the previously seen

training data. Comparing results to synthesizing unseen data,

we can observe generalization effects of the TTS. As cross val-

idation (CV) set for ASR training we use a combination of dev-

clean and dev-other. For TTS training we construct our own CV

set where we split 4 sequences per speaker from the training

3https://ffmpeg.org/ffmpeg-filters.html#silenceremove



Table 2: Generalization Results. Evaluation of LibriSpeech dev-clean and dev-other corpora. Only data from LibriSpeech train-clean-

100 is used for TTS training. The synthetic data is created by using either text from train-clean-100h (LS-100) or an equivalent subset

of train-clean-360h (100h-LS-360). γ denotes scaling the hidden dimension of the TTS by this factor. ω denotes scaling the number of

layers by this factor.

Data

(synth.)

Audio
Data

TTS-
Dur.

Scale
Type

Model
Scale

WER [%]

GMM-HMM AED Hybrid

clean other clean other other

Real LS-100 - - - 8.1 25.9 7.5 18.9 15.0

Synth.

LS-100

pred.

- - 10.0 32.2 14.1 37.6 26.2

Dimension
γ = 1.5 9.8 31.3 11.7 32.4 23.4

γ = 2.0 9.5 31.0 10.5 30.5 22.1

Layers ω = 2 9.7 31.8 13.5 36.1 24.4

real

- - 9.7 32.2 10.9 31.8 26.8

Dimension
γ = 1.5 9.6 30.7 9.7 28.9 24.5

γ = 2.0 9.4 30.5 9.3 27.6 23.1

Layers ω = 2 9.2 30.9 10.2 29.9 24.8

100h-
LS-360 pred.

- - 10.3 32.9 19.1 43.8 26.9

Dimension
γ = 1.5 9.9 32.9 16.1 38.0 24.5

γ = 2.0 9.8 31.3 15.0 35.7 23.2

Layers ω = 2 10.1 32.2 18.6 41.7 24.7

Table 3: Train and cross-validation (CV) mean-average error

(MAE) Scores of TTS models.

Scale Model Spectrogram MAE Duration MAE

Type Scale Train CV Train CV

- - 0.305 0.376 1.373 1.461

Dimension
γ = 1.5 0.278 0.375 1.201 1.448

γ = 2.0 0.264 0.373 1.090 1.453

Layers ω = 2 0.296 0.369 1.333 1.451

data resulting in 1004 sequences. To generate phoneme repre-

sentations for words not contained in the LibriSpeech lexicon

we use Sequitur [15]. For the AED model we use byte-pair en-

coding [21] with 2000 merge operations. We evaluate all of our

models on dev-clean and dev-other and do not apply silence re-

moval. The NAR-TTS is trained for 200 steps, the GMM-HMM

for 100 EM-steps, the Hybrid for ∼13 full epochs and the AED

model for ∼165 full epochs. All experiments were done on a

single consumer 11Gb GPU for easy reproducibility. As opti-

mizer we use Adam [22] with a learning rate decay factor of 0.9

based on the CV score.

5.2. Effect of Vocoding and Data Preprocessing

Table 1 shows a comparison of our three baseline models. For

this we first train the models on train-clean-100, with and with-

out the silence removal. All three models degrade by a similar

amount, which is to be expected, since silence portions of both

training and test data differ. In lines three and four of Table 1,

the effect of vocoding is shown. For this we extract mel fea-

tures from the real data and convert them back to audio with

our vocoder. Here a first difference of the ASR models becomes

visible. The degradation of GMM-HMM ranges from 0.8% to

1.8% absolute for dev-other, depending on the inclusion of si-

lence removal. For the two neural models this degradation is

much less, ranging from an improvement of 0.2% to a degrada-

tion of 0.6 % word error rate (WER). When replacing the real

data with TTS generated audio again the models behave dif-

ferently. For dev-clean GMM-HMM is able to keep the best

performance of ∼25% relative increase, while for AED with

predicted phoneme durations the WER doubles. When using

the aligned durations the WER of the AED improves by 4% ab-

solute while improvements for GMM-HMM are only marginal.

For dev-other this effect is similar, but in this case dominated

by the fact that the GMM-HMM is already showing weak per-

formance on the more noisy data. For the Hybrid model the

performance degrades by around two-thirds, with the special

exception that TTS with oracle durations do not help the model.

While the TTS converges without silence removal, contrary to

previous experiments for autoregressive models in [2], results

are significantly worse and thus omitted from the table.

5.3. Model sizes and Generalization

Next-up we investigate the influence of different model sizes

on both the generalization capabilities of the TTS model and

the influence on ASR training. For this we chose two different

model scaling approaches. TTS literature usually reports on a

single set of hyperparameters, but due to the possibility of auto-

matic evaluation through ASR training and recognition, we can

conduct a study on different choices. In the first approach we

scale TTS model dimensions by a factor γ, meaning that e.g. for

γ = 1.5 the 512-dimensional layers are increased to 768. Ana-

logue we indicate scaling the layer amount with ω, meaning that

e.g. for ω = 2 there are twice as many BiLSTM layers in the

TTS models. As seen in the upper part of Table 2 increasing the

model size or the layer count for audio generation in both cases

helps the ASR models. Here the AED model benefits the most

from the larger models, increasing relative performance on dev-

clean by ∼30% and on dev-other by ∼20%. While the Hybrid

model shows improvements of ∼15% on dev-other, the GMM-

HMM model only improves marginally with data generated by

larger TTS models. This also contradicts to the common idea

that deeper models are able to hold even with larger models,

while having a friction of the parameters. In the case of gener-

ating synthetic data for ASR training this paradigm seems to be

not trivially realizable. We hypothesize that larger TTS systems

are able to better replicate the acoustic structure of the train-



Table 4: Speaker Embedding results. WER [%] evaluation of LibriSpeech dev-clean and dev-other corpora. Gaussian upsampling with

SAT alignment used for TTS. No shuffling means TTS sees the same speaker embedding as during training.

Data
TTS-

Durations
Embedding

Type
Shuffle

Embedding

WER [%]

GMM-HMM AED Hybrid

clean other clean other other

Real - - - 8.1 25.9 7.5 18.9 15.0

Synthetic

pred.

Linear
Yes 10.0 32.2 14.1 37.6 26.2

No 9.8 33.0 14.7 39.3 25.5

X-Vectors
Yes 10.3 33.3 16.1 40.7 26.4

No 10.3 32.5 14.1 36.5 24.0

Resemblyzer
Yes 10.1 32.4 15.5 38.4 25.2

No 10.1 32.6 14.6 36.2 23.8

real

Linear
Yes 9.7 32.2 10.9 31.8 26.8

No 9.6 33.1 10.9 31.6 26.2

X-Vectors
Yes 9.8 32.4 10.9 32.6 26.6

No 9.5 31.2 10.1 28.3 24.7

Resemblyzer
Yes 9.8 32.0 11.0 31.2 25.7

No 9.8 31.0 9.9 27.8 24.5

ing data, which then reflects in better synthesis of seen data. In

the lower section of Table 2 we show results on an unseen por-

tion of train-clean-360. Namely, we chose transcriptions that

in the original corpus relates to 100h of data, hence the name

100h-LS-360. As to be expected the general performance of

the TTS on unseen data is worse than on the training data, still

the larger TTS models are able to improve the performance of

the ASR models, even though training scores indicated overfit-

ting, as visible in Table 3. This confirms our perception that

for synthetic data generation TTS training loss scores are not

meaningful as an indicator for generalisation and performance

on a held-out dataset. A notable difference is visible in the per-

formance of the different ASR models on the unseen data. The

GMM-HMM is almost able to replicate the performance com-

pared to the seen training data, with an absolute difference of

0.3% WER on dev-clean and dev-other for the best results. A

similar result is visible for the Hybrid model, where the degra-

dation is only 1.1% WER absolute. In the case of AED the

performance is a lot worse, where the best performance with

unseen data degrades by almost 50% relative on dev-clean and

∼15% relative on dev-clean. This indicates that modelling er-

rors done by the TTS model during synthesis of unseen data

hurt the performance of the AED a lot more than for the other

two models.

5.4. Speaker Representations

As a last study we investigate the influence of the speaker em-

bedding on the performance of the synthetic data in ASR train-

ing. In order to generate more expressive speaker embeddings

we train an X-Vector model [23] on train-clean-100, as well as

taking embeddings directly from the pre-trained Resemblyzer4

model [24]. We train our TTS model by replacing the lookup

table by the generated embeddings. The results of this can be

found in Table 4. For our baseline keeping the speaker tags ran-

dom does not make the synthesized data worse for ASR train-

ing. Adding the embeddings generated by both X-Vectors and

Resemblyzer does not help improve over the initial baseline and

rather the performance degrades, especially in the case of AED.

Only when not shuffling the embeddings during synthesis the

pre-trained embeddings are able to keep up with the baseline,

4https://github.com/resemble-ai/Resemblyzer

surpassing it together with real durations. From this we con-

clude that overall the speaker embeddings generated by the TTS

model generalize well. Feeding embeddings from more elabo-

rate models without changes to the model makes the TTS overfit

instead of benefiting from richer embeddings. Nevertheless, in

the correct setting, they can provide meaningful information to

the model, as seen in the results with real durations.

6. Conclusions

In this work we used a text-to-speech (TTS) model for the

generation of synthetic data for automatic speech recognition

(ASR) training. We modified the TTS system in different as-

pects and investigated how this impacts the ASR training on

the synthetically generated data. Increasing the size of the TTS

led to more overfitting according to the training and valida-

tion scores. Still, when using the enlarged TTS for synthetic

data generation, the ASR performance would improve. This

means hyperparameter tuning for TTS and proper evaluation is

required before drawing conclusions from ASR training proce-

dures involving synthetic data. Basing model selection solely

on loss scores does not suffice. In a second set of experiments,

we increased the TTS complexity by adding pre-trained net-

works for speaker modeling. In contrast to enlarging the model,

the results were less conclusive. Only in some of the experimen-

tal settings the ASR performance would improve, and the im-

provements were not consistent among the different ASR archi-

tectures used. It seems that the TTS tends to overfit on the given

embeddings, which is reflected in the performance increase

when using real durations and using the same speaker embed-

ding as seen during training for synthesis. We made the addi-

tional observation, that the vocoding of log-mel-features using

a low-quality method such as Griffin & Lim does not strongly

degrade the utilization of the audio data for ASR training, while

reducing the overhead for data generation significantly. Over-

all we have seen that gap between real and synthetic data is

smaller for traditional ASR systems. Real phoneme variations

and stronger speaker embeddings affected these systems much

less than an attention-encoder-decoder ASR systems. Future

work should aim to find suitable aspects in synthetic data which

correlate with the ASR performance across different model con-

ditions.
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