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Abstract
Varying-size models are often required to deploy ASR systems
under different hardware and/or application constraints such
as memory and latency. To avoid redundant training and op-
timization efforts for individual models of different sizes, we
present the dynamic encoder size approach, which jointly trains
multiple performant models within one supernet from scratch.
These subnets of various sizes are layer-wise pruned from the
supernet, and thus, enjoy full parameter sharing. By combin-
ing score-based pruning with supernet training, we propose two
novel methods, Simple-Top-k and Iterative-Zero-Out, to auto-
matically select the best-performing subnets in a data-driven
manner, avoiding resource-intensive search efforts. Our experi-
ments using CTC on both Librispeech and TED-LIUM-v2 cor-
pora show that our methods can achieve on-par performance as
individually trained models of each size category. Also, our ap-
proach consistently brings small performance improvements for
the full-size supernet.
Index Terms: Speech recognition, Supernet training, Dynamic
encoder, Pruning

1. Introduction
Automatic speech recognition (ASR) models run in different
scenarios with different application needs and computational
budgets. For some applications, inference speed is critical
which often requires trading off accuracy for model latency.
One of the simplest and most effective ways to reduce model
latency is to reduce model size. For on-site ASR, edge devices
have limited storage and memory budgets, thus also imposing
constraints on the model size. Obtaining ASR models with dif-
ferent model sizes often requires optimizing training hyperpa-
rameters for each model individually. However, repeated train-
ing results in high computational costs. Therefore, arises the
question of how to efficiently train models of different sizes.

Pruning [1, 2, 3], as a model compression technique, is
commonly used to obtain neural models of smaller sizes. Prun-
ing aims at removing unimportant weights from the network.
The lottery ticket hypothesis [4, 5] discovers that there exists a
sparse net in a full network that can achieve the same perfor-
mance. However, pruning requires a converged base model and
fine-tuning of each small model separately, so the problem of
repeated training remains unresolved. The concept of supernet
training is first proposed in [6]. The supernet and a fixed num-
ber of subnets fully share parameters and are simultaneously
trained. After the joint training, all networks can achieve good
convergence. However, how to efficiently search for the subnets
during training is still challenging [7, 8].
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In this work, we combine the benefits of both ideas and
demonstrate an efficient dynamic encoder training framework.
We leverage score-based layer-wise pruning to find the opti-
mal layer combination for the subnets, saving the computation-
ally expensive search required by the general supernet training
methods [9, 10]. Furthermore, we design an efficient two-step
training pipeline. In Step 1, we propose two methods, Simple-
Top-k and Iterative-Zero-Out, to effectively learn the associated
layer importance scores in a data-driven way. In step 2, we gen-
erate binary masks for all subnets and exploit the sandwich rule
[6] for efficient joint training of the supernet and subnets. Ad-
ditionally, we explore different training techniques to mitigate
the mutual training inference and further boost the word error
rate (WER). We evaluate our approach by conducting experi-
ments with the Conformer [11] connectionist temporal classifi-
cation (CTC) [12] model on both Librispeech and TED-LIUM-
v2 datasets. The results show that with our proposed frame-
work, multiple models with the desired number of layers can be
obtained in a single training job, each with competitive WER
performance. Even a slight WER improvement on the full-size
model is obtained presumably due to the regularization effect
of the co-trained subnets. We also investigate the selected lay-
ers for the subnets and unexpectedly find that the convolutional
layers are selected the most.

2. Related Work
2.1. Supernet/Subnet Joint Training
The RNN-T cascaded encoder architecture [13, 14] utilizes the
idea of auxiliary loss [15, 16], allowing direct connections be-
tween intermediate encoder layers and decoders. An advantage
of this approach is that the training overhead is negligible since
no additional forward pass is required for the subnets. Never-
theless, the low-level layers may not be the optimal choice for
the subnets. With the same model size, there might be a bet-
ter combination of layers to make up the subnets. [17] for ex-
ample, comprises the subnets by choosing every other or every
third layer. To avoid manual layer selection, our work utilizes
a score-based pruning method to achieve automatic layer selec-
tion during training. [18] randomly select one subnet from a
total of 1000 subnets at each step of supernet training, which
does not guarantee to find the optimal subnet under a specific
size constraint. [9, 10] use evolutionary search to find the top-
performing subnets under different size constraints from a pre-
defined search space. The WER and loss on the validation set
are used as the ranking metric in [9] and [10], respectively. As
a result, in one search procedure, all possible subnet candidates
need to be forwarded once with the whole validation data. Al-
though [9] leverages quantization to make the inference more
efficient, repeating such a search procedure in each training step
is computationally expensive. [19, 20] use regularization tricks
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like stochastic depth [21] and auxiliary loss [15, 16] to make
model pruning aware and uses layer-wise pruning after training
to search for subnets. Compared to these methods, our work
determines the optimal subnets based on importance scores,
thereby saving resource-intensive search efforts. [22] employs
unstructured gradient-based pruning criteria to determine the
subnets. Unstructured pruning may result in the irregular sparse
matrix which requires reconstruction original dense shape in in-
ference, hindering the acceleration in practical use. Thus, our
work applies structured pruning to avoid irregular sparsity.
2.2. Pruning
Magnitude-based pruning [23, 24] preserves weights with the
highest absolute values. However, the weight magnitude does
not necessarily reflect the weight importance. To address this
issue, movement pruning [25] considers first-order information,
which is how the weights change in training. In this work, we
follow their idea for our score-based pruning. Furthermore, [26]
introduces L0 norm regularization on the non-zero elements of
weights, so that the models can be pruned to a specified sparsity.
There has been growing interest in applying the L0 norm for
ASR tasks [1, 2, 3]. We compare our approach with L0 norm in
Sec. 4.2.

3. Dynamic Encoder Size
In this section, we present our approach to model encoders with
dynamic size based on a supernet and M subnets that share pa-
rameters with the supernet. Consider the learnable parameters
θ = {θj}Lj=1, where L is the total number of layers, θj denotes
the parameters of layer j. Let C = {k1, ..., km, ..., kM}
denotes a predefined set of expected number of layers for the M
subnets n1, n2, ..., nM . C is sorted in a decreasing order such
that k1 = L and kM = kmin = min∀m∈M km. For each sub-
net nm, a binary pruning mask zm ∈ {0, 1}L is learned such
that

∑L
j=1 z

j
m = km, where zjm denotes the mask for layer j.

zjm = 0 indicates that layer j is pruned for subnet nm. The
layer importance scores are specified as s = {sl}Ll=1 ∈ RL.
The joint training optimization problem can be formulated as:

min
θ,∀zm

E(x,y)∈D

[
LASR(x, y; θ) +

M∑
m=1

λmLASR(x, y; θ ⊙ zm)

]
,

where D is the training data and λm is the tunable loss scale, ⊙
denotes the element-wise product.

We design an efficient 2-step training pipeline. The main
goal of Step 1 is to automatically learn the layer importance
score. In Step 1, the supernet and one subnet are jointly trained
from scratch. The subnet is initialized with the full-size model
and progressively layer-wise pruned until its number of lay-
ers reaches kmin. During this progressive pruning process, the
layer scores learned at each intermediate size category also re-
flecting the layer selection for the corresponding subnet. We
believe that with such a process, layer selection can be learned
in a smooth way. Besides, the ASR loss of the full-sized
supernet ensures that the performance of the supernet is not
compromised. After the layer importance scores are learned,
in Step 2, we generate binary pruning masks for each subnet
n1, n2, ..., nM based on the importance score and then jointly
train the supernet and all M subnets.
3.1. Step 1 - Progressive Self-Pruning
In Step 1, we progressively prune the subnet with a dynamically
decreasing size, while the supernet and the subnet are jointly
trained during the pruning process. This step takes about 60%
of the total training time. The subnet is initialized with 0 spar-

Figure 1: Illustration of Simple-Top-k, STE uses a relaxed k-hot
vector to estimate the gradients of the binary mask.

sity, which is defined as the percentage of pruned layers to the
total number of layers. We adopt an iterative training proce-
dure to gradually increase the target sparsity of the subnet until
it reaches the desired maximum value L−kmin

L
. We denote I as

the total number of training iterations, each with ∆T training
steps. In the i-th iteration, we set the number of layers of the
subnet to k = L − (L−kmin)×i

I
. In the following, we present

two iterative self-pruning methods for the given k to learn the
associated layer importance.

3.1.1. Simple-Top-k
Simple-Top-k is a differentiable top-k operator inspired by [25].
For a given number of layers k, the pruning binary mask for
the subnet is z is {zj |zj = 1 if sj in topk(s, k) else 0, j =
1, 2, ...,L}. Since such a binary mask z is not differentiable,
Simple-Top-k uses z in the forward pass to calculate the loss. In
the backward pass, as depicted in Figure 1, the straight through
estimator (STE) [27] is used to approximate the gradients for the
step function. We use a relaxed k-hot vector α = [α1, ..., αL]

where
∑L

j=1 αj = k, 0 ≤ αj ≤ 1 to approximate the gradient
of the binary mask z. The relaxed top-k algorithm is used to
derive α from s, we refer the reader to [28] for more details
about the algorithm.

3.1.2. Iterative-Zero-Out
Simple-Top-k uses STE, which leads to inconsistency in
forward and backward passes. Since the impact of the
approximate gradient is unclear [29], we design another
method called Iterative-Zero-Out, to circumvent the usage
of STE. The pruning mask for the subnet here is defined as
z = [f(s1), f(s2), ..., f(sL)] where f(.) is an activation
function. We use sigmoid for f(.) in this work. To constrain∑L

j=1 z
j = k, we add an L1 norm term to the training

objective to ensure sparsity. The total optimization loss can be
formulated as

LASR(x, y; θ) + λLASR(x, y; θ ⊙ z) + γ|
∑L

j=1(z
j)− k

L
|,

where γ is a tunable scale. However, by simply adding a
sparsity loss, we observe that z tends to converge closer to a
uniform distribution. Therefore, we adopt the zero-out idea
from [24], where each iteration adopts the following procedure:
1. Jointly train the supernet with parameters θ and the subnet
with parameters θ ⊙ z for ∆T steps
2. Zero out the smallest L − k elements in z but meanwhile
keep them in the computation graph so that they can still get
updated in further iterations and may have a chance to be
revived.



In this way, the mask z will converge very close to a k-hot
vector, though not exactly.
3.2. Step 2 - Supernet/Subnets Joint Training
In Step 2, we set the binary mask zm = {zjm|zjm =
1 if sj in topk(s, km) else 0} for subnet nm with km number
of layers. All binary masks are kept fixed in this step. The sand-
wich rule, which is proposed in [6] and successfully applied in
[10, 9], is employed in this step to improve efficiency. More
specifically, in each training step, we jointly train the supernet,
the smallest subnet, and one medium subnet randomly sampled
from the remaining M-2 subnets.

Furthermore, we take advantage of layer dropout [21]
to diminish the mutual interference between subnets and
supernets during joint training. More precisely, we ap-
ply layer dropout to those pruned layers that have indices
{j|sj not in topk(s, kmin)}, similar to [17]. We also empiri-
cally observed that using around 40% of the total training time
is already enough to reach good performance for all subnets.

4. Experiments
4.1. Setup
We conduct the experiments on the 960h Librispeech corpus
[30] and the TED-LIUM-v2 corpus [31]. We use a phoneme-
based CTC model as in [32]. We use a set of 79 end-of-word
augmented phonemes [33]. The acoustic model consists of a
VGG front end and 12 Conformer [11] blocks. In the Con-
former block, we do not apply relative positional encoding. In-
stead, we swap the order of the convolution module and the
multi-head self-attention module as in [34] to speed up the train-
ing and inference. The model size is set to 512 for Librispeech
and 384 for TED-LIUM-v2 corpus. We use log Mel-filterbank
features as input and specaug [35] for data augmentation. Simi-
lar to [36], one cycle learning rate scheduler is used for training
The learning rate (lr) is first linearly increased from 4 · 10−6 to
4 · 10−4 for 45% of the training time, then linearly decreased
from 4 · 10−4 to 4 · 10−6 for another 45% of the time. For
the rest 10% of training time, the lr linearly decays to 10−7.
We train 50 epochs for TED-LIUM-v2 corpus and 30 epochs
for Librispeech. The loss scale for each subnet in both training
steps is set to 0.3. In inference, we apply Viterbi decoding with
a 4-gram word-level language model. The config files and code
to reproduce the results can be found online1.
4.2. 1 Supernet + 1 Subnet
In Table 1, we compare ASR results of encoders with 24 and
48 layers trained using different methods. For the Aux-Loss
method, we add an auxiliary CTC loss with a loss scale of 0.3
to the output of the 6-th Conformer block (corresponds to 24
layers). We can see that for the 48 layers, both Simple-Top-k
and Iterative-Zero-Out achieve the same or slightly better WER.
Compared to the individually trained model, Simple-Top-k and
Iterative-Zero-Out achieve on-par WER for the 48-layer model
and better WER for the 24-layer model. Compared to Aux-Loss,
both Simple-Top-k and Iterative-Zero-Out gain slight WER im-
provement on the 48-layer model and substantially outperform
the 24-layer model by a relative ∼8% with even fewer parame-
ters. It confirms our hypothesis in Sec. 2.1 that low-level layers
are not the optimal choice for the subnet.

We also compare our proposed method with the widely-
used pruning method L0-Norm [26]. We use the implemen-
tation from [37]. We adapt L0-Norm to our joint training sce-
nario and apply it to the layer-wise self-pruning in Step 1. The

1https://github.com/rwth-i6/returnn-experiments/
tree/master/2024-dynamic-encoder-size

Table 1: ASR results comparison between different approaches
for training two encoders with 48 and 24 layers on TED-LIUM-
v2 dev set. The 48-layer model has a total of 41.7 M parameters.

Training Large Small
WER[%] Params. [M] WER[%]

separately 7.5 20.9 8.4
Aux-Loss 7.6 8.8
L0-Norm 7.7 18.7 9.5
Simple-Top-k 7.5 19.7 8.1
Iterative-Zero-Out 7.4 18.8 8.2

results in Table 1 show that there is a considerable WER degra-
dation for the 24-layer model trained from L0-Norm compared
to other methods. The reason could be that the mask z is gener-
ated by adding a random variable u ∼ U(0, 1) distribution. At
each training step, the layer outputs of the subnet are scaled by
a fluctuating variable, which may cause disturbance to training.
4.3. 1 Supernet + 2 Subnets
Table 2 and Table 3 report the WER of models with 16, 32,
and 48 layers on TED-LIUM-v2 and Librispeech test set. On
TED-LIUM-v2 test set, Simple-Top-k performs best across all
three model sizes. For the Librispeech test set, Simple-Top-k
performs best only on large and medium-sized models. Both the
proposed methods outperform the separately trained baselines
for large and medium models, while performance degradation
is observed for the small one. A likely reason is that the loss
scale for supernet is 1 and for all subnets is 0.3, thus placing
more emphasis on the supernet during training. Furthermore,
we observe that the joint training can improve the WER of the
supernet. One possible explanation is that the layer masking
on the shared parameters introduces some regularization effect,
similar to LayerDrop [19]. In addition, the models trained from
Iterative-Zero-Out perform slightly worse than Simple-Top-k.

Table 2: ASR results of three encoders with 48, 32, and 16 layers
on TED-LIUM-v2 test set. The 48-layer model has a total of
41.7 M parameters.

Training Large Medium Small
WER[%] Params.[M] WER[%] Params.[M] WER[%]

separately 8.1 28.1 8.4 14.4 9.3
Aux-Loss 7.9 8.6 10.9
Simple-Top-k 7.8 27.5 8.0 14.1 9.1
Iterative-Zero-Out 8.1 25.8 8.2 12.9 9.6

Table 3: ASR results of three encoders with 48, 32 and 16 layers
on Librispeech test set. The 48-layer model has a total of 74.1
M parameters.

Training
Large Medium Small

WER[%] Params. WER[%] Params. WER[%]
clean other [M] clean other [M] clean other

separately 3.3 7.1 49.9 3.5 7.7 25.6 3.6 8.4
Aux-Loss 3.2 6.9 3.6 7.9 4.5 9.7
Simple-Top-k 3.1 6.8 47.1 3.2 7.0 23.8 3.9 9.1
Iterative-Zero-Out 3.2 7.1 47.0 3.2 7.2 26.7 4.1 9.6

4.4. Ablation Study
4.4.1. Layer Dropout
The layer dropout in Step 2 can alleviate the mutual interfer-
ence between the supernet and subnets, thus playing an impor-
tant role in joint training. We explicitly study the impact of the
layer dropout and present the result in Table 4. If layer dropout
is applied in Step 1, we only apply it on the unselected layers,
i.e., zj ̸= 1. Table 4 demonstrates that it is not necessary to



Table 4: ASR results of applying different values of layer
dropout in Step 1 and Step 2 on Librispeech test set. Method
Simple-Top-k is used to train three models with 16,32,48 layers
respectively.

Layer dropout WER [%]
Large Medium Small

Step 1 Step 2 clean other clean other clean other

n/a

0 3.1 6.9 3.2 7.1 4.1 9.7
0.1 3.2 6.8 3.2 7.0 4.2 9.8
0.3 3.1 6.8 3.2 7.0 3.9 9.1
0.5 3.3 7.2 3.3 7.3 4.1 9.5

0.1 0.3 3.3 7.0 3.2 7.2 4.2 9.6
0.3 3.2 7.0 3.2 7.0 4.0 9.2

apply layer dropout in Step 1. The best result is achieved by
only applying layer dropout with a value of 0.3 in Step 2. Addi-
tionally, we have also tried to apply dropout on the entire layer
group as in [19]. However, we empirically find out that ap-
plying dropout to each layer individually performs better. This
may make the training more robust since in each training step,
different combinations of layers can be dropped out.
4.4.2. Number of Self-Pruning Iterations
Table 5 compares the WERs of employing a different number
of pruning iterations in Step 1 in Sec. 3.1. The WERs of all
three size models tend to decrease when more pruning iterations
are used. As the models are trained from scratch in Step 1,
the layer importance may change significantly during training.
Presumably, using more iterations avoids making suboptimal
decisions that select suboptimal layers in the early stages.

Table 5: ASR results of employing different number of self-
pruning iterations in Step 1 on Librispeech test set. Simple-Top-
k is used to train three models with 16,32,48 layers respectively.

# iterations
WER [%]

Large Medium Small
clean other clean other clean other

1 3.3 7.1 3.4 7.3 3.8 9.3
2 3.2 7.1 3.2 7.2 3.9 9.5
4 3.3 7.0 3.3 7.2 4.1 9.3
8 3.1 6.9 3.2 7.2 3.9 9.2

32 3.1 6.8 3.2 7.0 3.9 9.1

4.4.3. Training Time Distribution
Table 6 shows the WER results of using different training time
distributions in Step 1 and Step 2. We observe that using 60%
of training time in Step 1 and 40% in Step 2 achieves the best
performance. If less time is distributed to Step 1, the layer im-
portance scores may not be learned well, leading to premature
decisions. On the contrary, allocating more time in Step 1 will
lead to insufficient joint training time under a fixed training bud-
get and also lead to performance degradation.

Table 6: ASR results of using different training time distribution
in Step 1 and Step 2 on Librispeech test set. Method Simple-Top-
k is used to train three models with 16,32,48 layers respectively.

Step 1 Step 2
WER[%]

Large Medium Small
clean other clean other clean other

50% 50% 3.3 7.1 3.3 7.2 4.0 9.3
60% 40% 3.1 6.8 3.2 7.0 3.9 9.1
70% 30% 3.1 7.1 3.2 7.2 4.4 10.9

Table 7: ASR results of four encoders with 12, 24, 36 and 48
layers trained using the sandwich rule on TED-LIUM-v2 test
set. The 48-layer model has totally 41.7 M parameters.

Training Large Medium 1 Medium 2 Small
WER
[%]

Params.
[M]

WER
[%]

Params.
[M]

WER
[%]

Params.
[M]

WER
[%]

separately 8.1 31.4 8.3 21.2 8.6 10.9 9.8
Aux-Loss 8.1 31.4 8.3 21.2 9.1 10.9 12.2
Simple-Top-k 8.0 31.1 8.1 20.6 8.6 10.0 10.2
Iterative-Zero-Out 7.9 29.3 8.1 19.3 8.8 10.7 10.3
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Figure 2: The distribution of selected layers for the models with
12, 24 and 36 layers shown in Table 7.

4.5. Sandwich Rule: 1 Supernet and M>2 Subnets
Table 7 shows the effectiveness of applying the sandwich rule.
Compared to jointly training three models, there is no increase
in the training computation. In Step 2, we only need to update
the 48-layer model, 12-layer model, and one randomly selected
model with 24 or 36 layers. Yet we can obtain one more subnet
and the WERs of all four models are still competitive.

We further analyse the selected layers for the models with
12, 24, and 36 layers in Figure 2. We note that the feed-forward
layers tend to be pruned the most, followed by multi head self-
attention (MHSA) layers. Also, the remaining MHSA layers
tend to be distributed at the bottom layer. To our surprise, the
convolutional layers are the most selected layers, indicating that
it is generally more important for our phoneme CTC model.

5. Conclusion
In this work, we present an efficient training scheme to obtain
models of various sizes by combining score-based model prun-
ing and supernet training. We also propose two novel methods,
Simple-Top-k and Iterative-Zero-Out, to automatically learn the
optimal layer combinations for the subnets through the train-
ing process. Furthermore, we combine different training meth-
ods including layer dropout and the sandwich rule to achieve
better overall performance. The experimental results on Lib-
rispeech and TED-LIUM-v2 show that for each size, models
trained using our approach can match or slightly outperform
models trained individually, and largely outperform the models
trained with auxiliary loss. This shows that our training scheme
can significantly reduce training redundancy while preserving
model performance. For future work, the proposed approaches
can be extended by using finer pruning granularity for subnets
such as the attention head in MHSA, the dimension of feed-
forward layer, etc. as in [1]. Applying in-place knowledge dis-
tillation to transfer the knowledge from supernet to subnets can
also give potential improvements as reported in [22, 38].
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