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Abstract

The field of statistical language modeling and machine translation has seen rapid develop-
ments in recent years, with artificial neural networks taking center of the stage, dominating
the modeling approaches. To this day, despite numerous efforts from a theoretical standpoint,
the training strategies associated with artificial neural networks are largely empirical and can
be roughly described as “recipes polished through generations of researchers”. In this disser-
tation, we consider and try to solve three problems related to the core training and modeling
approaches in neural language modeling and machine translation.

First, we study the computational inefficiencies during both training and testing that are
related to having large vocabularies for neural language models. We revisit the traditional
training criteria, and highlight that the inefficiencies originate from having to traverse over the
large vocabulary. As a solution, sampling-based training criteria were proposed. We describe
how the model optimums are attained, and show that with a correction step, the performance
of different sampling-based training criteria can be similar. On top of that, we propose a
new self-normalized importance sampling training criterion, which performs on par with the
state-of-the-art noise contrastive estimation approach.

Second, we turn our attention to smoothing in neural machine translation. As in all statistical
models, we want to generalize well to unseen events after training. Because of the exponential
growth of the number of possible events with increasing sequence lengths, smoothing is an im-
portant topic to study. Specifically, we study label smoothing, input smoothing and multi-agent
mutual learning. We compare training settings and propose new algorithms to enable better
regularized training. We show through extensive experiments, that the translation performance
of a strong baseline model can still be improved if one does a good job in smoothing.

Third, we question the long-standing paradigm of using encoder-decoder models to do ma-
chine translation. Historically, the separation of the encoder and the decoder is a natural design
choice because the source and the target sentence are two sequences in different languages, and
it makes sense to explicitly encode the source information first before decoding from it. How-
ever, it is also possible to concatenate the source and target sentences together, and train a
language model on the concatenated sequences. This alternative language modeling approach
has the benefit of dropping the decoder and maintaining an encoder-only monolithic architec-
ture. Experimental results suggest that this method can perform on par with state-of-the-art
encoder-decoder models, and also to some degree explains the translation capabilities of recent
large language models.
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Kurzfassung

Der Bereich der statistischen Sprachmodellierung und maschinellen Übersetzung hat in den
letzten Jahren rasante Entwicklungen erlebt, wobei künstliche neuronale Netze im Mittelpunkt
stehen und die Modellierungsansätze dominieren. Trotz zahlreicher Bemühungen aus theo-
retischer Sicht sind die mit künstlichen neuronalen Netzen verbundenen Trainingsstrategien bis
heute weitgehend empirisch und können gewissermaßen als “Rezepte, die über Generationen
von Forschern ausgefeilt wurden” beschrieben werden. In dieser Dissertation untersuchen wir
drei Probleme im Zusammenhang mit den zentralen Trainings- und Modellierungsansätzen in
der neuronalen Sprachmodellierung und maschinellen Übersetzung.

Zunächst untersuchen wir die rechnerischen Ineffizienzen sowohl beim Training als auch
beim Testen, die mit dem großen Vokabular für neuronale Sprachmodelle zusammenhängen.
Wir greifen die traditionellen Trainingskriterien erneut auf und heben hervor, dass die Inef-
fizienzen darauf zurückzuführen sind, dass das große Vokabular durchlaufen werden muss. Zu
diesem Zweck wurden stichprobenbasierte Trainingskriterien vorgeschlagen. Wir leiten ab, wo
die Modelloptima erreicht werden, und begründen, dass mit einem Korrekturschritt die Leis-
tung verschiedener stichprobenbasierter Trainingskriterien nahezu identisch ist. Darüber hin-
aus schlagen wir ein neues selbstnormalisiertes Importance-Sampling-Trainingskriterium vor,
dessen Leistung mit dem Ansatz der prominenten Noise Contrastive Estimation gleichwertig
ist.

Zweitens richten wir unsere Aufmerksamkeit auf die Glättung in der neuronalen maschinellen
Übersetzung. Aufgrund des exponentiellen Wachstums der Anzahl möglicher Sequenze mit
zunehmender Sequenzlänge ist die Glättung ein wichtiges Untersuchungsthema, da wir nach
dem Training gut auf unsichtbare Ereignisse verallgemeinern möchten. Insbesondere unter-
suchen wir label smoothing, input smoothing und multi-agent mutual learning. Wir variieren
Trainingseinstellungen und schlagen neue Algorithmen vor, um ein besser reguliertes Training
zu ermöglichen, und zeigen durch umfangreiche Experimente, dass die Übersetzungsleistung
eines starken Basismodells noch verbessert werden kann, wenn man bei der Glättung gute
Arbeit leistet.

Drittens stellen wir die seit langem bestehende Paradigma in Frage, encoder-decoder Mod-
elle für die maschinelle Übersetzung zu verwenden. Historisch gesehen war die Trennung von
Encoder und Decoder eine natürliche Entwurfsentscheidung, da der Quell- und der Zielsatz
zwei Sequenzen in unterschiedlichen Sprachen sind und es sinnvoll ist, die Quellinformationen
zuerst explizit zu kodieren, bevor man daraus dekodiert. Es ist jedoch auch möglich, die Quell-
und Zielsätze miteinander zu verbinden und ein Sprachmodell auf den verketteten Sequenzen
zu trainieren. Dieser alternative Sprachmodellierungsansatz hat den Vorteil, dass der Decoder
weggelassen und eine monolithische Architektur nur für den Encoder beibehalten werden kann.
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Experimentelle Ergebnisse deuten darauf hin, dass diese Methode mit dem modernen Encoder-
Decoder-Modell mithalten kann und in gewissem Maße auch die Übersetzungsfähigkeiten neuerer
großer Sprachmodelle erklärt.
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1. Introduction

The probabilistic interpretation of language is the foundation of recent successes in speech and
natural language processing. The notion of the “probability of a sentence” may be controversial
[Norvig 12] in terms of understanding what language truly is, but it is at the heart of modern
automatic speech recognition and statistical machine translation applications.

Broadly speaking, the steps to build a probabilistic model for human language applications
can be summarized as follows:

1. Define some performance measure for the task at hand, e.g. translation edit rate for
machine translation.

2. Gather some test corpora in the desired domain, and strictly keep them away from the
optimization procedure.

3. Gather as much training data as possible, preferably sufficiently similar to the test cor-
pora.

4. Define and initialize a probabilistic model of enough modeling capacity, the parameteri-
zation of which can be an artificial neural network.

5. Optimize the model to learn from the empirical distribution of the training corpora, but
be wary of overfitting and aim for generalization.

6. Use Bayes decision rule to generate hypotheses for test inputs, and evaluate these model
outputs according to the performance measure.

Carefully planning and executing the steps above is a challenging task, but brilliant minds
have helped to push human language technology to an impressive level with the statistical
approach. The goal of this chapter is to first expand on the topic of the statistical interpretation
of natural language from a modern perspective. Then, the attention is turned towards the
statistical approach to two important applications, language modeling and machine translation,
discuss state-of-the-art neural-network-based models, and touch upon issues related to training
and modeling, which are the key questions related to this dissertation.

1.1 On The Statistical Interpretation of Natural Language

1.1.1 The Controversy

Today, the “probability of a sentence”, whether it is in the context of a language modeling
task, and or a conditioned sentence generation task like machine translation, is a widely accepted
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1 Introduction

terminology. However, it was not always the case. It fact, if one reflects on the internal thought
process when formulating a sentence, one can probably agree that people do not start with
some artificial “begin-of-sentence” word, ask themselves “what is the probability of the next
word?”, and end the sentence with an artificial “end-of-sentence” word. More likely, one thinks
about the subject, the object, and the verb, and formulate the sentence to be semantically and
syntactically correct. A similar view is shared by many, and one of the most prominent examples
is from Noam Chomsky, who is considered to be a founding figure of modern linguistics, and
he famously wrote [Chomsky 69]:

But it must be recognized that the notion of “probability of a sentence” is an entirely
useless one, under any known interpretation of this term.

Prior to that, he gave two made-up example sentences in his influential book “Syntactic Struc-
tures” [Chomsky 57]:

Neither (a) “colorless green ideas sleep furiously” nor (b) “furiously sleep ideas green
colorless”, nor any of their parts, has ever occurred in the past linguistic experience
of an English speaker. But (a) is grammatical, while (b) is not.

This line of thought pinpoints the one of the difficulties to model natural language, that a pure
statistical approach may neglect important linguistic phenomena.

1.1.2 The Modern View

Nowadays, the everyday life is greatly changed because of the convenience that natural lan-
guage technologies bring. The discussions about controversies around the statistical approach
are less heated. However, it makes sense to revisit those thoughts from a modern perspective.

In fact, Chomsky’s view against a statistical approach is well-motivated from a linguistic
point of view, and very tempting indeed. However, one strong counter-evidence is right there
in the argument itself. That is, after he wrote those sentences, both (a) and (b) in the previous
example have been published and re-published, and now they have occurred in the linguistic
experience of many English speakers. While it is still true that no matter how many times the
two sentences are published, (a) is still grammatical, and (b) is not, the observation that they
do exist in the English literature now highlights an important property of statistical models of
natural language:

The statistical models of natural language try to model the information, and not
directly the linguistic phenomena in the natural language.

In this context, natural language is indeed the subject we care about. However, unlike
linguistics which try to describe language focusing on its grammatical, cultural, historical,
psychological, etc. aspects, statistical models try to describe the information in the language.
In other words, no matter how unnatural a sentence may be, be it “furiously sleep ideas green
colorless” or some bizarre phrase from the Internet, with probabilistic models, we want to
express how much information there is in the sentence and make use of that quantity1.

For instance, a statistical language model trained in the year of 1950, i.e. before the example
sentence “colorless green ideas sleep furiously” was ever introduced, would assign a much smaller
probability mass to the sentence compared to a language model trained today. That tells us

1Some typical use cases are, performing beam search, rescoring hypotheses, filtering corpus, etc.
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1.2 Statistical Language Modeling

something - the sentence is as grammatically wrong today as it was decades ago, but the great
contributions from Chomsky and the decades-long challenging of our understanding of what
language really is does not go unnoticed by the probabilistic language model. In fact, the
domain of information in which a probabilistic sequence model captures is no longer confined
in the natural language, but greatly expanded to many fields, e.g. modeling DNA [Benegas &
Batra+ 23], molecules [Flam-Shepherd & Zhu+ 22], audio signals [van den Oord & Dieleman+

16], images [Dosovitskiy & Beyer+ 21], etc.

Additionally, if we take a broader view of the topic, one can even say that the probabilistic
modeling of sequential data is core to artificial intelligence. This is because that we as humans
discover, communicate and preserve information via language. Here, language is a general term,
which can be mathematical notations, sheet music, chemical formulas etc. Considering that we
can digitize the information, store and share it (think of the bit streams transmitted through
the Internet at every second), it is safe to say that human knowledge can be represented in a se-
quential format. The author takes the position that successful modeling of such sequential data
is key to the understanding of human knowledge and the development of artificial intelligence.
To this end, two straightforward examples can be listed:

1. In entropy coding, the underlying probabilistic model determines the higher bound of
compression ratio. That is, when plugging in a much stronger probabilistic model, which
performs the “simple” task of predicting the next word given the previous words, one can
achieve much higher compression ratio [Bellard 23]. In fact, it is not hard to show that
the highest compression ratio is achieved if the true distribution can be plugged in.

2. As an intuitive example, consider a probabilistic language model which assigns a 99%
probability to the word “2” after seeing “1 + 1 =”. It is safe to say that this model
contains more knowledge about counting than any of our ancestors who did not know
anything about counting. In fact, while evaluating large language models is intrinsically
hard, this is how recent large language models are typically evaluated, i.e. against pre-
curated knowlege benchmarks that are presented to the model in the “1 + 1 =” manner
[Gao & Tow+ 21, Hugging Face H4 23].

Coming back to natural language, the discussion here about the statistical interpretation
lays the foundation of this thesis. Establishing that the statistical natural language models
model the information rather than directly the linguistics phenomena, we can be relieved from
the stress to having to address specific linguistic issues, and instead we can more focus on the
training and modeling issues that are central to this thesis. In other words, we respect the data
as is, and focus on the statistical learning and modeling aspects.

1.2 Statistical Language Modeling

1.2.1 Basic Concepts

Statistical language modeling is the task of assigning a probability to a sequence of discrete
symbols. Here, “discrete symbols” can mean words, subwords, characters, etc., and refer to the
atomic level at which the statistical models operate. Similarly, “a sequence of discrete symbols”
can mean a sentence, sentences, a document, etc. Below, for simplicity, we will refer to such a
discrete symbol as a “word”.
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Denoting a word with w, the sequence length with M , and word position indices in 1, 2, ...,M ,
a language model can be expressed as:

p(wM1 ) (1.1)

Before going into details of how this quantity can be modeled, it helps to think about the size
of the probbility space. Assume the vocabulary size is V , that is, a word wm at some position
m can choose from V different values (e.g. dog, cat, etc.). Because at each positions we have
V many choices, and all these choices are independent (possibly leading to unnatural sentences
but we do not care for this calculation), the total possible number of token sequences with
length M is then the product of the number of choices at each position, i.e. exponential in M :

VM (1.2)

Because the space is quite large, the word choices take discrete values, and we want the proba-
bility space to be normalized (summing up to one for all possible word sequences), to have an
intuitive understanding of the task, a suitable metaphor can be the following: think of many
small boxes and we need to pour a fixed amount of dirt into these boxes somehow, and then
each language model we develop corresponds to a certain way of pouring dirt.

It is common to factor this probability in an autoregressive manner, and operate in the log
space for numerical stability:

log p(wM1 ) = log

{
p(w0)

M∏
m=1

p(wm|wm−10 )

}
(1.3)

= log p(w0) +
M∑
m=1

log p(wm|wm−10 ) (1.4)

In such a decomposition, w0 is defined to be an artificial start symbol, prepended to the actual
word sequence, e.g. <bos> or <s>, which always has a probability of one:

p(w0) := 1 (1.5)

In order to ensure normalization over all possible sequences, an artificial end symbol wM , e.g.
<eos> or </s>, is appended to the end of the actual word sequence, which takes away some
probability mass to end the sequence at the corresponding length:

0 ≤ p(wM |wM−10 ) ≤ 1 (1.6)

The quantity p(wm|wm−10 ) in Eq.1.3 is often referred to as the conditional probability of
target word wm given context (or history) wm−10 . When the conditional dependence is limited
to a certain number of predecessor words, we say the context is limited. Correspondingly,
when there is no truncation in the conditional dependence, we say the context is unlimited.
This distinction between limited and unlimited context naturally leads to different designs of
language models.

In the case of limited context, traditionally, the task of language modeling is approached
with n-gram count-based language models [Jelinek & Bahl+ 75, Jelinek & Mercer 80, Katz
87, Church & Gale 91, Ney & Essen 91, Kneser & Ney 95, Chen & Goodman 96, Chen &
Goodman 99]. In such models, the conditional dependence follows an (n − 1)-order Markov
assumption:

p(wm|wm−10 ) := p(wm|wm−1max(0,m−n+1)) (1.7)
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1.2 Statistical Language Modeling

Because here the event space is again exponential in the context length, the training data is
unavoidably sparse, which calls for smoothing methods (to assign non-zero probability masses to
unseen events) on the empirical counts. A widely adopted smoothing method is an improvement
from absolute discounting [Ney & Essen 91] called Kneser-Ney smoothing [Kneser & Ney 95],
which assigns discounted probability masses to lower-order events in proportion to the diversity
of the context.

With the continuous development of artificial neural networks [Werbos 74, Schmidhuber 92,
Hinton 09, CireAan & Meier+ 12, Martinez & Bengio+ 13, Pascanu & Mikolov+ 13, Krizhevsky
& Sutskever+ 17], popularization of word vector concepts [Baker & McCallum 98, Bengio
& Ducharme+ 03, Mikolov & Chen+ 13, Mikolov & Sutskever+ 13, Grave & Bojanowski+

18, Mikolov & Grave+ 18], as well as the introduction of more and more efficient training
methods and advances in hardware and software [Hinton & Osindero+ 06, Nickolls & Buck+

08, LeCun & Bottou+ 12, Al-Rfou & Alain+ 16, Abadi & Agarwal+ 15, Paszke & Gross+ 19, Li
& Zhao+ 20], modern language models with limited contexts have shifted away from traditional
count-based models to neural-network-based models. Common examples include feedforward
neural language models [Xu & Rudnicky 00, Schwenk & Gauvain 02, Bengio & Ducharme+ 03]
and more recently, transformer [Vaswani & Shazeer+ 17] neural language models [Liu & Saleh+

18a, Radford & Narasimhan 18, Al-Rfou & Choe+ 19, Radford & Wu+ 19a, Irie & Zeyer+ 19].

In the case of language models with unlimited context, recurrent-neural-network-based mod-
els are adopted, a prominent example of which is the long short-term memory neural language
model [Hochreiter & Schmidhuber 97, Kim & Jernite+ 16, Sundermeyer & Schlüter+ 12, Liu &
Cao+ 18, Merity & Keskar+ 18, Herold & Gao+ 18]. Such models build upon feedforward lan-
guage models, and keep essential components such as word vectors and log-likelihood training.
The difference is that they further employ the long short-term memory neural network mod-
ule to replace the feedforward layers, and use the recurrent feedback to model the potentially
long-range autoregressiveness in the sequence of words.

The language modeling task discussed in this dissertation finds its roots in early studies in
information theory [Shannon 48, Shannon 51], estimating probability masses for unseen events
in large spaces [Good 53, Gale & Sampson 95], and early developments of automatic speech
recognition [Jelinek & Bahl+ 75, Jelinek 76]. This is to be differentiated from recent works
on masked language modeling [Devlin & Chang+ 19], where the task is to learn useful hidden
representations for natural language sequences by training on a cloze task, rather than directly
discriminating word sequences against one another.

1.2.2 Evaluation Metrics

There are two common metrics to evaluate a language model, namely, perplexity [Jelinek &
Mercer+ 77] (directly) and word error rate (indirectly).

The perplexity (PPL) of a language model p(wM0 ) is defined to be:

PPL
{
p(wM0 )

}
= exp

{
− 1

M

M∑
m=1

log p(wm|wm−10 )
}

(1.8)

Notice that the log probability of the artificial start symbol is dropped because it is always
zero. In practical applications, we often append an artificial end symbol to the word sequence,
and treat it as a regular word when calculating the perplexity. Say the vocabulary size of a
language model is V , and the perplexity of the language model on some test set is V ′, the
perplexity can also be interpreted as the “effective vocabulary size” [Bahl & Jelinek+ 83]. This
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is because:

exp
(
− 1

M

M∑
m=1

log
1

V ′
)

= V ′ (1.9)

In other words, if we plug in an artificial model that assigns uniform probabilities in a vocabulary
of size V ′ in each position, we will obtain a model with the same perplexity, V ′. Therefore,
intuitively, the perplexity measures on average how confused or perplexed the model is in
each position. For example, a naive uniform model, i.e. guessing at random, should give a
perplexity of V (also a good way to judge the quality of a random initialization), and we
typically prefer a model that gives lower perplexity on the validation data (it explains the data
well and generalizes better).

Another important property of PPL is that we use the empirical distribution of some test
corpus to calculate it, this can be seen by rewriting Eq. 1.8:

PPL
{
p(wM0 )

}
= exp

{
− 1

M

M∑
m=1

log p(wm|wm−10 )
}

= exp
{
−
∑
x,c

Nx,c

N
log p(c|x)

}
= exp

{
−
∑
x

Nx

N

∑
c

Nx,c

Nx
log p(c|x)

}
= exp

{
−
∑
x

pr(x)
∑
c

pr(c|x) log p(c|x)
}

(1.10)

Because we already use m in M to denote position indices, we use N with a subscript to denote
the count of an event specified in the subscript, although M = N . In other words, here, Nx

and Nx,c denote the counts of seeing some “previous words context” x and “context and next
word pair” x, c. Additionally, with this rewrite, the model distribution of target word c given
context x becomes p(c|x). Here, pr denotes the empirical distribution of some event in the
test corpus. We do these rewrites because it clearly exhibits the point, that PPL is defined on
the empirical distribution of some test corpus. This is important to notice, because if the test
corpus is not sufficiently large or representative, its empirical distribution may be far from the
true distribution we really care about. For example, in a real-world application, the name of
a company (a certain c) may be important given some context (a certain x), but if a certain
test set has an empirical distribution pr(c|x) that assigns zero probability to the event, i.e.
pr(company name|our company is called) = 0, the PPL reported on this test will not reflect
how accurate the model performs in such cases. While this point is introduced in the context
of language modeling, it is true for machine translation as well, where the difference is that the
context is expanded to further include the source sentence. In other words, one needs to be
careful about the test corpus when reporting PPL, and make sure that interesting events are
sufficiently represented in the test corpus.

The word error rate (WER) of an automatic speech recognition model is defined to be:

WER =

min

(
#(insertions) + #(deletions) + #(substitutions)

)
#(reference words)

· 100% (1.11)

Here, the numerator refers to the minimum number of edit operations between the hypothesis
sentence and the reference sentence, i.e. the Levenshtein distance [Levenshtein et al. 66],
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and can be calculated efficiently with dynamic programming. The total edit count is then
normalized by the reference transcription length. In the field of automatic speech recognition, it
is also well known that there is a roughly log-linear empirical correlation between word error rate
and perplexity [Bahl & Jelinek+ 83, Chen & Beeferman+ 98, Klakow & Peters 02, Sundermeyer
& Ney+ 15a, Irie 20]. That is, regardless of the language model (be it count-based or neural-
network-based), plugging in a stronger language model (with a lower perplexity) during search,
typically results in lower word error rates.

1.3 Statistical Machine Translation

1.3.1 Basic Concepts

Similar to statistical language modeling, the task of statistical machine translation also re-
quires a model that assigns a probability to a target sequence of words, given some source
sequence of words. Again, “words” here mean the atomic level at which the statistical machine
translation system operates, e.g. words, subwords, characters, etc., and “sequences” can be at
the sentence or document level. Below, without any loss of generality, we use “source sentences”
and “target sentences” to refer to such sequences.

Denoting source words as f , source word position indices in 1, 2, ..., J , target words as e,
target word position indices in 1, 2, ..., I, a parallel sentence pair can be expressed as:

source sentence : fJ1 = f1, f2, ..., fJ (1.12)

target sentence : eI1 = e1, e2, ..., eI (1.13)

As in statistical language modeling, in practical systems, we often prepend an artificial start-
of-sentence symbol and append an artificial end-of-sentence symbol to the source and target
sentences.

Our goal with machine translation is to find the best translation hypothesis or candidate
in the target language given some source sentence. Using Bayes decision rule, this can be
expressed as:

fJ1 → êÎ1(fJ1 ) = argmax
I,eI1

{
Pr(eI1|fJ1 )

}
(1.14)

Here, Pr(eI1|fJ1 ) denotes the true posterior probability, and because we do not know what it is,
we plug in our statistical model p(eI1|fJ1 ) trained on the training data to approximate it.

Depending on how p(eI1|fJ1 ) is defined, historically, statistical machine translation models
can be broadly categorized into three types: noisy-channel modeling, log-linear modeling, and
discriminative modeling.

The noisy-channel modeling variant [Shannon 48, Brown & Cocke+ 90] assumes that the
target sentence eI1 is generated by transmitting the source sentence fJ1 through some noisy
channel p(fJ1 |eI1):

argmax
{

Pr(eI1|fJ1 )
}

= argmax
I,eI1

{Pr(fJ1 |eI1) · Pr(eI1)

Pr(fJ1 )

}
(1.15)

= argmax
I,eI1

{
Pr(fJ1 |eI1) · Pr(eI1)

}
(1.16)

= argmax
I,eI1

{
p(fJ1 |eI1) · p(eI1)

}
(1.17)
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The derivation involves applying the Bayes’ rule and dropping the denominator Pr(fJ1 ), which
is independent of I and eI1. As can be seen, a target-side language model p(eI1) and an inverse
translation model p(fJ1 |eI1) are needed, the latter of which is commonly decomposed into a
length model, an alignment model and a lexicon model in traditional IBM models [Brown &
Cocke+ 88, Brown & Cocke+ 90, Brown & Della Pietra+ 93] and the hidden Markov model
[Vogel & Ney+ 96].

The log-linear modeling variant [Papineni & Roukos+ 98, Och & Ney 02] allows various
feature functions hm(fJ1 , e

I
1) to be used. These feature functions depend on the sentence pair

(fJ1 , e
I
1), and give different scores regarding different aspects of the translation:

argmax
{

Pr(eI1|fJ1 )
}

= argmax
I,eI1

{
p(eI1|fJ1 )

}
(1.18)

= argmax
I,eI1

{ exp
(∑M

m=1 λmhm(fJ1 , e
I
1)
)

∑
I′,e′I

′
1

exp
(∑M

m=1 λmhm(fJ1 , e
′I′
1 )
)} (1.19)

= argmax
I,eI1

{ M∑
m=1

λmhm(fJ1 , e
I
1)
}

(1.20)

Above, λm is the weight for each feature function and M is the total number of features. Here,
the feature scores come from various models, such as a phrased-based model [Och & Tillmann+

99, Zens & Och+ 02, Koehn & Och+ 03], a word translation model [Brown & Cocke+ 88, Brown
& Cocke+ 90, Brown & Della Pietra+ 93, Vogel & Ney+ 96], a language model [Kneser & Ney
95, Chen & Goodman 96] and a reordering model [Tillmann 04, Galley & Manning 08, Cherry
& Moore+ 12, Wübker 17, Guta 20]. They are combined in a log-linear fashion and normalized
over all possible target sentences across all lengths. During search, the normalization can be
dropped because there is no dependence on I and eI1 in the denominator. Log-linear modeling is
a generalization from noisy-channel modeling, and it is possible to include many more features,
as mentioned above [Chiang & Knight+ 09, Hopkins & May 11, Green & Wang+ 13]. The
learning of the weights λm can be done with minimum error rate training [Och 03]. Note
that log-linear modeling is a general method of model combination, and is included here as a
separate variant because of the historical development of machine translation. There is no strict
limitation on what can be used as a feature function, and naturally, neural machine translation
models can also be combined in a similar fashion [Stahlberg & Cross+ 18].

The discriminative modeling variant [Kalchbrenner & Blunsom 13, Sutskever & Vinyals+

14, Bahdanau & Cho+ 15, Vaswani & Shazeer+ 17] has been the focus of development for
machine translation in the last decade. The central idea is to encode the source sentence
information into some hidden space and decode from that space depending on which target
position we are in, and directly output the conditional probability given the context of that
position. While non-autoregressive models [Gu & Bradbury+ 18] do exist, the most common
way to model the posterior distribution is through autoregressive factorization of the sequence
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probability:

argmax
{

Pr(eI1|fJ1 )
}

= argmax
I,eI1

{ I∏
i=1

Pr(ei|ei−10 , fJ1 )
}

(1.21)

= argmax
I,eI1

{ I∑
i=1

log Pr(ei|ei−10 , fJ1 )
}

(1.22)

= argmax
I,eI1

{ I∑
i=1

log p(ei|ei−10 , fJ1 )
}

(1.23)

The parameterization of such approaches is primarily done with artificial neural networks.
Because there is no involvement of a reverse translation model or log-linear combination, as in
classic statistical machine translation, and the prediction of each target word is directly achieved
with the same neural network, such models are conceptually simpler and are sometimes referred
to as end-to-end or sequence-to-sequence models. It is worth mentioning that because the search
space complexity is exponential in I, we trim down the search space to a fixed size for each
target position i and perform beam search when carrying out the argmax in practice.

1.3.2 Evaluation Metrics

To decide if a machine translation system is doing well is not an easy task: the annual
Conference on Machine Translation2 has a dedicated shared task on evaluation metrics every
year [Barrault & Biesialska+ 20, Akhbardeh & Arkhangorodsky+ 21]. This is partly due to the
high cost associated with obtaining high-quality reference translations, and also because of the
word-reordering nature of translation. Among others, the bilingual evaluation understudy score
[Papineni & Roukos+ 02] and translation edit rate [Snover & Dorr+ 06] are two commonly used
metrics to judge the quality of machine translation hypotheses against reference translations.

The bilingual evaluation understudy (Bleu) score of a hypothesis êÎ1 against a reference
translation eI1 is defined to be:

Bleu(êÎ1, e
I
1) = BP · exp

{ N∑
n=1

wn log
(
precn(êÎ1, e

I
1)
)}

(1.24)

= min(1, exp(1− I

Î
)) · exp

{
N∑
n=1

wn log

∑
ê(n)∈êÎ1

min
(
c(ê(n); êÎ1), c(ê(n); eI1)

)
∑

ê
′(n)∈êÎ1

c(ê′(n); êÎ1)

}

(1.25)

Above, BP is short for “brevity penalty”, which is one (no penalty) for hypotheses longer
than the reference and less than one (penalized) for shorter hypotheses. The second term at
the right-hand side of the equation is the geometric mean of the clipped n-gram accuracies

precn(êÎ1, e
I
1). Here, n is the order of n-grams being counted up to N , wn is the weight for each

order, ê(n) or ê
′(n) refers to a unique n-gram in the hypothesis êÎ1, and c(ê(n); ·) is the count of

that n-gram in the corresponding target sentence. Bleu can be unreliable when considered on
a single reference sentence [Papineni & Roukos+ 02], therefore in practice:

2Previously “Workshop on Machine Translation”.
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• We gather the count statistics over an entire test corpus before calculating the clipped
n-gram precision.

• When multiple reference translations exist for one source sentence, we plug in the reference
sentence length I into BP using the reference sentence that has the closest length to the

hypothesis sentence êÎ , and plug in the clipped count using the reference sentence with
which the most n-gram hits are found [Qin & Specia 15].

The translation edit rate (Ter) of a machine translation system is defined to be:

Ter =

min

(
#(insertions) + #(deletions) + #(substitutions) + #(shifts)

)
#(reference words)

· 100% (1.26)

Here, the numerator is the minimum number of edit operations required to change a hypothesis

êÎ1 into the reference eI1, and the denominator is the reference sentence length I. If multiple
references are available for a source sentence, the numerator becomes the minimum edit oper-
ations into any one of the references, and the denominator is replaced by the average reference
length. Similar to Bleu, when the test set consists of multiple source sentences, i.e. at the
corpus level, the count statistics for each sentence are gathered first and averaged later. Com-
pared to the word error rate metric introduced in Section 1.2.2, Ter additionally allows shift
operations. The shift operation allows for the move of a contiguous word sequence to another
position in the hypothesis, and the cost is the same as the other three types of edits regardless
of the length of the moved word sequence or the distance of the move. Searching for the optimal
shift edits is very costly, and in practice a greedy search is done to determine the shift edits,
while dynamic programming is still used to decide the Levenshtein edits. Note that Ter is not
bounded under 100%, and a simple example to think of is when the reference is only ten words,
while the hypothesis is 1000 words long.

1.4 State-of-the-Art Models

1.4.1 Neural Language Modeling

Nowadays, the state-of-the-art language modeling is primarily done with artificial neural
networks. While different neural language models may differ somewhat in their neural network
architecture design, the essential elements of these models are similar:

• Batched autoregressive training in parallel: given a word sequence wM1 , the input to the
network is w0, w1, ..., wM−1 and the target output of the network is w1, w2, ..., wM . That
is, for target position m, the network is presented with input wm−11 and is tasked to
predict wm. Processing along the time (i.e. word positions 1, 2, ...,M) dimension is done
in parallel during training. Sentences are batched (several sentences fed to the network
together), bucketed (sentences of similar lengths grouped together to reduce the number
of paddings), and padded (artificial pad symbols <pad> appended to short sentences until
sentence lengths are equal).

• Word embedding into continuous-valued hidden space: in order for the network to perform
arithmetic operations on the words, a word embedding module is included to project the
raw word indices to continuous-valued word vectors [Mikolov & Chen+ 13, Mikolov &
Sutskever+ 13]. The word embedding module is a large V × D matrix, where V is the
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vocabulary size and D is the hidden dimension, and the process of embedding a word is
essentially a row-wise lookup in the matrix.

• Mixing context to aggregate information: a hidden module is then used to mix the context
information from different word positions to obtain the context vector. The choice of
the module can be different, e.g. long short-term memory networks [Schmidhuber 92,
Sundermeyer & Schlüter+ 12] or transformer encoders [Vaswani & Shazeer+ 17, Irie &
Zeyer+ 19], but its purpose is the same - to enrich the word vectors with contextual word
information from other positions. This step is also where the modeling capabilities of
different neural language models differ the most, e.g. the long short-term memory network
is able to make use of very long context, but has an information bottleneck along the time
dimension (information from far-away positions gets weaker), while transformer networks
attend to a fixed number of previous positions (although commonly up to the beginning
of the sentence, effectively using unlimited context), and has a constant lookup cost for
different positions (the model decides the weight for far-away positions with attention
and there is no information bottleneck along the time dimension). It is common to use
the same dimension size D for word vectors and context vectors, while it is also possible
to bottleneck the context vector dimension to reduce parameter count [Gerstenberger &
Irie+ 20].

• Projection of the context vector into vocabulary size and softmax activation on logits: the
D-dimensional context vector for each position is then projected up to the vocabulary size
V dimensions to obtain the logits. This is done via a linear projection matrix in D × V ,
which is possibly tied with the embedding matrix [Press & Wolf 17]. The training criterion
for neural language models is most often cross entropy, which requires normalized outputs.
Therefore, a softmax function is commonly used to activate the logits and produce the
conditional probabilities p(wm|wm−10 ).

Large neural language models [Devlin & Chang+ 19, Shoeybi & Patwary+ 19, Brown &
Mann+ 20, BigScience Workshop 22, Zhang & Roller+ 22, Schulman & Zoph+ 22], which con-
tain billions of parameters and are trained on hundreds of billions of words, are the most recent
additions to state-of-the-art language modeling (not necessarily autoregressive). They often
make use of some word segmentation algorithm [Sennrich & Haddow+ 16a, Kudo & Richard-
son 18] to operate in a subword vocabulary (often applied on the byte-level to avoid out-of-
vocabulary characters) to mitigate the problem of a large vocabulary, while word-level language
models are still relevant for automatic speech recognition [Wang & Mohamed+ 20, Lüscher &
Beck+ 19a]. Language modeling is a fundamental task in statistical learning of human lan-
guage, or even human knowledge, and as it stands today, neural networks are unarguably the
best weapon in our arsenal to tackle the problem.

1.4.2 Neural Machine Translation

For neural machine translation, artificial neural networks are also widely applied. The key
components of the state-of-the-art machine translation models are:

• Batched autoregressive training in parallel at the target side: similar to that of language
modeling, the generation of target sentence eI1 is done by inputting the entire source
sentence fJ1 and the shifted-by-one-position target sentence eI−10 to the model. Batching,
bucketing and padding are done in a way similar to language modeling. Note that while
autoregressive training is done on the target side, it is not necessarily the case on the
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source side. For instance, it is possible to apply auxiliary losses such as length prediction
loss [Yang & Gao+ 20] and source reconstruction loss [Gao & Herold+ 22a] on the source
side.

• Word embedding and positional encoding into continuous-valued hidden space: both
source tokens and target tokens are mapped to continuous-valued hidden spaces (possibly
shared [Press & Wolf 17, Vaswani & Shazeer+ 17]), and positional information of differ-
ent tokens is also encoded (either implicitly included by recurrence in recurrent neural
networks [Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15] or explicitly included using a
positional encoding module [Vaswani & Shazeer+ 17, Shaw & Uszkoreit+ 18, Rosendahl
& Tran+ 19]). Here, the modeling unit is typically at the subword level, e.g. byte-pair en-
coding units [Sennrich & Haddow+ 16b] or sentencepiece [Kudo & Richardson 18] units,
to avoid the problem of large vocabulary and deliver better generalization on unseen
words.

• Encoding of source information via a dedicated source encoder: the information in the en-
tire source sentence is summarized by a so-called encoder into a sequence of source hidden
vectors [Kalchbrenner & Blunsom 13, Sutskever & Vinyals+ 14, Cho & van Merriënboer+

14b, Cho & van Merriënboer+ 14a, Bahdanau & Cho+ 15, Vaswani & Shazeer+ 17]. Be-
cause all source words are available at test time, it is possible and reasonable to “look at”
all source positions, i.e. past, current and future for each position, when summarizing
information (this is also called using “bi-directional” context because one can traverse
the sequence from left to right or from right to left). Commonly, the result of this step is
a sequence of hidden vectors of the same length as the original source sentence, with the
hidden vector at each position having summarized the source contextual information of
that position.

• Mixing context by attending to source representations via a dedicated target decoder: for
each target position, the target context information is aggregated up to that position, and
the attention mechanism [Bahdanau & Cho+ 15, Luong & Pham+ 15, Niu & Zhong+ 21]
is used to query source-side hidden vectors with the target context. This step is key in
solving the alignment problem in translation, i.e. building a mapping between different
source and target positions. Commonly, a weighted summation over the relevant (the
“relevance” of each source position is decided by the attention mechanism) source hidden
vectors is done, and combined with the target context to generate the context vector for
final projection into the target vocabulary.

• Projection and activation of context vector followed by beam search: like in language
modeling, the D-dimensional context vector is finally projected up to V dimensions and
activated via a softmax function to obtain the posterior distribution over the target
vocabulary. The D × V projection matrix is often shared with the target embedding
matrix, and a three-way tying is possible when source and target vocabulary is further
shared [Press & Wolf 17, Vaswani & Shazeer+ 17, Sennrich & Haddow+ 16b]. The training
criterion is commonly cross entropy with label smoothing [Szegedy & Vanhoucke+ 16,
Pereyra & Tucker+ 17, Gao & Wang+ 20]. During test time, beam search [Koehn &
Knowles 17, Freitag & Al-Onaizan 17, Koehn 20, Liang & Wang+ 22] is applied to trim
down the otherwise exponential search space into a fixed-sized window at each target
position, and length normalization [Wu & Schuster+ 16, Yang & Huang+ 18, Provilkov
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& Malinin 21] is used to combat the tendency of neural models to generate short and
sometimes even empty sentences [Koehn & Knowles 17, Shi & Xiao+ 20].

Since the introduction of the transformer model [Vaswani & Shazeer+ 17], the translation
quality of neural machine translation has improved significantly, with reported similar-to-human
performance on certain test sets when considering automatic metrics [Hassan & Aue+ 18].
That said, there are still active research areas, such as document-level translation [Kim &
Tran+ 19, Huo & Herold+ 20], multilingual training [Johnson & Schuster+ 17, Aharoni &
Johnson+ 19, Lin & Wu+ 21], and speech translation [Kano & Sakti+ 17, Bérard & Besacier+

18, Anastasopoulos & Chiang 18, Inaguma & Duh+ 19, Bahar & Zeyer+ 19, Wang & Wu+

20, Bahar & Bieschke+ 21, Tran & Thulke+ 22]. Another interesting trend is that some very
large pre-trained models have exhibited capabilities to do few-shot or even zero-shot translations
[Raffel & Shazeer+ 22, Radford & Kim+ 22, Schulman & Zoph+ 22], and can even work as
strong automatic evaluators of the performances of machine translation systems [Kocmi &
Federmann 23], posing questions about the potential of further making use of monolingual
data beyond model combination [Stahlberg & Cross+ 18] and back-translation [Sennrich &
Haddow+ 16a, Edunov & Ott+ 18, Graça & Kim+ 19].

1.5 Issues Related to Training and Modeling

Having discussed the basic concepts of language modeling and machine translation, as well
as state-of-the-art neural-network-based approaches to both tasks, in this section, a brief walk
through of issues related to training and modeling relevant for this dissertation is provided.

1.5.1 Large Vocabulary

The first issue is the potentially very large vocabulary associated with neural language models
(and automatic speech recognition and machine translation models). Zipf’s law [Zipf 49, Powers
98, Herold & Gao+ 18] is a well-known empirical law that describes the long-tail distribution of
word frequencies found in natural languages. To build a practical word-level language model,
it is necessary to include those low-frequency words in the tail. However, this would result
in large vocabularies, which could go up to the order of several hundred thousands or even a
million for large datasets and commercial systems [Chelba & Mikolov+ 13, Wang & Mohamed+

19, Lüscher & Beck+ 19a, Gao & Thulke+ 21, Yang & Gao+ 22]. While subword-level [Sennrich
& Haddow+ 16b, Kudo & Richardson 18, Radford & Wu+ 19b, Brown & Mann+ 20, Irie
& Zeyer+ 19, Zeyer & Bahar+ 19, Zhou & Zeineldeen+ 21, Meyer & Michel+ 22, Deng &
Hsiao+ 22] and character-level models [Hwang & Sung 16, Chung & Cho+ 16, Lee & Cho+

17, Hakimi Parizi & Cook 18, Al-Rfou & Choe+ 19, Banar & Daelemans+ 21, Deng & Hsiao+

22] do exist, word-level models are still relevant, especially in automatic speech recognition
systems based on hybrid deep neural networks and hidden Markov models [Lüscher & Beck+

19a, Gao & Thulke+ 21, Yang & Gao+ 22].

The large vocabulary in itself does not directly imply any significant changes in the neural
architectures, meaning that the softmax-based output projection can still be intact, but it poses
a challenge in the parameter count and training/testing efficiencies. More specifically, on one
hand, too large of a parameter count can lead to out-of-memory issues, and one has to take
measures such as reducing the batch size, applying various parallelism tricks, etc. to counter it.
On the other hand, the training and testing speed of a neural language model might be critical
in certain applications, e.g. we probably do not want to spend the majority of decoding budget
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1 Introduction

for an automatic speech recognition system on language model forward passes, and thus is also
important to control.

The root causes of these potential issues are:

1. The word embedding and output projection matrices often make up the lion’s share of
the total model parameter count, and scale linearly with the vocabulary size V [Chen &
Si+ 18, Gao & Liao+ 20].

2. The softmax function includes a traversal over the entire vocabulary in the summation
in the denominator (denoting the logit of model on a certain word v with qv):

softmax(qv) =
exp qv∑V
v′ exp qv′

(1.27)

In this dissertation, the issue of large vocabulary in language modeling is addressed in Chapter
3 and is approached using sampling-based training criteria, the essential idea of which is to
avoid the traversal over the entire vocabulary V and achieve self-normalization during training.
We show both theoretically and experimentally, that when sampling-based training criteria are
properly applied, significant speedups can be achieved both in training and testing of neural
language models with large vocabularies.

1.5.2 Overfitting
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Figure 1.1: Training and validation curves of two training runs on the IWSLT2014 German-
English Translation Task, with and without regularization. When no regularization
is applied, the model overfits on the training data (the training perplexity gets very
close to one) and the validation perplexity quickly diverges.

A second issue with the neural-network-based models nowadays is that they are typically over-
parameterized. For instance, in the commonly used IWSLT2014 German-English translation
dataset, the total number of training subword units is less than 8 million (counting both source
and target sides, see Table A.4), while baseline transformer models typically have around
37 million trainable parameters. In other words, it is not uncommon to train models whose
number of parameters is even more than the number of tokens in the training corpus. This is an
interesting observation because the capacity of the neural model is adequate to even “remember”
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1.5 Issues Related to Training and Modeling

the entire training data, but doing that gives no guarantee of generalization performance. As
an example, in Figure 1.1, two training runs are performed on this dataset. In one case (Figure
1.1a), all regularization tricks are kept. In the other case (Figure 1.1b), all regularization tricks
are disabled. One quickly notices the divergent behavior of the validation perplexity in the
latter case, and the training perplexity also drops down to very close to one, getting near the
theoretical lower bound given by the training empirical distribution. Granted, the IWSLT2014
German-English dataset is a very small one by today’s standards, but when the training corpus
becomes larger, the training corpus typically also scales larger [Ott & Edunov+ 18, Devlin
& Chang+ 19, Brown & Mann+ 20, Hoffmann & Borgeaud+ 22]. This type of overfitting
phenomenon is commonly seen in general neural network training, which greatly hinders the
generalization performance of the models. Therefore, it calls for regularization methods during
the training process.

There are many methods that can regularize the model to avoid overfitting. To list a few,
training smaller models, applying dropout [Srivastava & Hinton+ 14a], introducing layer nor-
malization [Ba & Kiros+ 16], using weight decay [Krogh & Hertz 91], etc. While the actual
methods differ in details, there are several axes along which the regularization are typically
designed. For instance, it is possible: to constrain the model representational capabilities, to
augment and introduce noises to the data, to have multiple models jointly make the prediction,
to control the optimization process against numerical outliers, etc.

Specifically in this work, for regularization, we consider label smoothing, input smoothing,
and multi-agent mutual learning. Label smoothing [Szegedy & Liu+ 15, Szegedy & Vanhoucke+

16], deliberately takes away some probability mass from the target word and redistribute the
probability mass to other words according to some helper model. Input smoothing [Gao & Liao+

20] follows a similar concept, but operates at the input side of the network, smoothing out the
input one-hot distributions over the words, which can also be viewed as a data augmentation
methods. Multi-agent mutual learning [Liao & Gao+ 20] is an approach where several agents are
optimized for our primary goal of translation together, but are regularized with the motivation
that agents should learn among themselves. In Chapter 4, we go into details of these methods,
and show via extensive experiments that stronger machine translation performance can be
achieved when the smoothing set up is carefully tuned.

1.5.3 Model Compactness

The third issue lies in the compactness of neural network architecture designs. When model-
ing sequence-to-sequence tasks like machine translation, the encoder-decoder architecture has
been and is still the de facto standard. For instance, in early work on the recurrent contin-
uous translation model [Kalchbrenner & Blunsom 13], the authors already distinguish their
convolutional sentence model (encoder) and their recurrent language model (decoder), which
is conditioned on the former. Likewise, the encoder and decoder separation is also seen in the
state-of-the-art transformer [Vaswani & Shazeer+ 17] models. At a high level, the job of the en-
coder is to encode source information into some hidden space, either into one continuous-valued
vector [Kalchbrenner & Blunsom 13, Cho & van Merriënboer+ 14b, Sutskever & Vinyals+ 14]
or into a sequence of vectors [Bahdanau & Cho+ 15], which is then used for decoding given
the target-side context. This process is straightforward and intuitive, and models very well
the translation process of “read the source sentence, keep a memory of what it is, translate
word-by-word from that memory”. However, when humans perform the translation task, it
is also possible to go through a process which can be described as “scan through the source
sentence and what is translated, and decide which next target word should follow”. When the
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author does translations, often times it is a combination of the two, i.e. translate from the
memory, but also occasionally scan the entire source sentence and the partial translation when
deciding the next word. There is no reason to argue that either one is the correct way of doing
translation, and the author knows no work in psychology or linguistics that clearly measures
which would deliver a better translation result. That said, from the viewpoint of building a
more compact and monolithic model, the field has clearly favored the former and separated the
encoding and decoding steps.

In Chapter 5, detailed discussion and experiments are provided to further argue that it is pos-
sible to train an encoder-only, more monolithic language model for translation which performs
on par with the usual encoder-decoder models, posing questions on the necessity of the strict
separation. Considering the recent advancements of large language models, the architectures
of which typically only consist of a single stack of transformer encoder layers, this question
on the necessity to strictly separate the encoder and decoder is especially interesting. While
the “machine translation with large language models” literature more often focus issues such
as few-shot/zero-shot capabilities, prompting strategies, stylized and customized translation
[Hendy & Abdelrehim+ 23, Yao & Jiang+ 23, Zhang & Haddow+ 23, Ghazvininejad & Gonen+

23, Moslem & Haque+ 23], this work is motivated mainly from an architecture point-of-view.
That is, in this work, the training corpus and optimization parameters are mostly kept the same
as in traditional encoder-decoder modeling, while in the large language modeling literature, ad-
ditional training methods such as extensive unsupervised pre-training, instruction fine-tuning
and reinforcement learning with human feedback are typically included.
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2. Scientific Goals

The goal of this thesis revolves around efficient and effective training and modeling techniques
for neural-network-based language modeling and machine translation:

1. How to address the large vocabulary issue (Section 1.5.1) for neural language modeling
with sampling-based training criteria (Chapter 3)?

• Which sampling-based training criterion variants are there? When are the theoretical
optimums attained?

• How to encourage self-normalization of neural sequence models with sampling-based
training criterion?

• What are the speedups and model performances when training with sampling-based
training criteria?

2. How does one overcome the overfitting issue (Section 1.5.2) in neural machine translation
with smoothing techniques (Chapter 4)?

• What is a good way to smooth model outputs to regularize training? What about
model inputs?

• Do improvements from input smoothing and output smoothing stack?

• What extensions to model combination help translation?

3. How can the machine translation model compactness issue (Section 1.5.3) be addressed
with a language modeling approach (Chapter 5)?

• What is a good training objective?

• How does a monolithic encoder-only language model compare to a discriminative
encoder-decoder model for translation, from a theoretical point of view?

• Does the encoder-only language modeling approach perform as well as the baseline
encoder-decoder model? Does the conclusion hold under extensive setups?

In the process of approaching the research questions above, the author found it increasingly
difficult to implement ideas and concepts in existing software. Therefore, the author wrote
some custom software, “aseq: a sequence toolkit”. The toolkit is aimed to be flat, lightweight,
and easily extendable, and focuses on the tasks of language modeling and machine translation
(Chapter 6).
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3. Sampling-Based Training Criteria for
Neural Language Modeling

When training neural language models, the vocabulary is one of the first things that needs to
be decided. As mentioned in Section 1.5.1, in order to account for those low-frequency words
found in the tail of the Zipfian distribution [Powers 98] in natural languages, the vocabulary of
modern word-level natural language models is becoming larger and larger. Although subword-
level and character-level systems are around [Zeyer & Bahar+ 19, Al-Rfou & Choe+ 19], in this
chapter, we focus on the word-level models, because they are still relevant in many automatic
speech recognition systems that are based on hybrid deep neural networks and hidden Markov
models [Lüscher & Beck+ 19a, Gao & Thulke+ 21, Yang & Gao+ 22].

To highlight the problem at hand, we note that for large datasets and commercial systems,
the order of magnitude of the vocabulary size V can go up to several hundred thousands or
even a million [Chelba & Mikolov+ 13, Wang & Mohamed+ 19, Lüscher & Beck+ 19a, Gao
& Thulke+ 21, Yang & Gao+ 22]. This has implications in terms of both space and time
complexity:

• On one hand, the size of the D×V projection matrix (with D being the hidden dimension
of the model) in neural language models (as well as the V ×D embedding matrix if the
two are shared [Press & Wolf 17], see Section 1.4.1) scales linearly with the vocabulary
size V .

• On the other hand, during the commonly used softmax-activated cross-entropy training,
the traversal over V is needed in order to calculate the denominator in the softmax
function for normalization at each position, which leads to the training time ranging from
days to weeks.

To resolve the space complexity issue, it is possible to apply methods based on e.g. factoriza-
tion [Denton & Zaremba+ 14, Yu & Liu+ 17, Chen & Si+ 18], pruning [Han & Pool+ 15, Frankle
& Carbin 19, Brix & Bahar+ 20], and quantization [Hubara & Courbariaux+ 17, Xu & Wang+

18, Choi & El-Khamy+ 20] to reduce the model size, about which we will not go into details in
this dissertation. To resolve the time complexity issue, many methods are proposed, of which,
the most successful branch is arguably sampling-based methods, which is going to be the focus
of this chapter.

3.1 Related Work

One classic idea to reduce the computational cost associated with the softmax calculation
when V is large, is to replace the “pick one word out of V words” process with a “pick one
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3 Sampling-Based Training Criteria for Neural Language Modeling

category out of V ′ (V ′ � V ) categories several times” process. This changes the one-time flat
decision into a series of compact decisions in a hierarchical structure (a tree structure where
nodes are decision points, branches lead to other decision points, and leaf nodes correspond
to the actual word choices). Notably, the original softmax can be thought of as such a tree
with one root node directly linked to V leaf nodes, with a time complexity of O

{
1 · V

}
(in

total one decision to make, V terms to sum over for normalization for that one decision).
Intuitively, for trees with more depth and an average number of branches b at each node, the
time complexity changes to O

{
logb(V ) · b

}
(in total logb(V ) decisions to make, b terms to sum

over for normalization for each decision). One quickly realizes that there is an optimum choice
of b (or more accurately, the tree structure, because b is only used here for a sloppy derivation),
because in the other boundary case when b approaches one, i.e. asking “is it this word?” (V −1)
times, the complexity is back up to O

{
V
}

. Because of this, related work mainly differs in how
the tree is formulated.

In the literature, the above-mentioned method is referred to as “hierarchical softmax”. The
concept was initially proposed by Morin and Bengio [Morin & Bengio 05], where a binary
hierarchical clustering with prior knowledge from the WordNet semantic hierarchy [Miller 98]
is used. They also propose to share the parameters across the hierarchy, which is conveniently
possible because of the binary structure. Realizing that building the tree from prior knowledge
and enforcing binary decisions at each node is not optimal, Mnih and Hinton [Mnih & Hinton
08] studied automatic feature-based algorithms to construct the tree from data, and explored
the effects on training time and perplexity. When the depth of the tree is limited to two,
i.e. asking “in which word category is the next word?” and “which word exactly in that
category?”, the method sometimes goes under the name of “word classes”. For instance, this
has roots back in Goodman’s early work in maximum entropy training [Goodman 01], is seen in
the early work on recurrent neural network language models by Tomáš Mikolov et al. [Mikolov
& Kombrink+ 11b], and the concept is further studied by Botros et al. [Botros & Irie+ 15].
Another angle to build the tree is from the perspective of information entropy and entropy
coding [Shannon 48, Huffman 52]. For example, in the study of the compositionality of word
embeddings by Tomáš Mikolov et al. [Mikolov & Sutskever+ 13], the authors used an underlying
binary Huffman tree, and for the task of machine translation, Chitnis and DeNero [Chitnis &
DeNero 15] also explored different variants of variable-length codes when constructing the tree
structure.

Another branch of ideas is sampling, which is the focus of this chapter. The idea is straight-
forward: that is, if going over the entire vocabulary is costly, why not go over only part of the
vocabulary in each training iteration? This at least will have the benefit of speeding up the
training. If we are lucky, in the sense that if we also achieve self-normalization after training,
it is possible to further speed up testing, because in that case we can simply take the raw
output of the model without explicitly doing further normalization, and because of the self-
normalization property of the model, the raw outputs are directly useful for downstream tasks,
e.g. in second-pass lattice rescoring for automatic speech recognition.

In the literature, there exist plenty of works that develop upon the idea above. For instance,
in the same year that Bengio et al. [Bengio & Ducharme+ 03] proposed the early prototype of
modern neural language models, Bengio and Senecal [Bengio & Senecal 03] proposed to apply
sampling in order to speed up the training. In their work, the authors noted that we want
to avoid directly sampling from the model’s posterior distribution because that is as costly
as performing the full summation over the vocabulary. Instead, they proposed to apply the
Metropolis-Hastings algorithm [Metropolis & Rosenbluth+ 53, Hastings 70] and importance
sampling to speed up the training procedure. However, as will be shown later in this chapter,
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because the model is not directly self-normalized, in the original paper, Bengio and Senecal
further proposed to apply an adaptive sampling size during training, which increases as the
training proceeds, in order to achieve good training accuracies at the end of the training. Sim-
ilarly, in the work by Morin and Bengio [Morin & Bengio 05] where hierarchical softmax was
proposed, the authors also noted that a training speedup is achievable with importance sam-
pling, but the testing time complexity is still O

{
V } because one still has to go over the entire

vocabulary for proper normalization. Another popular sampling-based method is proposed by
Gutmann and Hyvärinen [Gutmann & Hyvärinen 10, Gutmann & Hyvärinen 12] and called
noise contrastive estimation. The core concept of this method is to rewrite the original “one
out of V ” task into a new binary classification task of telling true samples from noisy ones.
The method was quickly adapted to the task of neural language modeling by Mnih and Teh
[Mnih & Teh 12]. As will be shown later in this chapter, noise contrastive estimation has the
desired property of self-normalization, and is widely explored in the literature. For example,
in the work by Jozefowicz et al. [Jozefowicz & Vinyals+ 16], the authors discussed the in-
trinsic relationship between importance sampling and noise contrastive estimation. In Zoph et
al. [Zoph & Vaswani+ 16], the authors proposed an extension to noise contrastive estimation
to achieve a further speedup. Later, Goldberger and Melamud [Goldberger & Melamud 18a]
derived the self-normalization property of noise contrastive estimation, and proposed a regular-
ization variant of it where self-normalization is further explicitly encouraged. In van den Oord
et al. [van den Oord & Li+ 18], the authors proposed the “InfoNCE” loss for the unsupervised
learning of useful representations on high-dimensional data. This further motivated a line of re-
search which maximizes mutual information for general representation learning [Poole & Ozair+

19, Tschannen & Djolonga+ 20, Kong & de Masson d’Autume+ 20]. Another important work
that applied the sampling concept is by Mikolov et al. [Mikolov & Chen+ 13]. In this paper,
the authors proposed negative sampling. Because the goal there is to obtain meaningful hidden
word representations and not the normalized conditional next-word probabilities, the authors
simplified the importance sampling and noise contrastive estimation approaches, and kept only
the positive log probability term on the target word and a sampled subset of rival word terms in
the training criterion. The noise distribution from which the samples are drawn is a smoothed
version of the empirical unigram distribution and, compared to noise contrastive estimation,
only the sample indices are needed, and the sample probabilities in the noise distribution are
dropped. This concept of contrasting positive examples against random negative samples was
also explored in earlier work by Collobert and Weston [Collobert & Weston 08], where they
proposed a maximum-margin hinge loss in order to rank the target words on top.

As briefly mentioned above concerning the work by Goldberger and Melamud [Goldberger
& Melamud 18a], when self-normalization is desired, it is also possible to directly penalize the
model during training. The idea is simple - we describe what we want with the model outputs
within the training criterion, e.g. for a self-normalized model, the denominator in the softmax
function should be: constant → constant at one → have a variance of zero when it is constant
at one.

To this end, for the task of machine translation, Devlin et al. [Devlin & Zbib+ 14] proposed
a self-normalization loss that directly encourages the logarithm of the normalization term to
be zero, the strength of which is further controlled by a hyperparameter when combining this
loss with the positive log probability. To regularize the variance of the normalization term,
Shi et al. [Shi & Zhang+ 14a, Shi & Zhang+ 14b] proposed to minimize the variance during
training. This was further adapted by Chen et al. [Chen & Liu+ 15], where the authors also
discussed how a proxy normalization term can be calculated on the validation set during test
time, in order to obtain pseudo normalized model outputs. In the same spirit, Andreas and
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Klein [Andreas & Klein 15] proved the generalization bounds when the variance is regularized
during training, theoretically showing that when a large enough proportion of training examples
is normalized, the normalization on other training examples also has some guarantees.

Having discussed three main branches of works that deal with the large vocabulary problem
in word-level neural language models, the rest of the chapter is arranged as follows. First, we
revisit three traditional training criteria (Section 3.3), where we show why these classic training
criteria give self-normalized models. Although this part is well known and is not new, it serves
as the basis of further discussions on sampling-based training criteria. Next, several sampling-
based training criteria are described (Section 3.4), and we formally derive their theoretical
optimums. This step reveals why some criteria are self-normalized and others are not, and
explains why the field has preferred one over another for certain tasks. Specifically, in this
section, we propose a universal method to correct the raw model outputs even when they are
not self-normalized by definition. Also, three variants of the importance sampling training
criterion are further proposed, all of which possess the desired self-normalization property. For
completeness of the discussion, explicit self-normalization and variance regularization are then
formally defined (Section 3.5). Finally, experimental results are provided (Section 3.6), and it
is shown that the proposed model output correction and self-normalized importance sampling
work as expected in large-scale research and commercial tasks.

3.2 Notations

To clarify the notations, in this chapter:

• n is a running index in the total number of target word positions N .

• x denotes a certain context for the next word prediction, in all possible contexts X.

• p(x) denotes the empirical prior distribution of the context x.

• c and c′ are running indices in the target vocabulary size C1, which is supposedly very
large, e.g. in the order of several hundred thousands. ck denotes the k-th sampled class
when drawing random samples from some noise distribution.

• p(c|x) denotes the empirical class posterior probabilities on the training data.

• θ denotes the learnable parameters of the neural network model.

• q(x, c) or q(c|x) denotes the model outputs, either when they are unconstrained or when
they are constrained to be normalized in C.

• q̂(x, c) denotes the model outputs when the optimum is attained.

• D is the noise distribution from which we sample, i.e. ck ∼ D.

• k is a running index in the total number of samples K.

• δ is the Kronecker delta to decide the identity of the prediction of the model and the
ground truth target word, which evaluates to one when the model is correct, and zero
when the model is wrong.

1Previously, we used V to denote the vocabulary size. Here, we use C to hint that it can also be interpreted as
the total number of classes for a general classification task.
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3.3 Traditional Training Criteria

To arrive at the correction method for sampling-based training criteria as well as self-
normalized importance sampling training criteria, we start by revisiting three traditional train-
ing criteria, namely, mean squared error, binary cross entropy, and cross entropy.

3.3.1 Mean Squared Error

The Mean Squared Error (MSE) training criterion is commonly used for regression problems,
but it is also applicable to classification problems by training the model output towards the
empirical class posterior probabilities. Intuitively, the criterion can be thought of as counting
errors in the continuous sense, and one tries to minimize the error counts:

LMSE(θ) :=
1

N

N∑
n=1

C∑
c=1

(
qθ(xn, c)− δ(cn, c)

)2
(3.1)

=

X∑
x

p(x)

C∑
c=1

p(c|x)

C∑
c′=1

(
q2θ(x, c

′) + δ2(c, c′)− 2qθ(x, c
′)δ(c, c′)

)
=

X∑
x

p(x)

(
C∑
c′=1

q2θ(x, c
′) + 1− 2

C∑
c=1

p(c|x)qθ(x, c)

)

=

X∑
x

p(x)

(
C∑
c=1

q2θ(x, c) +

C∑
c=1

p2(c|x)− 2

C∑
c=1

p(c|x)qθ(x, c) + 1−
C∑
c=1

p2(c|x)

)

=

X∑
x

p(x)

(
C∑
c=1

(
qθ(x, c)− p(c|x)

)2
+ const.

)
=⇒ q̂θ(x, c) = p(c|x)

In the derivation above, the quadratic term
(
qθ(xn, c) − δ(cn, c)

)2
is first expanded, the

outer summation over C is then expanded, the terms inside the big parentheses are rearranged
by separating the ones dependent on x and the ones not dependent on x, and finally, the
quadratic terms

∑C
c=1(qθ(x, c) − p(c|x))2 are singled out. It is immediately obvious that the

global optimum is attained when q̂θ(x, c) = p(c|x) for all x, c pairs. This is an important
observation, because whenever the model needs to satisfy this to arrive at the optimum, the
model is conveniently self-normalized.

By definition, q is unconstrained, but it is possible to constrain q to be positive. In our pre-
liminary experiments, using a sigmoid function to further constrain q to be in [0, 1] can slightly
boost the final model accuracy. That said, our models trained with MSE are significantly
worse than those trained with binary cross entropy or cross entropy, despite our spending a
great amount of effort to tune the MSE model. For instance, we tried to initialize the model
with a converged model trained with cross entropy and then continue training with MSE, used
different gradient optimizers, and grid-searched over the learning rates. Although in Hui and
Belkin [Hui & Belkin 21], the authors showed slight improvements using the MSE loss over
cross entropy loss on various tasks, we argue for word-level neural language modeling, where
the number of target classes is large, and it is hard for an MSE model to converge with our
training setups. Golik et al. [Golik & Doetsch+ 13] derived an upper bound and a lower bound
for the MSE loss and also showed empirically that the gradient under MSE tends to vanish
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quickly, leading the model to a worse local optimum, with which our experience also agrees.
We additionally found that out of the C error counts that are summed up together, if we down-
scale the penalization on rival classes where c 6= cn, the final perplexity improves by a little, but
the same trick does not bring any further improvements for models trained with binary cross
entropy or cross entropy. Because of the empirically worse performance of MSE on word-level
language modeling, we do not further mention it later, and only include this section here for
the sake of completeness.

3.3.2 Binary Cross Entropy

The Binary Cross Entropy (BCE) training criterion is another classic training criterion that
is applicable to classification problems. For each position, the criterion is made up of two terms,
a positive term that encourages the model score on the target word, and C − 1 negative terms
that penalize the model scores on the rival words. Here, because of the logarithmic functions,
q is bounded within (0, 1), and is commonly activated with a sigmoid function:

LBCE(θ) := − 1

N

N∑
n=1

log qθ(xn, cn) +
C∑

c′=1,c′ 6=cn

log
(
1− qθ(xn, c′)

) (3.2)

= −
X∑
x

p(x)
C∑
c=1

p(c|x)

(
log qθ(x, c)− log

(
1− qθ(x, c)

)
+

C∑
c′=1

log
(
1− qθ(x, c′)

))

= −
X∑
x

p(x)

(
C∑
c=1

p(c|x) log qθ(x, c) +
C∑
c=1

(
1− p(c|x)

)
log
(
1− qθ(x, c)

))

= −
X∑
x

p(x)

(
C∑
c=1

p(c|x) log
qθ(x, c)

p(c|x)
+

C∑
c=1

(
1− p(c|x)

)
log

1− qθ(x, c)
1− p(c|x)

+ const.

)
=⇒ q̂θ(x, c) = p(c|x)

In the derivation above, the first step supplements the inner summation in C − 1 by further
including the target word, the second step moves the outer summation in C into the parentheses
and groups the log q and log(1− q) terms, and the final step changes the surface form such that
divergence inequality can be applied and the terms not dependent on q are grouped in “const.”.
Then, applying divergence inequality for both summations in the parentheses, we find that for
both summations the optimum is attained when q̂θ(x, c) = p(c|x) for all c, given x. As in the
case of MSE, because of this, BCE is also self-normalized.

3.3.3 Cross Entropy

The third traditional criterion is Cross Entropy (CE). This is in most cases the default choice
of training criterion for neural language models. Here, we explicitly write out the softmax
operation to highlight the summation in the big vocabulary C in the denominator. In this
case, q is the raw logit output from the model, unbounded, and the normalization of the class
posterior probabilities is guaranteed by the softmax function:
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LCE(θ) := − 1

N

N∑
n=1

log
exp qθ(xn, cn)∑C
c′=1 exp qθ(xn, c′)

(3.3)

= −
X∑
x

p(x)

C∑
c

p(c|x) log
exp qθ(x, c)∑C
c′=1 exp qθ(x, c′)

= −
X∑
x

p(x)

(
C∑
c

p(c|x) log
exp qθ(x, c)/

∑C
c′=1 exp qθ(x, c

′)

p(c|x)
+ const.

)

=⇒ exp q̂θ(x, c)∑C
c′=1 exp q̂θ(x, c′)

= p(c|x)

Because the softmax function is expanded in the derivation above to make obvious the sum-
mation in C, the derivation looks more complicated than it actually is. Essentially, the normal-
ized model output: softmax

(
qθ(x, c)

)
= exp qθ(x, c)/

∑C
c′=1 exp qθ(x, c

′) is treated as a whole,
and the divergence inequality is applied by constructing the

∑
p1 log(p2/p1) term. As the result

suggests, the cross entropy criterion is also self-normalized, because activating the unbounded
model logits q̂θ(x, c) directly with the softmax function gives us the desired class posterior
probabilities p(c|x).

3.4 Sampling-Based Training Criteria

In the previous discussions about mean squared error, binary cross entropy and cross entropy,
we saw a summation in C in all three cases. As mentioned before, because C is large, this
summation is the core of the problem. Before going into the details of each sampling-based
training criterion, we can first reconsider the summation.

Denoting some c-dependent quantity as Qc, notice how a summation of Qc in C can be
rewritten into an expectation of Qc under the uniform distribution:

C∑
c=1

Qc = C

C∑
c=1

1

C
Qc (3.4)

= C · E(Qc) (3.5)

That means, when the original summation
∑C

c=1Qc is costly to compute, we can instead ap-
proximate the expectation E(Qc). This is the core concept of the sampling-based training
criterion that follow.

In the derivations that are to come, we often apply an approximation:

N∑
n=1

K∑
k=1

Qn,k ≈
N∑
n=1

C∑
c=1

KD(c)Qn,c (3.6)

Here, the goal is to rewrite the summation in K into a summation in C. We want to do this
because handling the summation in K is hard - it depends on the number of samples K, while
the positive contribution in the training criterion, e.g. the positive term on the target word
log qθ(x, c) in binary cross entropy, does not. Rewriting it into a summation in C is beneficial,
because then it is possible to merge it with the positive contribution term, which we will see
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3 Sampling-Based Training Criteria for Neural Language Modeling

later in this section. Below, we give a brief explanation of why the approximation holds. If
we ask ourselves the question, “how many terms show up if we expand the summation in K
on the left side”, we can go over each class c and answer, “for a given class c, e.g., if the noise
distribution D says D(c) is 10%, then when K is 1000, we roughly count 100 times that c shows
up during the sampling.” That is, when N and K are large enough, we can approximate the
summation in K by binning the samples by class and go over all classes instead. This trick is
applied several times in our derivations, and is the key step in many of them.

3.4.1 Monte Carlo Sampling

Monte Carlo Sampling (MCS) is a classic method that relies on the law of large numbers
to approximate an expectation by repeatedly drawing random samples and calculating the
empirical mean (sample mean). In the literature, negative sampling [Mikolov & Sutskever+

13] is a prominent example of Monte Carlo sampling. In the original paper by Mikolov et al.,
the authors introduced negative sampling from the perspective of simplifying noise contrastive
estimation and, arguably, their criterion has a surface form that is closer to the binary cross
entropy. Here, we can directly apply Monte Carlo sampling on the summation in C for both
binary cross entropy and cross entropy. Specifically, instead of summing over C, we draw K
samples from some noise distribution, i.e. ck ∼ D, and sum over K:

LBCE-MCS(θ) := − 1

N

N∑
n=1

(
log qθ(xn, cn) +

K∑
k=1

log
(
1− qθ(xn, ck)

))
(3.7)

≈ −
X∑
x

p(x)
C∑
c=1

(
p(c|x) log qθ(x, c) +KD(c) log

(
1− qθ(x, c)

))
∂LBCE-MCS(θ)

∂qθ(x, c)
≈ p(x)

(
p(c|x)

qθ(x, c)
− KD(c)

1− qθ(x, c)

)
!

= 0

=⇒ q̂(x, c) ≈
(
1 +

KD(c)

p(c|x)

)−1

LCE-MCS(θ) := − 1

N

N∑
n=1

(
qθ(xn, cn)− log

K∑
k=1

exp qθ(xn, ck)

)
(3.8)

≈ −
X∑
x

p(x)

(
C∑
c=1

p(c|x)qθ(x, c)− log
C∑
c=1

KD(c) exp qθ(x, c)

)
∂LCE-MCS(θ)

∂qθ(x, c)
≈ −p(x)

(
p(c|x)− KD(c) exp qθ(x, c)∑C

c′=1KD(c′) exp qθ(x, c′)

)
!

= 0

=⇒ D(c) exp q̂θ(x, c)∑C
c′=1D(c′) exp q̂θ(x, c′)

≈ p(c|x)

In the derivations above, the trick in Equation 3.6 is first applied. Without loss of generality,
the partial derivatives with respect to qθ(x, c) are then set to zero, and q̂ is finally derived. Notice
that the derivations are a bit sloppy here because we did not check the second-order derivative
to verify if the optimum is the maximum or the minimum, and the boundary conditions, i.e.
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limq→0 L and limq→1 L, are not explicitly discussed. For LBCE-MCS, q is constrained between
zero and one and activated by a sigmoid function. For LCE-MCS, because q denotes the raw
logits and the softmax function is explicitly written out, q is not constrained. Looking at the
results, we quickly notice the difference compared to the traditional training criteria, that is,
the model outputs are no longer self-normalized. Interestingly, for LCE-MCS, adding the target-
word-dependent bias logD(c) to the raw model logits q̂θ(x, c) and then activating it with a
softmax function will give us the class posterior probability p(c|x).

Some other works that employ the Monte Carlo sampling concept include a TensorFlow
function called “tf.nn.sampled softmax loss” [TensorFlow 22], and the work by Jean et al.
[Jean & Cho+ 15] where they try to address the large vocabulary problem in neural machine
translation.

3.4.2 Compensated Partial Summation

Compensated Partial Summation (CPS) is a simple extension to Monte Carlo sampling with
a straightforward motivation. That is, if we replace the summation of C terms with a partial
summation of K terms, it might make sense to compensate the partial summation by a factor,
α = C/K. This idea is naive, because counter-examples are easy to find. Say Q1 = 1, Q2 =
2, Q3 = 3,K = 1 and Q1 is sampled out, the result of the correction α ·

∑K
k=1Qk = 3 is still far

off from the original sum
∑C

c=1Qc = 6. That said, we nonetheless visit this idea here:

LBCE-CPS(θ) := − 1

N

N∑
n=1

(
log qθ(xn, cn) + α

K∑
k=1

log
(
1− qθ(xn, ck)

))
(3.9)

≈ −
X∑
x

p(x)
C∑
c=1

(
p(c|x) log qθ(x, c) + αKD(c) log

(
1− qθ(x, c)

))
∂LBCE-CPS(θ)

∂qθ(x, c)
≈ p(x)

(
p(c|x)

qθ(x, c)
− αKD(c)

1− qθ(x, c)

)
!

= 0

=⇒ q̂(x, c) ≈
(
1 +

αKD(c)

p(c|x)

)−1

LCE-CPS(θ) := − 1

N

N∑
n=1

(
qθ(xn, cn)− logα

K∑
k=1

exp qθ(xn, ck)

)
(3.10)

≈ −
X∑
x

p(x)

(
C∑
c=1

p(c|x)qθ(x, c)− logα

C∑
c=1

KD(c) exp qθ(x, c)

)
∂LCE-CPS(θ)

∂qθ(x, c)
≈ −p(x)

(
p(c|x)− αKD(c) exp qθ(x, c)∑C

c′=1 αKD(c′) exp qθ(x, c′)

)
!

= 0

=⇒ D(c) exp q̂θ(x, c)∑C
c′=1D(c′) exp q̂θ(x, c′)

≈ p(c|x)

The derivations are essentially the same as in Monte Carlo sampling. For LBCE-CPS, the
correction ratio α = C/K is kept in q̂, and for LCE-CPS, the two α scalars in the numerator and
the denominator cancel each other in the derivative step, and are not retained in the final q̂.
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3 Sampling-Based Training Criteria for Neural Language Modeling

3.4.3 Importance Sampling

Importance Sampling (IS) introduces the noise distribution D into the expectation calcula-
tion2 in Equation 3.4. As is the case for Monte Carlo sampling in Section 3.4.1, this can be
applied to both binary cross entropy and cross entropy:

LBCE-IS(θ) := − 1

N

N∑
n=1

(
log qθ(xn, cn) +

K∑
k=1

log
(
1− qθ(xn, ck)

)
KD(ck)

)
(3.11)

≈ −
X∑
x

p(x)

(
C∑
c=1

p(c|x) log qθ(x, c) +

C∑
c=1

log
(
1− qθ(x, c)

))
∂LBCE-IS(θ)

∂qθ(x, c)
≈ −p(x)

(
p(c|x)

qθ(x, c)
− 1

1− qθ(x, c)

)
!

= 0

=⇒ q̂θ(x, c) ≈
(

1 +
1

p(c|x)

)−1

LCE-IS(θ) := − 1

N

N∑
n=1

(
qθ(xn, cn)− log

K∑
k=1

exp qθ(xn, ck)

KD(ck)

)
(3.12)

≈ −
X∑
x

p(x)

(
C∑
c=1

p(c|x)qθ(x, c)− log
C∑
c=1

exp qθ(x, c)

)
∂LCE-IS(θ)

∂qθ(x, c)
≈ −p(x)

(
p(c|x)− exp qθ(x, c)∑C

c′=1 exp qθ(x, c′)

)
!

= 0

=⇒ exp q̂θ(x, c)∑C
c′=1 exp q̂θ(x, c′)

= p(c|x)

To obtain q̂ for both cases, we follow similar steps as before, i.e. first rewrite the summation
in K and then set the gradient to zero. For LBCE-IS(θ), q̂ has a curvature of the multiplicative
inverse of 1 + p(c|x). For LCE-IS(θ), activating q̂ with the softmax function will yield p(c|x).
Note that this observation is also made in Jozefowicz et al. [Jozefowicz & Vinyals+ 16] (Section
3.1 in their paper).

3.4.4 Noise Contrastive Estimation

Noise Contrastive Estimation (NCE) replaces the original task of “one out of C” next word
prediction with a binary classification task of telling true samples from noisy ones. In the
original papers by Gutmann and Hyvärinen [Gutmann & Hyvärinen 10, Gutmann & Hyvärinen
12], noise contrastive estimation was proposed in the context of binary cross entropy:

2For details, we refer the reader to Tom Kennedy’s lecture notes on Monte Carlo methods [Kennedy 16],
specifically, Equation 6.4.
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LBCE-NCE := − 1

N

N∑
n=1

(
log

qθ(xn, cn)

qθ(xn, cn) +KD(cn)
+

K∑
k=1

log(1− qθ(xn, ck)

qθ(xn, ck) +KD(ck)
)

)
(3.13)

≈ −
X∑
x

p(x)

C∑
c=1

(
p(c|x) log

qθ(x, c)

qθ(x, c) +KD(c)
+KD(c) log

KD(c)

qθ(x, c) +KD(c)

)
∂LBCE-NCE(θ)

∂qθ(x, c)
≈ −p(x)

(
p(c|x)

qθ(x, c)
− p(c|x) +KD(c)

qθ(x, c) +KD(c)

)
!

= 0

=⇒ q̂θ(x, c) = p(c|x)

The derivation is similar to the previous, where the summation in K is first rewritten into a
summation in C, and the gradient with respect to qθ(x, c) is set to zero to obtain q̂. One thing
worth noting about the noise contrastive estimation training criterion is its self-normalization
property, as seen in the derivation above, q̂θ(x, c) = p(c|x), meaning that when the optimum is
obtained the model outputs are the desired class posterior properties. In practice, if K is set
sufficiently large, and the model is trained well till convergence, the model can be as good as
a model trained with cross entropy or binary cross entropy. For this reason, noise contrastive
estimation enjoys great popularity in the literature [Gutmann & Hyvärinen 10, Gutmann &
Hyvärinen 12, Mnih & Teh 12, Jozefowicz & Vinyals+ 16, Chen & Liu+ 16b, Goldberger &
Melamud 18b, van den Oord & Li+ 18, Poole & Ozair+ 19, Tschannen & Djolonga+ 20, Kong
& de Masson d’Autume+ 20].

3.4.5 Self-Normalized Importance Sampling

So far, we have discussed several sampling-based training criteria for neural language mod-
eling, and derived their model outputs q̂θ(x, c) when the optimum is attained. We also made
the observation that if q̂θ(x, c) is not strictly the intended class posterior probability p(c|x), the
model is not self-normalized. In other words, we prefer training criteria that fulfill q̂θ(x, c) =
p(c|x), which is the case for mean squared error, binary cross entropy, cross entropy, and noise
contrastive estimation. This observation is not new to the field, for example:

• In the work by Bengio and Senecal [Bengio & Senecal 03], the authors trained using
the importance sampling criterion and noticed that the gradient tended to become less
“accurate” as training went on, and the training diverged with a small sampling size.
Therefore, they proposed an algorithm with dynamic sampling size to mitigate this prob-
lem, where the sampling size increases according to on-the-fly perplexity diagnostics on a
tiny dataset. This observation of unstable training with importance sampling is further
discussed in the follow-up work by Bengio and Senecal [Bengio & Senecal 08], where they
attribute this to a too-large bias in the model output and/or a too-large variance in the
gradient estimator.

• In the work by Mikolov et al. [Mikolov & Sutskever+ 13] where they introduced negative
sampling, they acknowledged that they only aim to learn high-quality vector representa-
tions with negative sampling, and not to “approximately maximize the log probability of
the softmax”.
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3 Sampling-Based Training Criteria for Neural Language Modeling

• In a preprint note by Chris Dyer [Dyer 14] where he explained the difference between
negative sampling and noise contrastive estimation (NCE), he wrote “if your goal is
language modeling, you should use NCE; if your goal is word representation learning, you
should consider both NCE and negative sampling”.

• In the work by Jozefowicz et al. [Jozefowicz & Vinyals+ 16], the authors noticed that
it is possible to activate the logits of a model trained with importance sampling with
the softmax function and obtain the desired class posterior probability, as is discussed
in Section 3.4.3. However, they then argued that training with importance sampling
might be better than training with noise contrastive estimation because the former is a
multi-class classification task and the latter is a binary classification task.

• In the work by Oualil and Klakow [Oualil & Klakow 17], the authors summarized existing
work related to importance sampling and noise contrastive sampling at the time, and
noted that noise contrastive sampling is an attractive choice to train neural language
models with a large vocabulary.

Despite the previous experience, here we make two contributions:

1. Although for different sampling-based training criteria, we may not directly have q̂θ(x, c) =
p(c|x), there clearly exists a one-to-one mapping between the raw model outputs and the
desired class posterior probabilities. In other words, once the exact form of q̂ is derived,
it is possible to solve for p(c|x) to obtain an approximately self-normalized model, for all
sampling-based training criteria examined in this chapter [Gao & Thulke+ 21].

2. Considering the derivation for importance sampling, we show that it is possible to further
adjust the importance sampling criterion to make it self-normalized, effectively arriving
at a competitive alternative to the long-standing and popular noise contrastive estimation
training criterion, when combating the large vocabulary problem [Yang & Gao+ 22].

The first point is straightforward. If we think the model is optimized well during training,
then at test time, given the model output, we can solve for p(c|x) according to the derivations
earlier, and use that as pseudo normalized class posterior probabilities for downstream tasks
like second-pass rescoring for automatic speech recognition. Because we assume the models
are trained well, we can expect that such an approach should perform equally well as training
with the self-normalized training criteria such as cross entropy and noise contrastive estimation.
Experimental results support the claims, as will be later discussed in Section 3.6. Below, we
expand on the second point.

If we look closely at the derivations of binary cross entropy (BCE) and binary cross entropy
with importance sampling (BCE-IS), i.e. Equation 3.2 and Equation 3.11, we quickly notice that
they are very similar, with one small difference - the summation over negative contributions,
i.e. the log(1− q) terms, includes the target class c for BCE-IS, but not for BCE. For the sake
of this discussion, we rewrite the two equations below:

LBCE(θ) = −
X∑
x

p(x)
C∑
c=1

p(c|x)

(
log qθ(x, c) +

C∑
c′=1

log
(
1− qθ(x, c′)

)
− log

(
1− qθ(x, c)

))
(3.14)

LBCE-IS(θ) ≈ −
X∑
x

p(x)
C∑
c=1

p(c|x)

(
log qθ(x, c) +

C∑
c′=1

log
(
1− qθ(x, c′)

))
(3.15)
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Clearly, there is a chance for c to be sampled out when training BCE-IS, and this is the main
cause of non-self-normalized model outputs. In other words, if we want self-normalization with
importance sampling, we need the summation to only go over rival words and not the entire
vocabulary - or, to exclude the contribution of log

(
1 − qθ(x, c)

)
when doing sampling. As

discussed in the paper by Yang et al. [Yang & Gao+ 22], there are different approaches to
doing this, and we will only focus on one of them here (Mode 3 in their paper).

Formally, the self-normalized importance sampling (SNIS) can be defined to be:

LSNIS(θ) := − 1

N

N∑
n=1

(
log qθ(xn, cn) +

K∑
k=1

fcn
(
xn, ck, θ,K,D

))
(3.16)

where fcn
(
xn, ck, θ,K,D

)
=

0, if ck = cn
log
(
1−qθ(xn,ck)

)
KD(ck) , else

=⇒ q̂θ(x, c) = p(c|x)

Simply put, we set the contribution to the summation in K to zero whenever the target word c
gets sampled out. In practice, we perform sampling without replacement, because if replacement
is allowed, one could be unlucky and sample the target class many times, which all evaluate to
zero and contribute nothing to the summation, thus affecting the quality of the approximation.
Reversing the discussion above, one quickly sees that the model output q̂θ is the desired class
posterior p(c|x), i.e., the model is self-normalized.

3.5 Self-Normalization and Variance Regularization

To briefly take a detour away from sampling-based training criteria, there are two related
regularization tricks that can encourage self-normalization when training language models,
namely self-normalization and variance regularization [Devlin & Zbib+ 14, Shi & Zhang+ 14a,
Shi & Zhang+ 14b, Chen & Liu+ 15, Andreas & Klein 15]. If we reconsider and rewrite the
cross entropy criterion (Equation 3.3):

LCE(θ) := − 1

N

N∑
n=1

log
exp qθ(xn, cn)∑C
c′=1 exp qθ(xn, c′)

(3.17)

= − 1

N

N∑
n=1

(
qθ(xn, cn)− log

C∑
c′=1

exp qθ(xn, c
′)

)

= − 1

N

N∑
n=1

(
qθ(xn, cn)− Zn

)

During training, both methods require the calculation of the normalization factor, or the de-
nominator Zn (in actual implementations, because we usually do batched training, Zn is the
normalization factor of the current batch), and are intended only to speed up the search pro-
cess, i.e. not to calculate Zn during search and hope it is close enough to one. For the sake of
the completeness of the discussion, in this section, we quickly visit these two methods.
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3.5.1 Motivation and Definition

The idea of self-normalization (SN) is to explicitly encourage Zn to be one, i.e. logZn to be
zero:

LCE-SN(θ) := − 1

N

N∑
n=1

(
qθ(xn, cn)− Zn − λSN log2 Zn

)
(3.18)

Here, λSN (λSN ≥ 0) is a hyperparameter controlling the strength of the regularization, and the
model learns to set Zn (for each batch) close to one because of the squared error term.

Similarly, when Zn is supposed to be constant at one, its variance should be as close to zero
as possible. Therefore, variance regularization (VR) explicitly encourages this:

LCE-VR(θ) := − 1

N

N∑
n=1

(
qθ(xn, cn)− Zn − λVR

(
logZn − log Z̄n

)2)
(3.19)

Here, Z̄n is the mean of logZn of the batch, and λVR (λVR ≥ 0) controls the regularization
strength.

Since the optimization direction of the two tricks is similar (i.e., towards constant Zn at one),
it makes sense to combine the two:

LCE-SNVR(θ) := − 1

N

N∑
n=1

(
qθ(xn, cn)− Zn − λSN log2 Zn − λVR

(
logZn − log Z̄n

)2)
(3.20)

Using this combined and regularized version of the cross entropy criterion, one can train a
language model to be quasi-self-normalized, and speed up the search process by not explicitly
calculating Zn on the test data.

3.5.2 Quality of Normalization

The hyperparameters λSN and λVR control the regularization strength, and sweeping through
different values of them would reveal the impact on the normalization quality. Specifically, we
experiment on the Switchboard language modeling task, use the same λ values for both tricks
(i.e. λ = λSN = λVR), calculate the mean and variance of Z, and also report the normalized
(properly calculating Z at test time) and unnormalized (using the model logits as a “pseudo
model posterior probability distribution” at test time) perplexities on the test set.

The detailed results are given in Table 3.1. Looking at the mean values of Z at different
regularization strengths, it is clear that a larger λ leads to a better self-normalized model,
with the mean of Z getting closer and closer to one. A similar observation can be made
about the variance. As λ goes to 100, the test Z variance gets very close to zero, at 0.0004.
This means that the self-normalization tricks can indeed control how the model generates the
logits. Looking at the normalized test perplexities, in all cases, the perplexities are similar (the
absolute values are not the best, because little effort is spent in tuning this model and it is not
further interpolated with a count-based language model, which is the case for the experiments
later in Section 3.6), but slightly degrades with increasing λ. On the other hand, when looking
at the unnormalized test perplexities, some interesting observations can be made. When λ is
very small, the regularization is weak, the model has much freedom in enlarging its logits at
the target words, and this leads to overconfident outputs (sometimes even larger than one). To
avoid numerical problems, the outputs at these positions are capped at very close to one when

32



3.5 Self-Normalization and Variance Regularization

Table 3.1: Effect of self-normalization and variance regularization λ on normalization quality
and test perplexity (PPL) on Switchboard, λ = λSN = λVR. When poorly self-
normalized (e.g. for λ < 1e+1), the model is sometimes overconfident, assigning
probability values larger than one to certain positions, and these outputs are capped
at one for the calculation of unnormalized pseudo perplexities, leading to overcon-
fident perplexities. As self-normalization improves (e.g. for λ = 1e+1), this occurs
less often, and the unnormalized pseudo perplexity is closer to the true perplexity.
When the self-normalization is too strict (e.g. for λ = 1e+2), the model is restricted
to assign too large a probability value to positions it is confident about, thus resulting
in the unnormalized pseudo perplexity being slightly larger than the true perplexity.

λ
Z

true PPL pseudo PPL
mean variance

1e−4 3842.7427 4635686454.8327 57.20 1.57

1e−3 75.5725 974413.4176 57.26 7.59

1e−2 2.0820 1163.5683 57.82 41.77

1e−1 1.1014 0.1316 57.55 54.46

1e+0 1.0334 0.0218 57.79 56.47

1e+1 1.0092 0.0029 58.48 58.03

1e+2 0.9961 0.0004 59.81 60.05

calculating the unnormalized perplexity. As λ becomes larger, the self-normalization quality
improves, and the unnormalized perplexity approaches the true perplexity. When λ gets too
large, the model needs to pay a big price when assigning too large logits to the target positions,
and this leads to the unnormalized perplexity being a bit higher than the true perplexity. In real
applications, e.g. second-pass rescoring for automatic speech recognition, the relative ranking
among different words in the vocabulary is more important than the normalization itself, and
language models regularized with self-normalization and variance regularization can become
helpful in speeding up the search process [Chen & Liu+ 15].

To further investigate the normalization quality, histograms as well as density curves of the
denominator Z are drawn in Figure 3.1, for when λ is at 1 and 10. As seen, the model is
capable at concentrating Z at one when presented with unseen test data, and a stronger λ
indeed corresponds to a more concentrated distribution. When considering the range of [0.8,
1.2] (i.e. 20% error range), the majority of the Z values lie in it, at roughly 90.43% and 99.16%,
for λ = 1 and λ = 10 respectively. It is worth mentioning that when making these two figures,
in both cases, there actually exists a long tail at the right-hand side, spanning to values even
larger than 10. This means that despite the model being quasi-self-normalized, it still struggles
to properly self-normalize at certain positions - the positions that it is very confident about
and decides to assign logits larger than one to.

Self-normalization and variance regularization are simple and straightforward tricks to apply
during the training phase to encourage self-normalized model outputs at test time. The same
concept can be applied whenever a softmax-related normalization is too costly to compute, and
is seen e.g. in works that try to make the attention calculation more efficient [Guo & Liu+ 20].
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Figure 3.1: Histograms and density curves of denominator Z using self-normalization and vari-
ance regularization, with λ=1e+0 and λ=1e+1 (λ = λSN = λVR), on the test data
of Switchboard. In both cases, 51 bins in the range of [0.5, 1.5] are used for the
histogram counts, and Gaussian kernels are used for kernel density estimation. As
in Table 3.1, for (a) and (b), the test perplexities are 57.79 and 58.48, respectively.

Compared to sampling-based training criteria, self-normalization and variance regularization
have the downside of not being able to speed up training (even slowing it down a little bit
because of the overhead in calculating the regularization terms), and therefore we do not further
discuss them and instead move on to the experimental results of sampling-based training criteria
in the next section.

3.6 Experimental Results

3.6.1 Effect of Sampling Size

There is one hyperparameter that is common to all sampling-based training criteria discussed
in Section 3.4, that is, the sampling size, K. As mentioned in Section 3.4, if K is very small,
we gain more speedup but potentially sacrifice some classification performance, and when K
is large, we do not have significant speedup, but the classification performance can be largely
retained. In other words, in the speed-accuracy trade-off, there may be a sweet spot for K,
where both the speed and the accuracy are good. Below, in Figure 3.2, we plot the training
speed as well as the test perplexity while sweeping over different K values, using the self-
normalized importance sampling (Section 3.4.5) training criterion on Switchboard.

As can be seen from the figure, the overall trends match our expectations - small K generally
means faster training but worse perplexity, while large K generally means slower training but
better perplexity. An additional observation can be made: the dependency on K is not linear,
meaning that in both small K and large K regions, there exist “cutoffs” (around 400 to 600 for
K in Figure 3.2), beyond which the dependency on K is not apparent but suddenly appears
when the K value moves past them. Here, we only experiment with one specific sampling-
based training criterion on a specific dataset, and the exact curves may further depend on
other factors such as the model architecture, the vocabulary size and so on, but the overall
trends should be similar to what is shown here.
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Figure 3.2: Influence of sampling size K on training speed and test perplexity, with the self-
normalized importance training criterion (Section 3.4.5), on Switchboard. The
speed-accuracy trade-off shows that a small enough K leads to faster training but
worse perplexity, and a large enough K leads to slower training but better perplex-
ity. The dotted and dashed lines are curve fits done with non-linear least squares
[SciPy 22].

3.6.2 Results with Explicit Normalization

In Section 3.4.5, we made the point that although we do not always have q̂θ(x, c) = p(c|x)
for all sampling-based training criteria, because there exists a one-to-one mapping between the
model outputs and class posterior probabilities, it is possible to explicitly solve for p(c|x) and
explicitly normalize it when necessary.

To this end, we conduct experiments on Switchboard and LibriSpeech. The vocabulary sizes
are around 30k and 200k for Switchboard and LibriSpeech, respectively. For Switchboard, we
train Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) language models
[Sundermeyer & Schlüter+ 12, Irie 20], and interpolate them with a count-based language model.
For LibriSpeech, we train transformer language models [Irie & Zeyer+ 19]. In both cases, the
sampling-size is 8192, and the noise distribution from which we sample is a log-uniform one
(in other words, probability decays exponentially with respect to word frequency rank). We
perform second-pass lattice rescoring using lattices generated by strong baseline models [Beck
& Zhou+ 19, Kitza & Golik+ 19]. For further information on model-related and training-related
hyperparameters, as well as evaluation-related setups, we refer the reader to the paper by Gao
et al. [Gao & Thulke+ 21], where it is documented in more detail.

In Table 3.2, we show PerPLexities (PPLs) as well as Word Error Rates (WERs) on Switch-
board by explicitly normalizing the language models. As seen, compared to the binary cross
entropy (BCE) or the cross entropy (CE) baselines, all sampling-based language models speed
up the training process by over 20%. The relative training speedup is consistent across all
sampling-based training criteria. Considering the normalized PPL, all neural models are sig-
nificantly better than the count-based model, which is confirmed in many works and expected.
The CE baseline is slightly better than other neural models because a well-tuned recipe is used
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Table 3.2: Sampling-based LSTM RNN language models on Switchboard, explicitly normalized
after training. The 4-gram count-based Kneser-Ney (KN) language model is used to
generate the first-pass lattices. The LSTM RNN language models are interpolated
with the count-based model for second-pass rescoring. For sampling-based meth-
ods, language model outputs are corrected (Section 3.4.5) and normalized for both
perplexity (PPL) and word error rate (WER) calculation.

Model Criterion Sampling
Train Time PPL WER (norm.)

(s/batch) (norm.) SWB CH All

4-gram KN - - - 74.6 8.1 15.4 11.8

LSTM RNN BCE - 0.107 52.3 6.9 13.7 10.3

MCS 0.077 52.6 7.0 13.6 10.3

CPS 0.079 52.4 7.1 13.6 10.3

IS 0.079 51.5 7.0 13.7 10.3

NCE 0.078 51.4 7.0 13.6 10.3

CE - 0.100 49.9 6.8 13.4 10.1

MCS 0.078 52.4 7.0 13.7 10.4

CPS 0.077 52.3 7.0 13.6 10.3

IS 0.076 52.3 6.9 13.6 10.2

for this training run, and not much hyperparameter tuning is done for the rest of the crite-
ria. In terms of WERs, all neural models are significantly better than the count-based model,
which again verifies the empirical rule that better PPL generally leads to better WER [Bahl
& Jelinek+ 83, Chen & Beeferman+ 98, Klakow & Peters 02, Sundermeyer & Ney+ 15a, Irie
20]. However, among all neural models, the WERs are somewhat similar and it is not easy to
conclude that one is significantly better than another. This result matches our theory, because
for all sampling-based criteria considered here, p(c|x) is obtainable from the model outputs and
we should not expect much performance difference because of it.

Moving on to Table 3.3, similar observations can be made from experiments on the Lib-
riSpeech dataset. Examining the training speed, compared to BCE and CE baselines, we can
see that a significant relative speedup of over 40% is achieved across the board for sampling-
based training criteria. The higher speedup over Switchboard is expected (40% versus 20%),
because for Switchboard we sample around 8k samples from a 30k vocabulary, and for Lib-
riSpeech we sample around 8k samples from a 200k vocabulary. Looking at the normalized
PPLs, we observe some improvements over the LSTM baseline, which agrees with the results
reported in other works [Lüscher & Beck+ 19b, Irie & Zeyer+ 19, Irie 20]. However, comparing
the sampling-based criteria against the BCE and CE baselines, no significant differences can
be found, and this again agrees with our expectation, as explained in the earlier paragraph.
Finally, if we turn our attention to WERs, we see that improvements over the LSTM baseline is
limited, and this is because the PPLs themselves are not sufficiently lower and we are rescoring
on the given lattices. That said, an absolute WER improvement of 0.4 is still achieved with the
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Table 3.3: Sampling-based transformer language models on LibriSpeech, explicitly normalized
after training. The well-tuned baseline LSTM RNN language model is used to gener-
ate the first-pass lattices. The transformer language models are used for second-pass
rescoring. For sampling-based methods, language model outputs are corrected (Sec-
tion 3.4.5) and normalized for both perplexity (PPL) and word error rate (WER)
calculation.

Model Criterion Sampling
Train Time PPL WER (norm.)

(s/batch) (norm.) clean other

LSTM RNN - - - 64.3 2.6 5.8

Transformer BCE - 0.358 58.5 2.5 5.4

MCS 0.213 58.0 2.6 5.4

CPS 0.205 58.4 2.5 5.4

IS 0.206 58.4 2.6 5.5

NCE 0.206 57.9 2.5 5.4

CE - 0.302 57.7 2.5 5.4

MCS 0.206 57.9 2.5 5.4

CPS 0.203 62.2 2.5 5.4

IS 0.201 58.7 2.5 5.4

transformer language models on test-other. If we further compare the sampling-based training
criteria against BCE and CE baselines, we see no significant different differences in WERs,
which is more evidence supporting the empirical law between PPL and WER [Bahl & Jelinek+

83, Chen & Beeferman+ 98, Klakow & Peters 02, Sundermeyer & Ney+ 15a, Irie 20] and our
theory in Section 3.4.5.

Considering Table 3.2 and Table 3.3 together, we can conclude that experimental results
match our expectation, that all sampling-based criteria considered in this work perform equally
well, when properly corrected and normalized.

3.6.3 Results without Explicit Normalization

In this section, we further experiment with the sampling-based training criteria without per-
forming explicit normalization. This is the more interesting case because while in the previous
section we showed that all sampling-based training criteria perform equally well when properly
corrected and normalized, we may not always want to do this because of the complexity of the
process and computational effort associated with it. Instead, ideally, we want to train with a
self-normalized sampling-based criterion and not have to do anything extra at test time.

In Table 3.4, we give the results without explicit normalization on Switchboard. Here, we
only consider the BCE sampling-based training criteria variants and drop the CE variants
because, as discussed in Section 3.6.2, they do not seem to differ much. The training time
and the normalized PPL columns are the same as in Table 3.2, and rewritten here for easy
reference. Looking at the column of WER with no normalization of the language model,
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Table 3.4: Sampling-based LSTM language models on Switchboard, with no explicit normal-
ization after training. The 4-gram count-based Kneser-Ney language model is used
to generate the first-pass lattices. The LSTM language models are interpolated with
the count-based model for second-pass rescoring. For sampling-based methods, lan-
guage model outputs are corrected (Section 3.4.5), normalized for perplexity (PPL)
calculation, but not normalized for word error rate (WER) calculation.

Model Criterion Sampling
Train Time PPL WER (no norm.)

(s/batch) (norm.) SWB CH All

4-gram - - - 74.6 8.1 15.4 11.8

LSTM RNN BCE - 0.107 52.3 6.9 13.7 10.3

MCS 0.077 52.6 7.3 14.7 11.0

CPS 0.079 52.4 7.5 15.1 11.3

IS 0.079 51.5 6.9 13.6 10.2

NCE 0.078 51.4 6.9 13.6 10.2

SNIS 0.090 51.7 6.9 13.6 10.2

CE - 0.100 49.9 6.8 13.4 10.1

Table 3.5: Sampling-based transformer language models on LibriSpeech, without explicit nor-
malization after training. The well-tuned baseline LSTM RNN language model is
used to generate the first-pass lattices. The transformer language models are used
for second-pass rescoring. For sampling-based methods, language model outputs
are corrected (Section 3.4.5), normalized for perplexity (PPL) calculation, but not
normalized for word error rate (WER) calculation.

Model Criterion Sampling
Training PPL WER (no norm.)

(s/batch) (norm.) clean other

LSTM RNN - - - 64.3 2.6 5.8

Transformer BCE - 0.358 58.5 2.5 5.4

NCE 0.206 57.9 2.5 5.4

SNIS 0.216 58.3 2.5 5.4

CE - 0.302 57.7 2.5 5.4

we again see significant improvements over the count-based model, and importance sampling
(IS) and self-normalized importance sampling (SNIS) perform on par with the strong BCE
and CE baselines, as well as the well-established noise contrastive estimation (NCE) method.
However, the monte carlo sampling (MCS) and compensated partial summation (CPS) variants
performance is notably worse, and we think this is because, unlike IS, SNIS and NCE, MCS
and CPS require querying the unreliable noise distribution D during search (in Section 3.4
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Table 3.6: Sampling-based LSTM RNN language models on AppTek En, without explicit nor-
malization after training. The 4-gram count-based Kneser-Ney language model is
used to generate the first-pass lattices. The LSTM RNN language models are used
for second-pass rescoring. For sampling-based methods, language model outputs
are corrected (Section 3.4.5), normalized for perplexity (PPL) calculation, but not
normalized for word error rate (WER) calculation.

Model Criterion Sampling K
Training PPL WER

(s/batch) (norm.) (no norm.)

4-gram - - - - 82.3 13.7

LSTM RNN BCE NCE 100 0.092 65.9 13.3

8000 0.098 55.9 13.1

SNIS 100 0.089 68.0 13.3

8000 0.114 55.8 13.1

and Section 3.4.5, D shows up in the solution for MCS and CPS, but not for IS, SNIS and
NCE). When plugging in a smoothed empirical unigram distribution instead of the log-uniform
distribution for D, the WERs of MCS and CPS improve a bit, but are still behind the other
sampling-based methods. Additionally, considering that IS requires a correction step but SNIS
does not, in the following discussions, we only compare SNIS against the strong NCE method.

In Table 3.5 and Table 3.6, we show results of SNIS compared to NCE on larger-scale datasets,
namely LibriSpeech and AppTek En. AppTek En is an in-house language modeling dataset
for English telephony speech recognition, the size of which is similar to LibriSpeech for the
neural language model training. As shown in Table 3.5, both SNIS and NCE achieve around
40% speedup compared to the BCE and CE baselines, and give similar normalized PPLs as
well as WERs without explicitly normalizing the language model outputs, validating their self-
normalization capabilities. In Table 3.6, the vocabulary size is around 250k, and the dataset
is production-oriented. Here, we directly compared SNIS against NCE. When K is 100, the
speed of SNIS is slightly faster than NCE, but when K is 8000, the speed of SNIS is slightly
slower. If we do not attribute this observation to random noise, we think the slight slowdown at
K = 8000 might be because of our implementation of the sampling process not being optimal,
while the sampling implementation of NCE sampling is a stable one from TensorFlow [Abadi
& Agarwal+ 15]. With sampling size K at 100 and 8000, the SNIS method is on par with the
strong NCE baseline, both in terms of the normalized PPL and the WER without explicitly
normalizing the language model.

3.7 Summary

In this chapter, we looked at the large vocabulary issue when training word-level neural net-
work language models. We discussed three traditional training criteria, namely mean squared
error, binary cross entropy and cross entropy, and moved on to derive where the model opti-
mums are obtained of various sampling-based training criteria. Contrary to previous belief, we
made the important observation that although some sampling-based training criteria are not
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self-normalized, i.e. q̂θ(x, c) = p(c|x) by definition, it is possible to solve for p(c|x) and obtain
comparable performance against strong baselines. We further proposed a novel self-normalized
version of importance sampling, which is a strong contestant compared to the popular and
well-established noise contrastive estimation method. In a short detour, we discussed the self-
normalization and variance regularization methods, both of which are useful for regularizing
the denominator in the softmax function, and showed the relationship between normalization
quality and regularization strength. Coming back to the topic of sampling-based training cri-
teria, through extensive language modeling and automatic speech recognition experiments, we
showed that the sampling-based training criteria are on par with binary cross entropy and cross
entropy as well as the noise contrastive estimation baselines.
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4. Smoothing In Neural Machine
Translation

When training deep neural networks, it is well known that regularization typically helps with
generalization and avoiding overfitting (e.g. see Chapter 7 in [Goodfellow & Bengio+ 16]).
In this chapter, we focus on regularization techniques for neural machine translation systems.
Although one may argue that with more and more data being available every day, the need
for regularization might decrease, we take the position that given the combinatorial nature of
natural languages, it is infeasible to collect statistics for the exponentially many events, and
regularization still has an important role in building strong models in practice. For instance,
when we train a model to predict the period “.” as the next word given an English sentence
“Thank you .” and the partial German translation “Danke”, who is to say that the next word
cannot be “schön”1? This is a valid point, because translation (or natural language processing
in general) is not a deterministic task, i.e. there may be several equally good translations given
a certain source sentence. In practice, we are not able to collect all possible combinations
of source and target sentences, which means some kind of smoothing is necessary in order to
avoid “over-trusting” the limited training corpus we have, no matter how large it may be. The
term “smoothing” is traditionally used in the context of regularization of count-based language
models [Kneser & Ney 95, Chen & Goodman 96]. In this chapter, we use the term to refer to
methods like label smoothing [Szegedy & Vanhoucke+ 15, Gao & Wang+ 20], soft contextualized
data augmentation [Gao & Zhu+ 19, Gao & Liao+ 20] and multi-agent learning [Bi & Xiong+

19, Liao & Gao+ 20] seen in the literature for the task neural machine translation. Intuitively,
the three types of methods aim to regularize the model by answering the following questions:

• Given the source sentence and the partial translation so far, my training example shows
that the next word should be this one - could it be other words as well?

• Given a specific source and target sentence pair, I know how to train the model with this
specific data point - can I also train the model to be robust when the sentence pair is
slightly altered?

• I know that I can train a pretty good translation model, but if I perform another training
run, the results are similar but slightly different - can I make use of this fact and fuse the
models into a better-performing model?

In this chapter, we will visit the details of these concepts, and show that with good smoothing
setups, the translation performances of strong baseline systems can be further improved.

1In other words, translating into “Thank you very much .” instead of “Thank you .”; “schön” in German in
this context can be roughly translated to “a lot”.
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4.1 Related Work

The label smoothing method was first introduced by Szegedy et al. [Szegedy & Vanhoucke+

16], where they introduced several refinements to the Inception model [Szegedy & Liu+ 15]. The
method is straightforward: instead of fitting the model to hard labels, they train the model to
generate a distribution which is a weighted average of the one-hot distribution and a uniform
distribution over the output classes. The motivation for this change is to avoid overfitting
and improve generalization. Intuitively, the method can be thought of as discounting some
probability mass from the true label and redistributing it uniformly across all class labels. In
other words, when the model is overly confident in a certain label, label smoothing penalizes the
model. The method was quickly adopted and widely applied in tasks like image recognition,
speech recognition and machine translation [Szegedy & Vanhoucke+ 16, Chorowski & Jaitly
16, He & Zhang+ 18, Vaswani & Shazeer+ 17, Zhou & Michel+ 22]. Because information
entropy [Shannon 48] is a confidence measure of a probability distribution, to regularize the
model in the same direction as label smoothing, one can also add a negative entropy term to
the training loss to discourage overly confident outputs. Pereyra et al. [Pereyra & Tucker+

17] described such a method and also proposed that alternative distributions can be used
when smoothing the one-hot target distribution. In Müller et al. [Müller & Kornblith+ 19],
the authors observed that distilling knowledge from a teacher trained with label smoothing
seemed to under-perform distilling from one trained without, and provided analyses from the
perspective of the model output at the penultimate layer, arguing that information is lost
in the logits but does not hurt the generalization and calibration of the model predictions.
Along this line, Shen et al. [Shen & Liu+ 21] provided in-depth analyses of the incompatibility
between knowledge distillation and label smoothing training. Extending further discussions to
the apparently contradictory results between Müller et al. [Müller & Kornblith+ 19] and Shen
et al. [Shen & Liu+ 21], Chandrasegaran et al. [Chandrasegaran & Tran+ 22] concluded that
using teacher models trained with label smoothing with a low temperature during distillation
leads to better student models. In Xu et al. [Xu & Xu+ 20], the authors gave an analysis
of the convergence behavior of stochastic gradient descent training with label smoothing, and
proposed to deactivate the regularization after the training had ran for a certain number of
update steps. Zhang et al. [Zhang & Jiang+ 21] also studied label smoothing and proposed
to replace the uniform prior distribution with the soft labels from the model itself in the last
training epoch. From the perspective of label noise, i.e. observed labels may be sampled from
a distribution different from the ground truth, Lukasik et al. [Lukasik & Bhojanapalli+ 20]
argued that although label smoothing introduces symmetric noises to the labels, it is related
to the loss correction methods in the label noise literature.

Applying label smoothing during training has further implications for the model outputs, es-
pecially for sequence generation tasks. For instance, when examining the problem that machine
translation systems tend to generate empty outputs when the beam size is very large [Koehn
& Knowles 17], Shi et al. [Shi & Xiao+ 20] argued that label smoothing introduces a length
bias preferring the empty translation, i.e. the artificial end-of-sentence token having a higher
probability at the first position. Another work that put forward the same argument is Liang
et al. [Liang & Wang+ 22], where the authors showed that the length bias introduced by using
label smoothing leads to models preferring shorter translations. The authors then proposed
to use the debiased model outputs during search, and showed through experiments that this
mitigates the “short translation problem” when a large beam size is used.

In Xie et al. [Xie & Wang+ 16], the authors pointed out that as regularization techniques,
dropout [Srivastava & Hinton+ 14b] can be thought of as ensembling different model architec-
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tures on the same data and DisturbLabel [Xie & Wang+ 16] can be thought of as ensembling
the same model architecture on different data. Similarly, label smoothing can be thought of
as estimating the marginalized label dropout during training [Pereyra & Tucker+ 17]. In our
work, we consider two natural extensions to label smoothing, namely token selection and prior
distribution. Effectively, we are trying to answer two questions: 1. Which positions should
we smooth? 2. Which prior distribution should we smooth with? The former is similar to
Salimans et al. [Salimans & Goodfellow+ 16] and Zhou et al. [Zhou & Cai+ 18], where they
selected only positive examples when smoothing generative adversarial networks. The latter
is similar to Pereyra et al. [Pereyra & Tucker+ 17] and Gao et al. [Gao & Zhu+ 19], where
alternative distributions other than the uniform distributions are considered.

In Kobayashi [Kobayashi 18], the author proposed to randomly sample from the output
distribution of a language model to perform data augmentation on natural language sequential
data. In Gao et al. [Gao & Zhu+ 19], the authors extended the idea to generate “soft”
distributions. Their idea is straightforward, that is, when we feed a certain sentence pair to
the translation model, we can augment our data such that effectively our model is trained on
more combinations of input data. Specifically, they pre-train neural language models on the
source and target side, randomly pick positions on the source and target input, and feed the
corresponding language model posterior distribution instead of the usual one-hot distribution as
input to the machine translation model. Although their method requires the training of external
neural language models, their results show that significant translation improvements can be
achieved, even compared to other strong data augmentation baselines [Artetxe & Labaka+

18, Lample & Conneau+ 18, Iyyer & Manjunatha+ 15, Xie & Wang+ 17, Kobayashi 18]. In
our work, we extend the concept and ask ourselves three questions: 1. Why only select certain
positions and not smooth all input positions? 2. Do we have to use external neural models,
i.e. would simpler distributions suffice? 3. Does the improvement from input smoothing and
output smoothing, i.e. label smoothing, stack?

Another method of regularization is to ensemble several models2 after training, which can
be separately trained or co-trained. The simple log-linear combination is commonly seen in
“The Conference of Machine Translation” (WMT) shared tasks [Barrault & Biesialska+ 20,
Akhbardeh & Arkhangorodsky+ 21, Kocmi & Bawden+ 22]. Here, we are more interested
in more sophisticated methods such as knowledge distillation and multi-agent learning. The
concept of knowledge distillation was introduced in Buciluǎ et al. [Buciluǎ & Caruana+ 06]
and gained more popularity after the publication of Li et al. [Li & Zhao+ 14] and Hinton
et al. [Hinton & Vinyals+ 15]. The existing methods mainly differ on whether the agents
are separately trained [Li & Zhao+ 14, Hinton & Vinyals+ 15, Meng & Li+ 18] or co-trained
[Zhang & Xiang+ 18, Bi & Xiong+ 19], and if further ensembling is done before distilling
knowledge from the teacher to the student [Bi & Xiong+ 19]. That said, the Kullback-Leibler
divergence [Kullback & Leibler 51] and cross entropy are common to most methods as a metric
of differences in distributions.

4.2 Notations

To clarify the notations, in this chapter:

• n is a running index in total positions N .

• A and B are some disjoint partitions of the total positions N .

2Or agents. In this context, we will use both terms interchangeably.
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• x is some context in all possible contexts X.

• c is some class in all possible classes C.

• fJ1 is a source sentence, with 1, 2, ..., j, ..., J denoting the positions for each word.

• eI1 is a target sentence, with 1, 2, ..., i, ..., I denoting the positions for each word.

• f̃j is the word vector of the word fj .

• ẽi is the word vector of the word ei.

• δ is the Kronecker delta function.

• p is the empirical distribution from the training data.

• qθ is the model distribution, with learnable parameters θ.

• q̂θ denotes the model outputs when the optimum is attained.

• r is an auxiliary prior distribution given by some external helper model.

• λ or λ′ is some quantity that can be interpreted as probability mass.

• γ denotes the percentage of source/target input positions undergoing input smoothing.

• k is a running index in total number of agents K.

When there is no need to specify the source/target dependencies, and only the training criterion
is in question, we will use the qθ(c|x) notation instead of the more complicated qθ(ei|fJ1 , e

i−1
0 ),

to simplify the notations.

4.3 Label Smoothing

4.3.1 Traditional Label Smoothing

The unregularized training of a one-out-of-C classification system typically learns from data
points with hard labels. That is, a target vector with C elements with all zeros but a one at the
correct label (a “one-hot” vector) is used as the target for the model to fit to. Label smoothing
(LS) [Szegedy & Vanhoucke+ 16] modifies this process, and discounts some probability mass
from the correct label, and uniformly redistributes it across the vocabulary:

LCE = − 1

N

N∑
n=1

log qθ(cn|xn) (4.1)

= − 1

N

N∑
n=1

C∑
c=1

δ(c, cn) log qθ(c|xn)

LLS = − 1

N

N∑
n=1

C∑
c=1

(
(1− λ)δ(c, cn) + λ

1

C

)
log qθ(c|xn) (4.2)

Here, δ(c, cn) is effectively the one-hot distribution, when we sum over C. As seen, when λ goes
from zero to one, the training criterion in Equation 4.2 goes from the traditional cross entropy
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to an objective where the model should predict a uniform distribution regardless of the context.
From the derivations in Chapter 3, we know that with cross entropy, the model optimum is
attained when q̂θ(c|x) = p(c|x) (Note that in Chapter 3 the softmax function was explicitly
written out to highlight the summation in C, but here it is hidden inside of qθ(c|x)). Due to the
linear nature of the label smoothing formulation, following a similar derivation to earlier, we find
that with label smoothing, the model optimum is attained at the linear interpolation between
the empirical distribution and the uniform distribution, i.e. q̂θ(c|x) = (1− λ)p(c|x) + λ 1

C .

4.3.2 Confidence Penalty

Since the regularization direction is towards the uniform distribution, we can use the infor-
mation entropy to achieve similar regularization effects, i.e. with confidence penalty [Pereyra
& Tucker+ 17]:

LCP = − 1

N

N∑
n=1

C∑
c=1

(
δ(c, cn)− λ′qθ(c|xn)

)
log qθ(c|xn) (4.3)

We know that the information entropy takes its maximum at the uniform distribution, and that
means when λ′ goes from zero to infinity, the training criterion goes from the cross entropy to
an objective that almost exclusively trains the model towards the uniform distribution. Note
that this point was known and was exactly the motivation of Pereyra et al. [Pereyra & Tucker+

17], but they did not give an exact solution to the training problem.

(a) smoothing effect on the correct label (b) smoothing effect on the other labels

Figure 4.1: Graphs of when model optimums are attained, i.e. q̂, with respect to λ or λ′, for
label smoothing and confidence penalty. The horizontal axes are logarithmic scale,
with λ ∈ [0, 1] and λ′ ≥ 0. To obtain the numerical solutions, we set C to be 32k,
which is a common vocabulary size for machine translation systems [Vaswani &
Shazeer+ 17].

In our work [Gao & Wang+ 20], we showed that, ignoring the outer summation in N and
only considering a certain local n, it is possible to introduce the Lagrange multiplier λ0 to solve
for the optimum, but a transcendental equation would show up. It is then possible to make
use of the Lambert W function [Corless & Gonnet+ 96] to express the local solution:

q̂θ(c;n) =
δ(c, cn)

λ′W0

(
δ(c,cn)
λ′ e1+

λ0
λ′

) (4.4)
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Here, W0 denotes the principal branch of the Lambert W function and λ0 is the Lagrange
multiplier. The detailed derivation can be found in the Appendix of Gao et al. [Gao & Wang+

20]. It is possible to numerically solve the equation above given non-negative λ′ and δ(c, cn)
using solvers for symbolic mathematics [MathWorks 23]. To give an intuitive understanding of
how label smoothing and confidence penalty relate to and differ from one another, we ignore
the outer summation in N again, and plot the graphs of when model optimums are attained
at, i.e. q̂, with respect to λ or λ′, for the two methods. As seen in Figure 4.1, both methods
have similar curves, i.e. pushing down the model output at the correct label from one to zero
(Figure 4.1a) and bringing up the model output at the other labels from zero to 1

C (Figure
4.1b), with increasing λ and λ′.

4.3.3 Extensions

In the context of label smoothing, it makes sense to consider two questions:

1. Which positions should we smooth? How do we select them?

2. With which auxiliary distribution and how should we smooth the model?

This naturally leads to the following Extended Label Smoothing (ELS) training criterion:

LELS = − 1

N

(∑
n∈A

log qθ(cn|xn) +
∑
n∈B

C∑
c=1

(
(1− λ)δ(c, cn) + λrc

)
log qθ(c|xn)

)
(4.5)

Here, A and B are two disjoint subsets of the total target positions N , and rc is an auxiliary
prior distribution over the vocabulary C which is given by an external helper model, be it a
uniform distribution or more complex one.

Regarding the first question, we consider two aspects. First, we make the distinction between
randomly selecting positions and preferring those positions that the model is most uncertain
about (those positions with higher information entropy). Second, we ask the question of how
many positions should be smoothed? Should it be all target positions or some subset of them?

Regarding the second question, we also consider two aspects. First, we explore different prior
distributions and see if there is anything to be gained beyond simple uniform prior distribu-
tions. Second, we sweep over different values of λ in Equation 4.5, to see if there is a better
hyperparameter beyond the usual λ = 0.1 used in many existing recipes.

4.4 Input Smoothing

4.4.1 Background and Formulation

As mentioned in Section 1.4.2, the step of embedding discrete tokens into continuous-valued
vectors (i.e. for source side: f̃1, f̃2, ..., f̃j , ..., f̃J ; for target side: ẽ0, ẽ1, ..., ẽi, ...ẽI−1) via the
embedding matrix is ubiquitous in state-of-the-art neural-network-based machine translation
models. Because only one word index corresponds to a token, essentially we perform a lookup
operation in the matrix to obtain the word vector. In Kobayashi [Kobayashi 18] and Gao et
al. [Gao & Zhu+ 19], this norm is questioned and an alternative weighted-sum approach is
proposed.

Shown in Figure 4.2 is an illustration of the input smoothing method. Assume that we have
a source sentence “I like reading .” and select the third position for smoothing. We query
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Figure 4.2: Illustration of input smoothing. The third word “reading” in the example sentence
is selected for smoothing. Assume that the auxiliary prior distribution (denoted rc)
from some external helper model (e.g. a language model) gives 80%, 10% and 10%
probability masses on three candidate words: “reading”, “eating” and “coding”.
The input word vector of “reading” is then replaced with a weighted sum over the
word vectors of these candidate words with the corresponding weights.

an external helper model for the auxiliary prior distribution rc, and replace the original word
vector in that position with a linear interpolation over all word vectors weighted by the auxiliary
prior distribution. Here, the arbitrary prior distribution rc can be a one-hot distribution (which
will default to the usual embedding-matrix-lookup case), a uniform distribution, the posterior
distribution from an external language model, etc. The positions to smooth are randomly
selected, and the word vector lookup procedure for those unselected positions is left intact.
The original authors coined the name “soft contextualized data augmentation” for the method.
In this dissertation, we simply call such methods “input smoothing” because essentially the
previously hard input labels are replaced by soft input labels, which is somewhat similar to
label smoothing, where hard one-hot target output labels are replaced by softer distributions.

The weighted-sum computation is also efficient in practical cases (when C is not very large,
which is the case for most neural machine translation system nowadays because they operate
at the subword level), because it can be simply implemented as matrix multiplications. The
immediate downside of the method is only the need to obtain the r distribution, and potentially
more memory usage because of the need to store and calculate with r. As will be shown later,
the percentage of source/target positions that undergo input smoothing has a large impact
on the translation performance; in this chapter, we devote a separate letter γ to denote this
quantity.

4.4.2 Extensions

In Gao et al. [Gao & Zhu+ 19], the choice of r is limited to posterior distributions from
neural language models separately trained on the monolingual sides of the parallel data. They
randomly select 15% of source/target input positions and do not enforce any “strength” of the
smoothing (in analogy to λ for label smoothing), but simply replace the one-hot distribution
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completely with the prior distribution whenever the position is selected. Compared to label
smoothing, aesthetically, the “symmetric” way of smoothing the inputs should be smoothing
all input positions but with a hyperparameter controlling the smoothing strength: λ. In our
work, we make this extension, and study whether the 15% position selection is necessary, and
if a smoothing strength or mass concept makes any difference in practice. Specifically, for a
certain selected input position, λ controls to what extent the soft distribution contributes to
the word vector.

Another natural extension is to explore alternative auxiliary prior distributions for r. While
conceptually, contextual distributions from external language models are more expressive, we
do need to pay the price of pre-training the language models, as well as keeping the language
models and the posterior distributions in memory (on-the-fly implementation) or on disk (pre-
calculated). In this work, we consider simpler and consequently cheaper distributions such as
uniform and unigram distributions, as well as even more expressive distributions such as the
posterior distribution from a back-translation model or a pre-trained BERT [Devlin & Chang+

19] model3.
A final question we consider is whether or not the improvements from input smoothing and

output smoothing stack. This is an important question because many new tricks and methods
are published on a daily basis, with each one claiming somewhere around absolute +1% Bleu
improvements. If all these tricks are orthogonal and bring incremental improvements, we would
have had Bleu scores larger than 100% a long time ago. That said, it is not always an easy
task, because of the combinatorial nature of the methods. Luckily, the input smoothing and
output smoothing methods we discuss here are orthogonal by definition, and somewhat similar
to each other, and therefore we expend the effort to answer the question.

4.5 Multi-Agent Mutual Learning

4.5.1 Background

When we have several probabilistic models for the same task, it is generally beneficial to
ensemble the models to arrive at better predictions (see Chapter 16 in Hastie et al. [Hastie &
Tibshirani+ 09]). For the task of machine translation:

• If the models are of a heterogeneous nature, reranking or log-linear combination are
typically used [Barrault & Biesialska+ 20, Akhbardeh & Arkhangorodsky+ 21, Kocmi &
Bawden+ 22].

• If the models are of a homogeneous nature, checkpoint averaging can be used [Vaswani
& Shazeer+ 17, Liu & Zhou+ 18, Gao & Herold+ 22b].

• If inter-model communication is further allowed, knowledge distillation and multi-agent
learning can be of use [Hinton & Vinyals+ 15, Wang & Yan+ 21, Bi & Xiong+ 19].

The core idea of multi-agent learning is to enable information flow among the agents during
training (see Figure 4.3 for an intuitive understanding). This can be done e.g. in a two-step
process, where an initial good teacher model is built, and then used to teach different agents [Bi
& Xiong+ 19], or via a dynamic mutual learning process, where the information flow among the
agents happens during the from-scratch training [Liao & Gao+ 20]. If we take the metaphor of

3After the publication of our work [Gao & Liao+ 20], there was also a similar work [Cheng & Huang+ 22],
which explores the usage of BERT posteriors in input smoothing.
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(a) knowledge distillation
[Hinton & Vinyals+ 15]

(b) multi-agent training
[Bi & Xiong+ 19]

(c) multi-agent mutual learning
[Liao & Gao+ 20]

Figure 4.3: Illustration of multi-agent mutual learning. In traditional knowledge distillation
[Hinton & Vinyals+ 15], pre-training a large teacher and distilling to a smaller
student happens in two steps, with the goal of obtaining a smaller model with good
performance. In multi-agent training [Bi & Xiong+ 19], multiple agents learn from
an ensembled teacher. In our multi-agent mutual learning setup [Liao & Gao+ 20],
the learning among the agents happens throughout the training process.

rolling a ball down the hills when training one agent using gradient descent, a similar metaphor
for our multi-agent learning would be to roll several balls down the hills at the same time, but
with strings attached to one another during the process, such that the movement of one ball
also has influence on other balls. Technically speaking, the string metaphor may actually not
be a bad one, because strings imply elasticity and potentially oscillation, both of which could be
happening during the gradient learning process. Specifically, the “distance” measure of the balls
can be done via the Kullback-Leibler divergence [Kullback & Leibler 51] or the cross entropy,
because we are measuring the distances between model output probabilistic distributions. The
oscillation aspect may exist because we only provide gradient signals dragging the balls together,
but do not enforce any boundaries to avoid “overshooting”.

4.5.2 Formulation

Denoting the model outputs as qθk1 and qθk2 and the respective label-smoothed cross entropy

losses as LLS
k1

and LLS
k2

for two agents k1 and k2, the sentence-level inter-agent training objective
can be written as:

LSEN
k1,k2 =

{
H(qθk1 , qθk2), if LLS

k1
≤ LLS

k2

H(qθk2 , qθk1), else
(4.6)

where H(g, h) = − 1

N

N∑
n=1

C∑
c=1

g(c|xn) log h(c|xn)

In other words, we always use the better performing agent as the teacher in the sentence-level
inter-agent training objective.
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In a mixture of K agents, for a certain agent k, in addition to the original label-smoothed
cross entropy, all agent pairs are taken into consideration:

LSEN
k = λSENLLS

k + (1− λSEN)
1

K − 1

K∑
k′=1,k′ 6=k

LSEN
k,k′ (4.7)

Here, λSEN controls the balance between learning from the data or from the other agents,
and we can use static values or a dynamically decreasing λSEN to gradually shift the training
towards inter-agent learning, because at the start of the training, the training signal from other
agents may not be very good, e.g.:

λSEN = 0.5 +
0.5

#epoch
(4.8)

After the initial convergence with the sentence-level objective, we further consider distilling
knowledge among agents at the token-level. That is, for each agent, we consider it in conjunction
with each of the other agents, and make decisions over our corpus, answering the question
which agent does better on which token, in order to arrive at two disjoint subsets of all target
positions. Specifically, for a certain sentence pair, and between two agents k1 and k2, we first
determine the maximum ratio between the outputs over all positions. Then for each position
i, we compare random dice rolls against the ratio between the current model outputs’ ratio
and this maximum to assign different positions i into the two subsets (Algorithm 1 in Liao et
al. [Liao & Gao+ 20]). This process will yield two disjoint subsets Sk1,k2 and Sk2,k1 , with the
ordering of the agent indices denoting “who teaches whom” on this subset.

The token-level inter-agent objective then loops over all agent pairs as well as all “to-be-
learned” target positions:

LTOK
k = λTOKLLS

k + (1− λTOK)
1

K − 1

K∑
k′=1,k′ 6=k

(
− 1

‖Sk′,k‖
∑

i∈Sk′,k

C∑
c=1

qθk′ (c|xi) log qθk(c|xi)

)
(4.9)

The equation above appears complex, but expresses a very simple logic: for each agent k, in
addition to the original label-smoothed cross entropy, we visit all other agents k′, normalize by
the total number of tokens ‖Sk′,k‖ that we need to learn from k′, visit all those to-be-learned
tokens i, use a local cross entropy objective, and balance between learning from data and learn-
ing from other agents with the hyperparameter λTOK. Because this token-level optimization is
done after each agent is already trained pretty well, we use a static weight: λTOK < 0.5, i.e.
focusing on learning the poorly predicted tokens from other agents.

4.6 Experimental Results

4.6.1 Label Smoothing

Token Selection and Prior Distribution

In our investigation of label smoothing in neural machine translation, we generally aim to
arrive at a good training recipe. In this section, we are particularly interested in the optimal
setup for token selection and prior distribution. To this end, we first consider the differences
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between randomly selecting target positions and preferring those target positions where the
model has a large information entropy, i.e. those positions that the model is most uncertain
about. We sweep over different values of ‖B‖N , going from “smoothing none” to “smoothing
all”, with the two strategies.

Figure 4.4: Label smoothing by randomly selecting target positions (random) or selecting tar-
get positions based on information entropy (entropy, “uncertain positions first”), on
IWSLT2014 German-English. We sweep from “smoothing no positions” to “smooth-
ing all positions”, and absolute Bleu [%] improvements compared to the no label
smoothing baseline are shown. The prior distribution for label smoothing comes
from a pre-trained target-side neural language model, with a perplexity of 46.5 on
the target text of the test data.

Shown in Figure 4.4 is the result. We make three observations:

• First, there is an overall increasing trend, showing that smoothing more target positions
is beneficial.

• Second, there does not seem to be a significant difference between the two selection
strategies, showing that the benefit from label smoothing is likely to be target-position-
(and therefore target-word-) independent.

• Third, at ‖B‖N = 0 and ‖B‖
N = 1, i.e. “smoothing none” and “smoothing all”, the two

curves coincide at the same points, which serves as a sanity check because the token
selection strategy should not have an effect on the translation performance when none or
all of the positions are selected.

These observations indicate that trying to be “smart” about the token selection process does
not give substantial improvements. Rather, one should simply stick with the “smooth all target
positions” strategy.

Notice that in Figure 4.4, we used a pre-trained external neural language model, which is
trained on the target-side of the parallel data, as the helper model to retrieve the auxiliary
prior distributions. In our experiments, we observed that using complex helper models under-
performs using simpler prior distributions such as the uniform distribution and the unigram
distribution. The third observation made above can to some degree explain this phenomenon.
That is, if improvements from label smoothing are really target-position-independent, then
the more complex models naturally do not bring much more to the table, because they are
contextualized by nature.

For the reasons above, we further perform similar sweeping experiments on more datasets
using simpler prior distributions, i.e. uniform and unigram distributions. In Figure 4.5, we
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(a) uniform prior (b) unigram prior

Figure 4.5: Label smoothing by sweeping from “smoothing no positions” to “smoothing all
positions” on IWSLT2014 German-English (de-en), Spanish-English (es-en) and
Dutch-English (nl-en). The smoothed positions are randomly selected. The Y-axis
shows the absolute Bleu [%] improvements compared to the no label smoothing
baseline for the three translation directions, respectively. Simple prior distributions
are used here, i.e. uniform distribution for (a) and unigram distribution for (b).

can see that the overall upward trends of the curves remain. In addition, the difference among
the three translation directions is not big, mostly probably because of the fact that the three
datasets are of similar domain and size. Finally, the difference between uniform and unigram
priors is not significant, and we will see later, that the key hyperparameter for the overall
performance is in fact the discounted probability mass λ.

Probability Mass

(a) uniform prior (b) unigram prior

Figure 4.6: Label smoothing with different discounted probability masses λ, on IWSLT2014
German-English (de-en), Spanish-English (es-en) and Dutch-English (nl-en). (a):
smoothing with uniform prior, and the Y-axis shows absolute Bleu [%] scores. (b):
smoothing with unigram prior, and the Y-axis shows absolute Bleu [%] improve-
ments (compared to the baseline without label smoothing).

As mentioned, we found that the key factor for good translation performance is the discounted
probability mass λ. To reveal this point, it makes sense to train systems with different λ settings.
In Figure 4.6, we experiment with both the uniform and the unigram prior distributions, and
vary λ from zero to one.
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As seen, when label smoothing is initially activated, there are significant improvements com-
pared to the baseline without smoothing. Then, a wide plateau happens. This suggests that
the neural network model is very good at picking out the correct training signals (the empirical
translation posterior distributions) even when they are buried in much stronger noise signals
(uniform or unigram). Only when λ goes to extreme values close to one does the learning
process break, which is expected, because we know that when λ is strictly one, the model is
trained to generate uniform distributions. In fact, inspection of the training logs shows that
the model quickly learns the dummy task and gets stuck there (meanwhile learning nothing
about the translation task, of course).

Smoothing During Search

As mentioned in Section 4.3.1, we know that when the simple uniform prior is used in label
smoothing during training, the training objective simply drags the model to generate a weighted
average of the empirical distribution and the uniform distribution. Then, a natural question to
ask is, why do we even bother? That is, one could simply do non-label-smoothing-regularized
training, and manually adjust the model output during the beam search process according
to the linear solution. If the model is trained perfectly towards the simple task of weighted
average, then we should expect to see comparable performance with such a straightforward
post-training-modification trick.

(a) Bleu[%] (b) Ter[%]

Figure 4.7: Label smoothing during training (only) versus label smoothing during search (only),
on IWSLT2014 German-English. The uniform distribution is used as the prior and
we sweep λ from zero to one. Bleu[%] and Ter[%] results are plotted in (a) and
(b), respectively. This set of experiments contains different training runs and the
results are not directly comparable to other results presented so far in this chapter.

We implement the aforementioned idea and present the results in Figure 4.7. As expected,
the solid curve in Figure 4.7a is similar to that in Figure 4.6a. However, examining the dotted
curve, we observe a different trend. That is, with increasing λ, the Bleu score does not improve.
We suspect that in hard-discounting, probability mass from the “argmax” label in each target
position and redistributing them equally to other positions4, we are not really altering the
relative order of the output probability masses on different labels. In fact, assume for a certain
position, the model assigns q1 on the most-probable label and q2 on the second-most-probable
label, we need λ > (q1− q2)/(1 + 1/C) to change their order, in order to locally affect the beam
search process. When C is sufficiently large, this roughly corresponds to a λ larger than the

4In different implementations, it could be redistribution to “all positions” or “all other positions”. However,
one can show that this simply corresponds to a redefinition of λ, which does not affect this discussion.
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absolute difference between q1 and q2, which is probably the reason why we see a relatively flat
dotted curve in Figure 4.7a.

Shifting our attention to Figure 4.7b, we observe a small contradiction between the Bleu
and Ter trends in the dotted curves. This can be explained by the changes in the lengths
of the hypotheses. That is, with increasing λ, we see shorter and shorter hypotheses being
generated. Considering that Bleu has a length penalty term, penalizing shorter hypotheses,
while Ter has a tendency to prefer shorter hypotheses5, the small-sloped downward trend in
the Ter scores is not that surprising.

To quickly summarize, this set of experiments indicates that label smoothing is in fact a
complicated regularization process, and the model trained with label smoothing via a stochastic
gradient process does not simply generate a weighted average between the empirical distribution
and the prior distribution. To preserve the improvements from label smoothing, one cannot
simply train a non-smoothed model and make adjustments to model outputs during beam
search.

Improved Recipe

Table 4.1: Bleu [%] scores of systems trained without label smoothing, with default trans-
former label smoothing, and with our best recipe. It is verified that label smoothing
brings decent improvements over the baseline without label smoothing, and further
tuning the prior distribution as well as the discounted probability mass brings sig-
nificant improvements over the default transformer setup.

label smoothing

Bleu [%]

IWSLT2014 WMT2014

de-en nl-en es-en en-de

none 34.5 37.3 40.5 28.0

uniform prior, λ=0.1 [Vaswani & Shazeer+ 17] 34.9 37.7 41.3 28.4

unigram prior, λ=0.3 (ours) 35.6 39.1 41.5 29.0

After discussions on the token selection, prior distribution, discounted probability mass and
whether or not to shift the label smoothing objective from training to search, we are in a
position to discuss our improved training recipe. Overall, we find that label smoothing is
a simple and effective method to boost the generalization capability of a neural translation
model. Despite improvements from a simple uniform prior with λ = 0.1 setup, we found that
smoothing with a unigram prior with λ = 0.3 consistently gives better performance, with λ
being the stronger factor affecting the end results. The results6 are therefore summarized in
Table 4.1. Notably, the improvements using our recipe that is carefully tuned on the small

5An easy way to think about it is to imagine two hypotheses with completely garbage words, with one being
shorter than the reference and the other being much much longer than the reference. Ter will assign 100%
on the first hypothesis, while exceeding 100% on the second. Note that this is not a strict proof, but more
leaning towards an upper bound of the error rates, because real hypotheses are not always fully made up of
garbage words.

6The IWSLT results are from Gao et al. [Gao & Liao+ 20], where improved baselines over that in Gao et al.
[Gao & Wang+ 20] are used. The WMT results are from Gao et al. [Gao & Wang+ 20]. The results using
the default transformer label smoothing are rerun by us and not numbers taken directly from the original
paper [Vaswani & Shazeer+ 17].
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IWSLT2014 German-English dataset also transfer to other language pairs, as well as to the
larger WMT2014 English-German dataset with the transformer big architecture.

4.6.2 Input Smoothing

Auxiliary Distribution and Token Selection Strategy

Similar to label smoothing, three hyperparameters are of interest when applying input
smoothing to machine translation (MT) models:

• Auxiliary distribution r, which could be as simple as a uniform distribution, or as complex
as the posterior distribution from an external BERT [Devlin & Chang+ 19] model.

• Percentage of positions to smooth γ (and of course how to select those positions), which

corresponds to ‖B‖N in label smoothing.

• Smoothing strength λ, which corresponds to the discounted probability mass in label
smoothing.

Figure 4.8: Input smoothing with different prior distributions, on IWSLT2014 German-English.
γ refers to the percentage of randomly selected positions that undergo input smooth-
ing. Except for “back-translation MT”, where input smoothing is only applied to
the source inputs, in the other four cases, input smoothing is always applied to both
source and target inputs. This figure can be thought of as an extension of Figure 2
in Gao et al. [Gao & Zhu+ 19].

To decide good setups for these hyperparameters, we first extend Figure 2 in Gao et al. [Gao
& Zhu+ 19], by experimenting with alternative prior distributions other than those that come
from external language models that were used in Gao et al. [Gao & Zhu+ 19]. In Figure 4.8,
five types of prior distributions are considered: from a pre-trained back-translation machine
translation model and only applied to the source side, or from BERT [Devlin & Chang+ 19],
transformer language model, uniform distribution, unigram distribution, and applied to both
the source and the target side (using the helper model at the corresponding side). In these
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experiments, whenever an input position is randomly selected, the one-hot input is completely
replaced by the soft prior distribution, and does not undergo a weighted sum. When sweeping
the percentage of positions γ to smooth, we quickly see that initial improvements are achieved
with all prior distributions. However, when too large value is used for γ, degradation starts
to appear. Overall, we verify the results from Gao et al. [Gao & Zhu+ 19] that significant
improvements can be achieved with smoothing, using external transformer language models.
More complex models such as a pre-trained back-translation model or a BERT model which is
even trained on additional data do not seem to bring any additional benefit. That said, simpler
distributions such as the uniform or the unigram distribution with γ = 20% can bring slightly
more improvements compared to the neural language models, while having the additional ben-
efit that we do not need to pre-train and maintain external neural language models.

(a) Prioritizing the most (un)certain input tokens
hurts input smoothing.

(b) Smoothing all input positions with controllable
strength λ hurts input smoothing.

Figure 4.9: Investigation into token selection strategies of input smoothing, on IWSLT2014. In
(a), “BERT entropy” and “traf. LM neg. entropy” means that we first rank the
input positions with the information entropy or negative information entropy of an
external BERT or transformer language model, then we prioritize the top-ranked
positions when performing input smoothing. In (b), “none” and “best” refer to
the baselines without and with the best input smoothing setup, and “symmetric”
refers to the case where all input positions are smoothed, but controlled with a
hyperparameter λ (symmetric to label smoothing, hence the name).

We then move on to answer the questions about the token selection strategy and the smooth-
ing strength λ.

In Figure 4.9a, we rank the input positions with either the information entropy of the BERT
model, or the negative information entropy of the transformer language model, on the source
and the target side respectively. Then, when a certain percentage γ is given, we prioritize
the top positions according to the rank to smooth. Intuitively, this corresponds to prioritizing
positions that the helper model is most (un)certain about. However, as Figure 4.9a shows, both
ideas under-perform even when compared to the no input smoothing baseline. In other words,
either focusing on easy word positions like “the” or focusing on hard word positions like “dog”
versus “cat” (e.g. continuing the context “A common home pet is”) does not give any benefit.
Rather, randomly selecting input positions and introducing “background” noise seems to be a
better option in this case. Note that we fix λ = 1 in the above-mentioned experiments.

When considering a symmetric case to label smoothing at the output side, i.e. smoothing all
positions by tuning the smoothing strength λ, the result is also underwhelming. As shown in
Figure 4.9b, a small initial improvement is obtained when λ is small, but the overall performance
drops very quickly as larger λ values are used. In the extreme cases, e.g. when λ = 0 or λ = 1,
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we observe either no difference to the “no input smoothing” baseline or completely garbage
translation (because essentially no source sentence is given) respectively, both of which are to
be expected. Despite the small improvement at small λ values, the symmetric approach lags
behind when compared to the best “randomly pick some positions, but smooth strongly with
λ = 1” baseline. Therefore, we move on to study the combined effect between input smoothing
and label smoothing, without further enforcing the aesthetically more attractive symmetric
approach.

In Conjunction With Label Smoothing

Table 4.2: Combining input smoothing with label smoothing, varying the auxiliary distribution,
on IWSLT2014 German-English (de-en), Dutch-English (nl-en) and Spanish-English
(es-en). Bleu [%] scores on the test are reported. Except for row 4 and 10, i.e.
when using an external BERT model, only the parallel data is used. The asterisk
in “uniform*” indicates that the label smoothing hyperparameter λ is fixed at 0.1,
in order to be comparable with the original transformer setup [Vaswani & Shazeer+

17]. Otherwise, we tuned the γ and λ hyperparameters for each setup on the de-en
dataset and applied the best setup on nl-en and es-en.

row id
auxiliary distribution IWSLT2014

target output source input target input de-en nl-en es-en

1 - - - 34.5 37.3 40.5

2 back-translation MT 34.5 37.5 40.8

3 transformer LM transformer LM 34.6 37.3 41.0

4 BERT BERT 34.5 37.4 40.5

5 uniform uniform 34.8 37.9 41.0

6 unigram unigram 35.1 37.6 41.1

7 uniform* - - 34.9 37.7 41.3

8 back-translation MT 35.6 38.1 41.5

9 transformer LM transformer LM 36.1 38.2 41.6

10 BERT BERT 35.6 38.3 41.4

11 uniform uniform 36.3 38.9 42.4

12 unigram unigram 36.4 39.1 42.2

13 unigram - - 35.6 38.1 41.5

14 unigram unigram 36.3 39.1 42.4

In order to consider input smoothing in conjunction with label smoothing, we first experiment
with extensive settings on three small IWSLT2014 datasets: German-English (de-en), Dutch-
English (nl-en) and Spanish-English (es-en). In Table 4.2, the results are presented. First, if
we consider rows 1 to 6, results similar to those in Figure 4.8 are observed. That is, despite
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all helper models giving improvements to some degree, simple distributions like the uniform
and the unigram are cheaper and should be preferred. Second, when comparing rows 1 to
6 against rows 7 to 12, i.e. applying the uniform label smoothing at the target output side,
cumulative improvements are seen. This is an exciting result, because if the improvements from
input smoothing and label smoothing do stack, then we can expect even further improvements
when applying a better label smoothing recipe, as explained in the previous section. However,
looking at rows 13 and 14, we can see that although input smoothing helps on top of only label
smoothing, the benefit from applying a stronger label smoothing recipe disappears (row 13
minus row 7 versus row 14 minus row 12). In other words, it is important to apply smoothing
to all three sides, i.e. source and target inputs, as well as target output, but the exact label
smoothing recipe at the target output is not as crucial.

Table 4.3: Significant Bleu [%] score improvements are obtained from simple and effective
smoothing recipes on WMT newstests. We follow the base and big architecture
setups from the original transformer paper [Vaswani & Shazeer+ 17] and train the
baseline models ourselves. Under the smoothing column, we either use the original
setup from Vaswani et al. [Vaswani & Shazeer+ 17], or apply our best recipe to all
three sides, i.e. source input, target input, and target output, using input smoothing
and label smoothing, with either the uniform or the unigram prior distributions. Note
that these results are from different runs compared to those in Table 4.1, but the
numbers on the 2014 test set are directly comparable.

architecture #parameters smoothing
WMT newstest

2014 2015 2016

transformer base 65M [Vaswani & Shazeer+ 17] 27.4 29.4 33.8

all uniform 28.5 30.2 34.7

all unigram 28.5 30.6 34.8

transformer big 213M [Vaswani & Shazeer+ 17] 28.0 30.3 33.6

all uniform 29.2 31.3 34.5

In order to further verify the results on larger datasets, we move on to train systems with
different input smoothing and label smoothing setups on WMT2014 English-German, and eval-
uate on newstest 2014, 2015 and 2016 [Kocmi & Bawden+ 22]. Because of limited computation
resources, we only experiment with the transformer baseline and the “all uniform” and the “all
unigram” smoothing setups. As seen from Table 4.3, for both the base and big architectures,
significant improvements can be achieved when combining input smoothing and label smooth-
ing, but the absolute improvements are smaller compared to those on smaller datasets. Another
observation is that the difference between an “all uniform” and an “all unigram” smoothing
strategy seems to be limited. Considering that obtaining the unigram distribution still requires
counting the training data, while the uniform distribution can be directly applied without any
pre-calculation, the “all uniform” recipe is probably sufficient as an “almost free” trick to boost
the translation performance in real applications.

Given the improvements shown in Table 4.2 and Table 4.3, it makes sense to ask why there
is improvement with input smoothing and label smoothing? We think that the main benefit
comes from the more frequent updates of the word vectors. That is, when input smoothing and
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label smoothing are applied, in each optimization step, those word vectors for words not seen
in the current sentence pair are also updated. Compared to the transformer baseline, these
vectors are either not updated at all (at the input side) or only updated implicitly via the
denominator in the softmax function (at the output side). Although one may argue that the
more frequent updates can be harmful, we argue that because we carefully tune the smoothing
hyperparameters, and the smoothing setup is seldom strong enough to overwhelm the actual
training signal from the empirical distribution, the overall regularization effect is beneficial for
better generalization on unseen test sets.

Beam Search and Back-Translation

Finally, to understand the robustness of the input smoothing and label smoothing methods,
we consider changing the beam size during beam search, and varying the amount of target-side
monolingual data during back-translation.

(a) Beam search on newstest2014. (b) Back-translation on newstest2016.

Figure 4.10: Robustness of combining input smoothing with label smoothing under different
beam search and back-translation settings, on WMT German-English newstest
2014 and 2016. The “transformer baseline” refers to a transformer base model with
the default label smoothing setup. The “all uniform smoothing” setup refers to
our recipe where all source inputs, target inputs and target outputs are smoothed
with uniform priors during training.

In Figure 4.10, we can clearly see the improvements from applying input smoothing and
label smoothing. When either the beam size or the monolingual data varies, the improvements
remain. One interesting observation is from Figure 4.10b, where the performance boost from
back-translation starts to decrease for the transformer baseline when the monolingual data
overwhelms the parallel data (around 4M in this case), but remains for the smoothed model.
While this could very much be within normal statistical fluctuations, it could also be an indica-
tion that the smoothed model training is less susceptible to degradation caused by the training
data change.

4.6.3 Multi-Agent Training

Having discussed the benefits from applying input smoothing and label smoothing in single-
model training, we further shift our attention to the multi-agent case. From the definition, the
multi-agent training method introduced in Section 4.5 is orthogonal to the smoothing methods
discussed so far. Due to limited computation resources, and also to be comparable with the
transformer baseline [Vaswani & Shazeer+ 17], we do not further consider the effect of combining
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multi-agent training with the input smoothing and label smoothing results earlier, but instead
put our focus on studying the effectiveness of our sentence-level and token-level objectives, as
well as the comparison against existing work and the ensembling baselines.

Table 4.4: Effectiveness of multi-agent training. Bleu [%] scores on the respective test sets are
reported. LSEN and LTOK denote sentence-level and token-level losses respectively.
K denotes number of agents. “ens.” is short for ensembling that takes the average
of the log probabilities of the contributing models. Rows 1 and 2 are results from
reference papers for comparison [Vaswani & Shazeer+ 17, Bi & Xiong+ 19]. Except
for row 3, checkpoint averaging is not applied in our results because it does not
seem to work well with multi-agent training. We only apply label smoothing as in
the original transformer paper [Vaswani & Shazeer+ 17], and no input smoothing is
applied.

row id note K LSEN LTOK ens.
IWSLT’14 WMT’16 WMT’14

de-en nl-en ro-en
en-de

base big

1 Vaswani et al. 1 - - no - - - 27.3 28.4

2 Bi et al. 4 - - yes 36.3 - - - 29.7

3 ours 1 no no no 34.7 37.7 34.1 27.1 28.3
4 2 yes no 36.2 38.9 34.8 27.8 28.9
5 yes 36.6 39.5 35.3 28.3 29.4
6 3 yes no 36.4 39.2 35.6 28.1 29.4
7 yes 36.8 39.9 35.9 28.4 29.8
8 4 no no yes 36.8 38.2 35.8 28.6 29.2
9 yes no no 36.7 39.5 35.5 28.2 29.8
10 yes 37.0 39.8 36.1 28.7 29.9
11 yes 38.0 40.3 36.4 28.8 30.1

In Table 4.4, we vary the number of agents K, the training objectives, and the post-training
ensembling setup. Considering K, we expect that with increasing number of agents, the system
should perform more strongly. Results from rows 3, 4, 6 and 9 or from rows 3, 5, 7 and 10
confirm our expectation, but the improvements seem to diminish as more and more agents
are introduced. Considering LSEN and LTOK, we expect that both the sentence-level and the
token-level objectives should give improvements on top of a non-mutual-learning baseline. This
can be verified when comparing rows 3 to 7 and rows 9 and 10, i.e. LSEN brings a large
improvement initially, and LTOK further boosts the performance by a little. Considering the
ensembling trick, we expect that agents trained interactively should yield an overall ensemble.
This statement can be checked when looking at rows 8 and 11 together, and we can see that
agents trained separately under-perform agents trained jointly when ensembling is applied.
Lastly, if we compare our best setup in row 11 against the previous work in row 2 [Bi & Xiong+

19] (recall from Section 4.5 that the main difference is that they distill the knowledge in a one-
to-many manner, while in our case training signals flow in all agent pairs), we can observe that
further improvements can be obtained, which are stronger on smaller datasets and relatively
weaker on larger datasets. From these results, we summarize that, overall, multi-agent training
is a costly but effective method to boost the translation performance.
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4.7 Summary

In this chapter, we focused on the topic of smoothing in neural machine translation. Smooth-
ing here is a general term referring to the regularization of the model. We started with label
smoothing and confidence penalty, and gave analytical solutions to when the model optimums
are obtained. We then moved on to input smoothing, where we perform weighted summation of
word vectors instead of simple word embedding matrix lookups. In both label smoothing and
input smoothing, we considered extensions such as where to smooth, how exactly to smooth,
and with which prior distributions to smooth. Shifting our attention to multi-agent training,
we proposed extensions to further perform token-level inter-agent learning after initial conver-
gence of sentence-level co-learned agents. Experimentally, we found better-performing training
recipes for label smoothing, confirmed the cumulative improvements from label smoothing and
input smoothing, and showed that simple prior distributions such as the uniform or the un-
igram distribution are sufficient to achieve good translation performance. Our multi-agent
training experiments gave significant improvements in automatic evaluation metrics against
strong baselines, pushing forward the state-of-the-art methods to combine multiple models to
achieve stronger prediction.
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The machine translation task has a sequence-to-sequence nature: given a source sequence,
generate a target sequence accordingly. For this reason, the neural-network-based modeling of
machine translation is primarily done with encoder-decoder models [Kalchbrenner & Blunsom
13, Cho & van Merriënboer+ 14b, Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15, Vaswani
& Shazeer+ 17]. Specifically, a dedicated encoder processes the entire source sequence by
summarizing information from different source word positions, and generates some hidden rep-
resentations for it. Then, a decoder goes through the target word positions, starting from an
artificial sequence start symbol, and generates the next target word by considering what has
been translated so far, as well as the relevant source hidden representations. Previous works
differ mainly in how the encoding (e.g. using feedforward, uni- or bi-directional long short-term
memory, convolutional or self-attention modules) and retrieval of source information from the
hidden representations (attention mechanism) are done.

Recently, in light of the rapid development of large language models [Devlin & Chang+ 19,
Shoeybi & Patwary+ 19, Brown & Mann+ 20, Raffel & Shazeer+ 22, BigScience Workshop 22,
Zhang & Roller+ 22, Schulman & Zoph+ 22], the long-standing encoder-decoder approach for
neural machine translation is now also in question. As mentioned in Section 1.3.1, the encoder-
decoder model of translation performs discriminative modeling, and no reverse translation
model or log-linear combination like in classic statistical machine translation are involved.
However, one can also consider translation as the task of modeling the joint probability between
the source and the target sentence, and perform generative modeling instead. In this way, the
search process remains largely intact, because when the source sentence is given, the search for
the target hypothesis does not depend on the probability of the source sentence. The benefit
of such an approach mainly lies in its simplicity - one does not have to explicitly separate the
encoder and decoder, and a monolithic model trained on concatenations of source and target
sentences, as if it was a language modeling task, is therefore possible. Apart from the angle
of discriminative modeling versus generative modeling, one can also think of this issue from
the perspective of contextualized language modeling. That is, translation is simply language
modeling in the target language with additional context from the source sentence. Because the
entire source sentence is available at test time, sometimes people also refer to such contextual
information as “prefix” [Liu* & Saleh*+ 18b, Dong & Yang+ 19, Raffel & Shazeer+ 22, Scao &
Wang+ 22]. With this additional context, one needs to be careful with the internal self-attention
mechanism as well as the auxiliary loss alongside the main language modeling objective at the
target side, and we will delve into details of these topics in this chapter.
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5.1 Related Work

Defining the translation task as a sequence-to-sequence task, the encoder-decoder architec-
ture is a natural choice of neural network typology and has been the go-to-method since the
early development of neural-network-based translation systems. For example, in the work by
Kalchbrenner and Blunsom [Kalchbrenner & Blunsom 13], they proposed a convolutional sen-
tence model to encode source information and a separate recurrent language model to decode
target information, which is conditioned on the former. Although the terms “encoder” and “de-
coder” were not used in that paper, their model was effectively of an encoder-decoder nature.
Since their work, the neural approach to translation has seen rapid developments. In the early
work of sequence-to-sequence modeling for translation [Sutskever & Vinyals+ 14, Cho & van
Merriënboer+ 14b, Cho & van Merriënboer+ 14a], the terms “encoder” and “decoder” were used
to denote the module that embeds source information into some continuous-valued hidden space
and the module that decodes from it together with the target-side context, respectively. Despite
further extensions to translation models, such as the attention mechanism [Bahdanau & Cho+

15], multi-task learning [Luong & Pham+ 15], application of convolutional networks [Gehring &
Auli+ 17], and the later widely-used self-attention [Vaswani & Shazeer+ 17], the separation of
the encoder and decoder has remained the norm when it comes to translation modeling. Since
the transformer architecture [Vaswani & Shazeer+ 17] became popular, many works that aim to
improve a specific component of the network maintained the overall encoder-decoder structure,
and focused on the part that was interesting for them. Some examples include the improvement
of the positional encoding [Shaw & Uszkoreit+ 18], multi-head attention [Voita & Talbot+ 19]
and attention/alignment [Alkhouli & Bretschner+ 18]. In works that go beyond certain model
components but focus on the modeling itself, e.g., doing round-trip translation [Tu & Liu+

17] and performing non-autoregressive modeling [Gu & Bradbury+ 18], the encoder-decoder
architecture is also often kept. Notice that there have been other works that drifted away from
the encoder-decoder regime and neglecting them in this discussion would not do them justice.
This includes works such as the development of direct neural hidden Markov models for trans-
lation [Wang & Alkhouli+ 17, Wang & Zhu+ 18, Wang & Yang+ 21a], completely dropping the
attention and separating the encoding and decoding steps [Press & Smith 18], and simplifying
the neural architecture by removing the entire encoder stacks [Tang & Sennrich+ 19].

Although language models were traditionally used for statistical machine translation [Och &
Tillmann+ 99, Schwenk & Koehn 08], their application in the neural-network era is rather lim-
ited. They are commonly seen in fusion techniques [Stahlberg & Cross+ 18] and back-translation
[Sennrich & Haddow+ 16a, Graça & Kim+ 19]. That said, their development followed a similar
route as in many other fields that widely adopted neural networks for modeling, i.e. start-
ing from simple feedforward language models [Bengio & Ducharme+ 03], to the application
of recurrent neural networks such as the long short-term memory network [Sundermeyer &
Schlüter+ 12], to exploring the use of convolutional networks [Dauphin & Fan+ 17], and to the
widely-successful self-attentive transformer language models [Irie & Zeyer+ 19]. In the course
of this, the language models became stronger compared to the historical count-based models
[Kneser & Ney 95], and their modeling capacities became more and more impressive. In the
literature, examples that support this claim include works that push the limit of large-scale
modeling [Radford & Wu+ 19b, Brown & Mann+ 20], aim to model context dependencies that
are very long [Dai & Yang+ 19], and the inspiring paradigm shift from the supervised training
to the pre-training-and-finetuning scheme [Devlin & Chang+ 19]. In light of the fast devel-
opment of large-scale language models, and considering the fact that translation is indeed a
language-modeling-style task with additional source-side information, there exists another line
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of work that starts to shake the reign of encoder-decoder architectures for translation.

Dated to the year 2012, Mikolov and Zweig [Mikolov & Zweig 12] already mentioned the
potential extension of contextualized language modeling to the translation task by treating the
source sentence as additional context. In 2018, He et al. [He & Tan+ 18] described a model
where the parameters in the encoder and decoder stacks are shared, and the input to their
model was the concatenation of source and target sentence. In their work, no explicit loss
is used to reconstruct the source sentence at the output side. In the Ph.D. dissertation by
Kazuki Irie [Irie 20], he described a similar approach, but observed a small degradation in the
translation performance when using a causal mask in the attention mechanism. In the work by
Raffel et al. [Raffel & Shazeer+ 20], the authors looked into the details of attention masking,
and discussed the implications of three different kinds of masks, which they call “fully-visible”,
“causal” and “causal with prefix”. The aforementioned work paved the way for Wang et al.
[Wang & Tu+ 21], where they further introduced a two-step learning rate decay function on the
source reconstruction loss, and showed competitive performance against strong encoder-decoder
transformer-based translation baselines. More recently, several works further expanded on the
concept. Specifically, Zhang et al. [Zhang & Ghorbani+ 22] examined the scaling and cross-
lingual behavior of such language models for translation. Hawthorne et al. [Hawthorne &
Jaegle+ 22] explored the capabilities of language models to model long-range dependencies on
tasks in various modalities. Similarly, Hao et al. [Hao & Song+ 22] developed a language model
which serves as a general interface for language, vision and multilingual tasks. The most recent
addition to this line of work as of the time of writing is by Fu et al. [Fu & Lam+ 23], where
the authors compared decoder-only and encoder-decoder models on sequence-to-sequence tasks,
and argued that as the generation becomes longer, less and less attention is concentrated on
the source side. Finally, in the context of large language models [Radford & Wu+ 19b, Brown
& Mann+ 20, Ouyang & Wu+ 22, Schulman & Zoph+ 22], the emergent abilities [Wei & Tay+

22], zero-shot and few-shot translation capabilities [Moslem & Haque+ 23], and even evaluation
capabilities [Kocmi & Federmann 23] have been discussed1.

5.2 Notations

To clarify the notations, in this chapter:

• fJ1 denotes a source sentence, with 1, 2, ..., j, ..., J denoting the positions for each word.

• eI1 denotes a target sentence, with 1, 2, ..., i, ..., I denoting the positions for each word.

• f̃j is the word vector of the word fj .

• ẽi is the word vector of the word ei.

• In our approach of concatenating the source and the target sentences, we use k as a
running index in the concatenated sequence, i.e. k ∈ Z, 1 ≤ k ≤ J + I.

1Depending on the languages and resources that are used to train such large language models, the multilingual
capabilities of such models may be limited, in the sense that performance on translation directions involving
English is better than without, because English text usually makes up the majority of the training corpus.
Later in Section 5.4.6, we also make an argument that the emergent translation capabilities of large language
models may be rooted from the inclusion of “pseudo parallel” sentences, despite some works in the literature
claiming that the translation evaluation is done completely in a “zero-shot” manner.

65



5 Language Modeling For Translation

• (l) in the superscript of a quantity denotes the layer in the encoder or decoder stack. For

instance, h
(l)
j refers to the hidden representation output of source word fj in encoder layer

l. (l = 0) in the superscript therefore denotes the input to the encoder or decoder stack,
and (l = L) in the superscript denotes the outputs of the encoder or decoder stack.

• hj denotes the hidden representation for word fj .

• si denotes the hidden representation for word ei. Notice that in the traditional encoder-
decoder attention approach, si is the “query” used to retrieve information from the source
hidden representations h1, h2, ..., hj , ..., hJ .

• A[·, ·] denotes the attention scores or energies between two positions. In the transformer
approach, the scaled dot product attention is used for the actual calculation.

• α(j′|j) denotes the source-side self-attention weights in the transformer approach, i.e. a
distribution over source positions given a certain position j.

• α(i′|i− 1) denotes the target-side self-attention weights in the transformer approach, i.e.
a distribution over target positions (more specifically, those positions that are prior to
and including the last position i− 1, because the attention over the future positions is by
definition masked to be zero to avoid cheating) given the last position i− 1.

• α(j|i − 1) denotes the cross-attention weights in the transformer approach, i.e. a distri-
bution over source positions given the last target position i− 1.

• ci−1 denotes the context vector summarizing all related source and target information

in order to output the next word ei. If it is in the first decoder layer, c
(l=0)
i−1 refers to

the target word embedding ẽi−1. Similarly, we use c
(l=L)
i−1 to denote it being in the last

decoder layer.

For simplicity, we drop further notations on heads, layer-normalization, skip-connections, etc.,
the details of which can be found in the original transformer paper [Vaswani & Shazeer+ 17].

With fast development of large language models as well as new models being reported and
released frequently, there may exist some confusion regarding the naming of certain components.
In this section, we wish to clarify some of the terminology often seen in the literature and
position this work more accurately among existing and emerging works:

• Autoregressive versus non-autoregressive. For autoregressive models (e.g. in Irie et al.
[Irie & Zeyer+ 19]), the output words are shifted, and the model needs to predict the
next word given the previous words. For non-autoregressive models (e.g. in Devlin et
al. [Devlin & Chang+ 19]), the output words are not shifted (i.e. are synchronous with
the input words), and one needs to predict the masked word given surrounding words.
The reason why non-autoregressive models are sometimes referred to as masked language
models is that, if input words are not masked, the word classification becomes a trivial
copying task. For the same reason, such tasks are also sometimes called “cloze” tasks in
the literature.

• Causal versus non-causal. Both terms often refer to masks used in the attention mecha-
nism. A causal mask means that for a certain position, it is allowed to “look at” (calculate
attention energy against) all previous positions and itself but strictly not future positions.
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It is often used in conjunction with autoregressive models to avoid the model cheating the
next word prediction task by attending to future words. In contrast, a non-causal mask
is one where all positions are allowed to “look at” all positions, and this is often used in
either non-autoregressive models or for prefix positions [Wang & Roberts+ 22].

• Encoder-decoder versus encoder-only versus decoder-only. Encoder-decoder models refer
to those models where a separate encoder is used to encode information from the source
sequence into some hidden representation and a separate decoder is used to decode infor-
mation from previous target context as well as from the encoder hidden representation
(e.g. in Vaswani et al. [Vaswani & Shazeer+ 17]). On the other hand, encoder-only models
are those models which drop the decoder and only rely on an encoder to aggregate infor-
mation from context and make predictions with final word projection and softmax layers.
In the literature, sometimes people refer to these encoder-only models as decoder-only
models, to highlight that the final classification is also done with the model. However,
this is not accurate, because traditionally, a decoder is different from the encoder, e.g.
in transformer networks, the decoder has self-attention layers followed by cross-attention
layers, but the encoder only contains self-attention layers, and in actual implementations,
what is kept is the encoder. For this reason, in this work, we refer to such monolithic
models as encoder-only models.

• Zero-shot versus few-shot versus finetuning. For zero-shot and few-shot, no further train-
ing is done. Zero-shot means no additional example is supplied to the model during
evaluation. Few-shot means only presenting a handful of examples before querying the
model on the downstream task. Commonly, the underlying bulk of model parameters
are not updated, and the examples are only presented to the model as additional con-
text. Finetuning refers to the case where the model parameters are further trained on
task-specific data before the downstream evaluation.

• Prefix versus prompting. Prefix refers to the additional information presented to the
model when querying its outputs. Although the generation of the response, or the contin-
uation of the sequence, is typically autoregressive, the model may be allowed to process
the entire prefix in a non-autoregressive manner, which correspondingly requires a non-
causal attention mask on the prefix positions [Wang & Roberts+ 22, Diao & Zhou+ 23].
Prompting can be thought of as an extension of the prefix concept. When performing
zero-shot, few-shot or supervised (finetuning the pre-trained language model on super-
vised data) tasks, it is possible to frame or phrase the task description as a prompt. It was
shown that different choices of prompt have an impact on the final performance [Radford
& Narasimhan 18, Radford & Wu+ 19a, Sanh & Webson+ 22].

Having clarified some terminology commonly seen in the literature, it is possible to more
accurately position our work here. With the motivation to develop a more monolithic archi-
tecture for machine translation, we aim to develop an encoder-only model, which is trained
on the concatenations of source and target sentences, with non-causal masking on the source
positions and causal masking on the target positions, and perform translation tasks without
further finetuning after the generic language-modeling-style pre-training. For this reason, we
will refer to such models as translation language models (TLMs) from here on.
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5.3 Methodology

5.3.1 Dependency Differences

Because we build the translation language models with the transformer [Vaswani & Shazeer+

17] encoder-decoder model as a baseline, it makes sense to compare the dependency differences
between the two from a theoretical point of view. Below, for simplicity, we drop the notations
for feedforward layers and residual connections in transformers [Vaswani & Shazeer+ 17] and
focus on attention-related computations.

The internal dependencies in the transformer baseline model can be expressed as follows:

source self-attention:

α(l+1)(j′|j) = softmax
(
A[h

(l)
j , h

(l)
j′ ]
)

h
(l+1)
j =

J∑
j′=1

α(l+1)(j′|j) · h(l)j′

target self-attention:

α(l+1)(i′|i− 1) = softmax
(
A[c

(l)
i−1, c

(l)
i′ ]
)

s
(l+1)
i−1 =

i−1∑
i′=1

α(l+1)(i′|i− 1) · c(l)i′ (5.1)

cross-attention:

α(l+1)(j|i− 1) = softmax
(
A[s

(l+1)
i−1 , h

(l=L)
j ]

)
c
(l+1)
i−1 =

J∑
j=1

α(l+1)(j|i− 1) · h(l=L)j

The internal dependencies in our encoder-only translation language model can be expressed
as:

source self-attention:

α(l+1)(j′|j) = softmax
(
A[h

(l)
j , h

(l)
j′ ]
)

h
(l+1)
j =

J∑
j′=1

α(l+1)(j′|j) · c(l)j′

target self-attention:

α(l+1)(k|i− 1) = softmax
(
A[c

(l)
J+i−1, c

(l)
k ]
)

s
(l+1)
i−1 =

J+i−1∑
k=1

α(l+1)(k|i− 1) · c(l)k (5.2)

context vector concatenation:

c
(l+1)
k =

{
h
(l+1)
k , if 1 ≤ k ≤ J
s
(l+1)
k−J , if J + 1 ≤ k ≤ J + I

Comparing the two, it is clear that the source-side self-attention is preserved. What is differ-
ent is in the target-side attention calculations. In the transformer case, a two-step calculation
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happens, where the target context is first summarized via target self-attention, and then used
to query the source side context via cross-attention. In our approach, the previous two-step
calculation is flattened into one step, i.e. a flat attention calculation over all source and target
positions (k running from 1 to J + I, with future target positions k ≥ i being masked out)
and the dedicated cross-attention is therefore dropped. Correspondingly, the construction of
the context vector is simplified, into a simple concatenation of the source hidden states h and
target hidden states s.

5.3.2 On the Attention Masking

As shown in Equation 5.1, the attention mechanism in the transformer is applied in three
unique calculations: the source self-attention, the target self-attention, and the cross-attention.
These correspond to three attention matrices, with the dimensions J × J , I × I, and J × I. In
Fig. 5.1, the three matrices are C, B, and D, respectively.

(a) source-side triangular (causal) mask (b) source-side full (non-causal) mask

Figure 5.1: Attention masks in translation language models. We query along the horizontal
direction against keys in the vertical direction. Grey areas indicate valid attention
and white areas indicate invalid attention.

The meaning of each attention matrix can be explained as follows:

• A means attention from source positions to target positions. We whiten this area out
because we do not want the model to cheat. That said, when decoding a certain target
position i, conceptually, there is no problem for the source positions to attend to previous
target positions up to i− 1. In other words, a target-position-dependent masking mech-
anism in (J + I)× (J + I)× I might be possible, which may serve as an implicit fertility
model.

• B means attention from target positions to target positions. We allow the model to look
at current and past positions, but not future positions, to avoid cheating.

• C means attention from source positions to source positions. This is where the two sub-
figures vary. Either the model is restricted to look at future positions in the spirit of
left-to-right language modeling (causal), or we say the source is just a prefix and the
model should be allowed to attend to whichever source positions it wants (non-causal).
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As discussed in Section 5.2, the distinction between causal and non-causal masking is
an important point of how previous works differ from one another [Irie 20, He & Tan+

18, Raffel & Shazeer+ 20, Wang & Tu+ 21, Zhang & Ghorbani+ 22].

• D means attention from target positions to source positions. This should of course be
valid because we want to allow the model to look at any source words when deciding the
next target word.

5.3.3 On the Source Reconstruction Loss

When training the translation language models, the training loss can be divided into two
parts, namely a target-side machine translation loss (LMT) and a source-side reconstruction
loss (LRE):

LTLM = λLRE + LMT (5.3)

= − 1

N

N∑
n=1

(
λ

1

Jn

Jn∑
j=1

logPθ

(
[fn]j | [fn]j−10

)
+

1

In

In∑
i=1

logPθ

(
[en]i | [en]i−10 , [fn]Jn1

))
In Equation 5.3, the combined TLM loss has a hyperparmeter λ, which controls the strength of
the source reconstruction loss. As seen, the translation loss is simply the cross-entropy on the
target words given the source words and the previous target words, and the reconstruction loss
is a language modeling objective at the source side (for example, in Wang et al. [Wang & Tu+

21], they formulate the source reconstruction loss in such an autoregressive language modeling
manner). This is, of course, just an example - in reality, one does not have to decompose the
source sentence in an autoregressive manner, or restrict oneself to only attending to the past,
as mentioned in Section 5.3.2. Notice that the source sentence probability does not have an
effect during the search process:

argmax
eI1,I

Pθ(f
J
1 , e

I
1) = argmax

eI1,I

{
Pθ(f

J
1 ) · Pθ(eI1|fJ1 )

}
(5.4)

= argmax
eI1,I

Pθ(e
I
1|fJ1 )

For this reason, the source-side reconstruction loss used during the training stage only serves
as a regularization loss or a second objective in a multi-task training setup. In other words,
one may make design choices such as to shift (Figure 5.2a) or not to shift (Figure 5.2b) the
source output for it to be a language modeling or autoencoding objective. When doing so, the
attention masks need to be set accordingly, i.e. a triangular mask for language modeling and a
full mask for autoencoding, as mentioned in Section 5.3.2. In addition, it is possible to further
add BERT-style noise [Devlin & Chang+ 19] to the source inputs. Specifically, we randomly
pick 15% source positions, and replace the token at these positions with a mask token, a random
token, or the original token with 80%, 10%, and 10% chances2. In the original BERT approach,
there is no loss associated with the unmasked positions. Here, we nonetheless include them
into LRE. Our reasoning is simple: if these unmasked positions are included in the context,
having them in the loss corresponds to a simple copying task and should at least not hurt the
model, and if these unmasked positions are not included in the context, the loss becomes the
usual cross-entropy training objective.

2Although there exists work that argues for other hyperparameter choices [Wettig & Gao+ 23] or applies softer
noises [Gao & Zhu+ 19, Gao & Liao+ 20], we do not further explore other setups for adding artificial noise
here.
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(a) source-side shift in TLM (b) no source-side shift in TLM

Figure 5.2: Source-side reconstruction in translation language models (TLMs). Artificial start
and end of sentence tokens, as well as BERT-style mask tokens [Devlin & Chang+

19] are included in the figure. When source output is shifted by one position and
the source-side attention mask is triangular, it corresponds to a language modeling
objective. When source output is not shifted and the source-side attention mask is
full, it corresponds to an autoencoding objective.

Finally, one more thing to consider is the learning rate schedule for the source-side recon-
struction loss, i.e. λ in Equation 5.3. In the work by Wang et al. [Wang & Tu+ 21], they
used a two-step linear decaying schedule to anneal the source-side loss, where the initial decay
is fast, from 1.0 down to 0.1 at gradient update step τ , and the later decay is slower. In this
work, denoting the gradient update step as t and with t0 as the time step when λ decays down
to zero, we consider four variants of λt to anneal the source reconstruction loss:

• λt = 0

• λt = 1

• λt =

{
−0.9

τ t+ 1, if t ≤ τ
− 0.1
t0−τ t+ 0.1

t0−τ t0, if t > τ

• λt = exp(− ln 0.1 tτ )

Wang et al. [Wang & Tu+ 21] used the third variant, and our τ corresponds to β in their paper.

5.3.4 Comparison to Traditional Sequence-to-Sequence Models

To avoid confusion with the traditional sequence-to-sequence models, in Figure 5.3, we illus-
trate and highlight the differences. Figure 5.3a is adapted from Figure 1 in Sutskever et al.
[Sutskever & Vinyals+ 14] and redrawn by us - it depicts the traditional sequence-to-sequence
model. Notice how separate encoder and decoder are used (light grey and dark grey), and
that recurrent neural network (RNN) modules are used to process the source and target inputs
separately. In Figure 5.3b, our translation language model is depicted. Notice how a shared
self-attentive module (dark grey) is used to process the entire source-target concatenation and
that each target position has the possibility to attend to all previous positions via the attention
mechanism. Comparing the two, we highlight that not only is our model more compact (no
need to separate the encoder and the decoder), but also contains more modeling capacity, as
the information flow from source to target is not bottlenecked by passing hidden states from
one recurrent network to another.
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(a) traditional sequence-to-sequence model (adapted and redrawn from Figure 1 in
Sutskever et al. [Sutskever & Vinyals+ 14])

A W X Y ZB

X Y <eos>Z

C <eos>

W
attention

(b) our translation language model; notice that there is no separation between
encoder and decoder, and self-attentive modules are used

Figure 5.3: Comparison of our TLM to traditional sequence-to-sequence model. (a) a separate
recurrent encoder (light grey) and a separate recurrent decoder (dark grey) are
used to process the source and target inputs respectively [Sutskever & Vinyals+ 14].
(b) a shared self-attentive model (dark grey) is used to process the concatenated
source and target sequence, and all previous positions contribute to the prediction
of the current output (some arrows denoting attention dependency are shortened
for aesthetic reasons).

5.4 Experimental Results

5.4.1 Finding the Best Setup

As discussed in Section 5.3, we have to tune four hyperparameters to find a good setup for
a monolithic translation language model: 1. source language modeling versus source autoen-
coding (Figure 5.2); 2. triangular mask versus full mask (Figure 5.1); 3. no artificial source
noise versus BERT-style source noise (Section 5.3.3); 4. learning rate schedule of λt (Section
5.3.3). We perform a grid search over all combinations of the four hyperparameters (see Ta-
ble 5.1). The two datasets used here are IWSLT2014 German-English (de-en) and WMT2016
English-Romanian (en-ro), both of which are relatively small. The purpose of this grid search
experiment is to quickly iterate over different setups, find a reasonable one, and draw pre-
liminary conclusions about training translation language models (TLMs). Because Table 5.1
is rather big, in the following, we make interpretations by visiting the four hyperparameters
one-by-one. For each hyperparameter we consider, we manually look up in the table for the
best-performing combinations of the other three hyperparameters in terms of Bleu score - to
effectively answer the question: “if we do the best we can elsewhere, what effects does this
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Table 5.1: Grid search of four source-reconstruction-related hyperparameters on IWSLT2014
German-English (de-en) and WMT2016 English-Romanian (en-ro) translation tasks.
LM means to shift the source-side outputs and train with an autoregressive language
modeling objective, and AE means not to shift and corresponds to an autoencoding
objective. The triangular and full masks are illustrated in Figure 5.1. The details of
the noise setup and the source reconstruction loss scheduling can be found in Section
5.3.3. Our interpretations of the table are given in Section 5.4.1.

architecture
source reconstruction variant de-en en-ro
task mask noise sched. Bleu[%] Ter[%] Bleu[%] Ter[%]

MT (enc-dec) - - - - 34.9 44.5 26.0 54.8

LM (enc-only) LM tri. none 0 33.5 46.0 25.4 55.5
1 34.4 45.3 25.2 55.7

lin 34.2 45.2 25.5 55.4
exp 34.6 45.2 25.3 55.7

BERT 0 33.6 45.7 25.4 55.6
1 34.4 45.1 25.2 55.8

lin 34.4 45.4 25.6 55.5
exp 34.2 45.8 25.4 55.3

full none 0 34.5 44.9 25.8 55.4
1 34.5 44.8 25.9 55.0

lin 34.5 44.9 25.7 55.3
exp 34.4 44.8 26.1 54.8

BERT 0 34.5 45.1 26.2 54.8
1 34.4 44.9 25.6 55.3

lin 34.7 44.5 25.8 55.3
exp 34.6 44.9 25.9 54.9

AE tri. none 0 32.2 47.2 25.3 55.6
1 32.5 46.2 24.9 55.9

lin 32.0 46.3 25.2 55.8
exp 32.0 46.8 25.3 55.3

BERT 0 30.8 47.9 25.1 56.1
1 33.5 45.9 25.1 56.0

lin 31.5 47.5 25.2 55.7
exp 33.6 45.9 25.5 55.6

full none 0 34.4 45.1 25.8 55.2
1 34.0 45.3 25.9 55.1

lin 33.8 45.7 25.7 55.3
exp 34.0 45.5 25.7 55.3

BERT 0 34.9 45.0 25.8 55.3
1 35.0 45.0 26.0 55.1

lin 34.7 45.0 25.7 55.4
exp 34.8 44.8 25.8 55.4

hyperparameter have?”
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Source Language Modeling Versus Source Autoencoding

Comparing the source language modeling (autoregressive) objective and the source autoen-
coding objective, there does not seem to be a significant difference in terms of Bleu scores.
Specifically, on both IWSLT2014 German-English and WMT2016 English-Romanian datasets,
the fluctuations of Bleu scores are within ±0.2% absolute Bleu scores. The fluctuations in
Ter appear to be bigger, and this might be because we chose “the best set of other hyperpa-
rameters” by selecting the setting with the highest Bleu scores. In fact, if we quickly revisit
Table 5.1, overall, the choice of the source auxiliary task does not seem to play an important
role in the final translation performance.

Table 5.2: Comparison between source language modeling and source autoencoding. The num-
bers are read off Table 5.1 by fixing the auxiliary task and picking the best set of
other parameters in terms of Bleu score. Results suggest a weak correlation between
the choice of the source training criterion and the final Bleu score.

architecture source training crit.
de-en en-ro

Bleu[%] Ter[%] Bleu[%] Ter[%]

transformer MT (enc-dec) - 34.9 44.5 26.0 54.8

transformer LM (enc-only) language modeling 34.7 44.5 26.2 54.8
autoencoding 35.0 45.0 26.0 55.1

Triangular Versus Full Attention Masks

Comparing the triangular attention mask versus the full attention mask (Figure 5.1), the full
attention mask clearly has an advantage. Intuitively, we should not limit ourselves and restrict
the attention from early source words to later source words, because the entire source sentence
is available at test time. If the future context proves not to be helpful, the model has the
ability to fall back to a triangular mask. In other words, the triangular attention mask at the
source side is a special case of using a full attention mask. As seen in Table 5.3, the translation
performance is better when using a full attention mask compared to using a triangular attention
mask. This suggests that the source hidden representations generated by allowing the model
to attend to future source positions are beneficial.

Table 5.3: Comparison between triangular and full attention masks. The numbers are read off
Table 5.1 by fixing the attention mask and picking the best set of other parameters
in terms of Bleu score. Results suggest that a full attention mask is helpful in
improving the translation performance of TLMs.

architecture source mask
de-en en-ro

Bleu[%] Ter[%] Bleu[%] Ter[%]

transformer MT (enc-dec) - 34.9 44.5 26.0 54.8

transformer LM (enc-only) triangular 34.6 45.2 25.6 55.5
full 35.0 45.0 26.2 54.8

To further highlight the importance of the full (non-causal) source-side mask, we scatter the
Bleu scores of systems with triangular or full source mask under different experiment settings.
As seen in Figure 5.4, under most experiment settings, the full source mask variant (non-causal)
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outperforms the triangular source mask variant (causal). The results presented in Table 5.3
(corresponding to experiment setting #4 for triangular mask and #14 for full mask here) are
essentially cheating experiments (in favor of the triangular mask variant) because we manually
select the best setup by maximizing the Bleu score.

Figure 5.4: Scattering of Bleu [%] scores of systems with triangular (causal) or full (non-causal)
source mask under different experiment settings, on IWSLT2014 German-English.
Data points are from Table 5.1. Under the same experiment setting index, all
hyperparameters are the same except for the source mask.

Effect of BERT-Style Noise

Past experience tells us that augmenting the training data by adding artificial noise is helpful
to improve the generalization capabilities of the model [Hill & Cho+ 16, Kim & Geng+ 18, Gao
& Zhu+ 19, Gao & Liao+ 20]. Here, we expect that adding BERT-style noise [Devlin & Chang+

19] should also boost the performance of the models. As shown in Table 5.4, the best with-noise
models are slightly better than the models without noise. Note that these results are cherry-
picked by selecting the best set of other hyperparameters. Revisiting Table 5.1, in general,
adding source-side noise is at least not harmful if only improving a little.

Table 5.4: Effect of source-side BERT-style artificial noise. The numbers are read off Table
5.1 by fixing the noise setting and picking the best set of other parameters in terms
of Bleu score. Results suggest that adding BERT-style noise is slightly helpful in
improving the translation performance.

architecture source noise
de-en en-ro

Bleu[%] Ter[%] Bleu[%] Ter[%]

transformer MT (enc-dec) - 34.9 44.5 26.0 54.8

transformer LM (enc-only) none 34.6 45.2 26.1 54.8
BERT 35.0 45.0 26.2 54.8

Scheduling of Reconstruction Loss

Finally, we visit the hyperparameter choice of the reconstruction loss schedule. Contrary to
Wang et al. [Wang & Tu+ 21], where they find the two-step linearly decaying schedule for
λt to be important, our results suggest that the choice of the reconstruction loss schedule is
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not critical. Shown in Table 5.5, the fluctuations in absolute Bleu are not large. The Ter
fluctuations are larger because we chose the other three hyperparameters based on the Bleu
scores. Interestingly, even when completely zeroing out the reconstruction loss, i.e. λt = 0, the
performance of TLMs can be good, if other hyperparameters are chosen carefully.

Table 5.5: Effect of reconstruction loss schedules. The numbers are read off Table 5.1 by fixing
the corresponding schedule and picking the best set of other parameters in terms
of Bleu score. Results suggest that the loss schedule is not important, and the
reconstruction itself is even not necessary to achieve good translation performance.

architecture schedule
de-en en-ro

Bleu[%] Ter[%] Bleu[%] Ter[%]

transformer MT (enc-dec) - 34.9 44.5 26.0 54.8

transformer LM (enc-only) 0 34.9 45.0 26.2 54.8
1 35.0 45.0 26.0 55.1

lin 34.7 44.5 25.8 55.3
exp 34.8 44.8 26.1 54.8

To quickly summarize the findings so far: the most critical hyperparameter in achieving good
performance with TLMs seems to be the attention mask, i.e. properly modeling the internal
dependencies and obtaining good source hidden representations. Performance-wise, the TLMs
with a good hyperparameter setup are on par and even slightly better than the encoder-decoder
baseline, showing that an encoder-only monolithic architecture is indeed a strong competitor
against the encoder-decoder norm. Specifically, from here on, when we present results for
TLMs, they refer to TLMs trained with a source autoencoding objective, with full attention
mask, regularized with BERT-style noise and learned with a loss schedule of λ = 1. It is
worth mentioning that the experiments presented in this chapter so far are biased experiments
because we are making arguments about the hyperparameter choices based directly on test
scores. However, as will be shown later, a good setup here also transfers to larger datasets and
more extensive experimental settings.

5.4.2 Effect of Number of Parameters

Table 5.6: Effect of number of parameters on encoder-only translation language models. Vary-
ing only the number of encoder layers, the translation language models are trained
under the same optimization setting. Results suggest that the parameter count needs
to be similar to the encoder-decoder baseline to achieve comparable translation per-
formance.

architecture # dec. layers # enc. layers # param.
de-en

Bleu[%] Ter[%]

transformer MT (enc-dec) 6 6 36.9M 34.9 44.5

transformer LM (enc-only) - 5 15.9M 33.5 46.2
10 26.4M 34.9 44.6
15 36.9M 35.0 44.7
20 47.4M 34.8 45.1

The four hyperparameters mentioned so far have different degrees of influence on the final
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performance, and because they deal with data augmentation, modeling dependency, and recon-
struction loss, the choice is parameter-count-independent. That said, we find that the overall
model size, i.e. the parameter count, is important in achieving good performance. To this end,
we vary the number of encoder layers in TLMs and compare them with the baseline encoder-
decoder transformer model (see Table 5.6). Indeed, there are other ways to vary the total
parameter count, e.g. changing the hidden dimension size. However, we have the intuition that
the hidden dimension size has an impact on the expressiveness and separability of word vectors
(think of the extreme case when we use only a scalar to represent a word3), therefore we decided
to vary the number of hidden layers to reduce the chances of drawing wrong conclusions from
phenomena with mixed causes. In Table 5.6, we train four encoder-only TLMs by varying the
number of encoder layers while keeping the rest of the training settings fixed. As can be seen,
when the parameter count is similar to the baseline encoder-decoder transformer model, the
translation performance is comparable. Notice that the “15-layer” row here is a separate run
from the “encoder-only, AE, full, BERT, 1” run in Table 5.1, and the results are comparable
(Bleu: 35.0% versus 35.0% and Ter: 44.7% versus 45.0%). Because the IWSLT2014 German-
English dataset used here is rather small, when the parameter count becomes larger, overfitting
happens, and the performance slightly degrades. On the other hand, when the model is small
and underfitted, e.g. with 10 and 15 encoder layers, the performance also deteriorated.

5.4.3 Beam Search
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Figure 5.5: Behavior of beam search with respect to beam size for encoder-decoder transformer
baseline and our encoder-only translation language model, on IWSLT2014 de-en.
With beam size up to 20, as beam size increases, the Bleu[%] score first increases
and then flattens in both cases, which is a typical curve seen for neural machine
translation systems (e.g. Figure 7 in Gao et al. [Gao & Wang+ 20]). Results
presented in Table 5.1 correspond to beam size 5 here.

The search steps in the experiments above were all done with beam search with a beam
size of five. However, it also makes sense to verify the behavior with respect to changing
beam sizes. To this end, we take the baseline encoder-decoder transformer baseline model and

3For instance, see Table VI in Sundermeyer et al. [Sundermeyer & Ney+ 15b] about how the hidden dimension
size affects the perplexity of a neural language model. In addition, there exists work that explores how to
explicitly encourage inter-class separability among words vectors [Huo & Gao+ 20], although in that work
the hidden dimension size is kept fixed.
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our encoder-only TLM, and sweep over different beam sizes and observe the Bleu[%] score
changes. The results are shown in Figure 5.5. As seen, when the beam size increases, for both
systems, the Bleu[%] initially increases and then flattens after beam size becomes larger than
7. The trend is similar for both systems, again exemplifying the translation capabilities of an
encoder-only model. The similarity between the two curves can be expected, because the search
processes are somewhat similar, hypothesizing one word at a time, updating the internal states
with the hypothesized word, and repeating the process - the previously mentioned differences
in dependencies, masking, etc. can all be conceptually thought of as internal workings in a
black box. Notice that here we only go to beam sizes up to 20, because it is well-known in the
literature that when the beam size becomes much larger, there is an unexpected degradation
in the translation performance [Koehn & Knowles 17]. Although some works have tried to give
an explanation [Shi & Xiao+ 20, Liang & Wang+ 22], it is not the focus of this work and we
do not go further in this direction here.

5.4.4 Using Target-Side Monolingual Data

Table 5.7: Utilization of target-side monolingual data. For both encoder-decoder transformer
model (traf.MT) and the encoder-only translation language model (traf.LM), target
monolingual data is helpful in terms of development perplexity (devPPL). Multi-
task training under-performs back-translation for the encoder-only model. With
back-translation, the encoder-only model is on par with the encoder-decoder model.
We also include results from Weiyue Wang [Wang 23] as a reference baseline.

source architecture data condition devPPL
zh-en

Bleu[%] Ter[%]

[Wang 23] traf.MT (enc-dec) parallel only - 23.0 60.3
ours 6.91 23.2 60.5

parallel + back-translated 6.21 24.6 59.4
traf.LM (enc-only) parallel only 6.90 23.1 60.5

parallel + target mono. 6.70 23.0 61.4
parallel + back-translated 6.18 24.7 59.4

When training machine translation models, in addition to the supervised parallel data, it is
common to make use of target-side monolingual data to improve the performance, thanks to
its abundance [Koehn & Hoang+ 07, Wuebker & Huck+ 12, Freitag & Huck+ 14, Sennrich &
Haddow+ 16a, Gulcehre & Firat+ 17, Domhan & Hieber 17, Stahlberg & Cross+ 18, Edunov
& Ott+ 18, Graça & Kim+ 19]. The main approaches can be roughly categorized into three: 1.
ensembling the translation model with an external language model; 2. training the translation
model with an additional language modeling objective in a multi-task learning fashion; 3.
augmenting the parallel data with synthetically generated back-translation data. The current
understanding is that back-translation works best in practice [Barrault & Bojar+ 19]. In
principle, it is possible to apply ensembling on our translation language models. However,
having to separately train and maintain a separate target language model does not align with
our goal of achieving a compact and monolithic model. Therefore, we look at multi-task training
and back-translation with translation language models.

In Table 5.7, we present comparisons between the encoder-decoder transformer baseline and
our encoder-only model, in terms of utilization of target monolingual data, on WMT2017
Chinese-English. Specifically, the true parallel data contains about 17 million sentence pairs.
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We sampled 5 million English sentences from the News crawl monolingual corpus4, and we
use the same separately pre-trained Chinese-English transformer model to do back-translation
[Sennrich & Haddow+ 16a]. As seen in the table, the inclusion of additional target monolingual
data is beneficial. However, compared to back-translation, directly training the TLM by iterat-
ing over translation and language modeling batches does not deliver good Bleu or Ter scores.
Looking at the development set perplexity (PPL), we observe that the monolingual data indeed
improved the modeling, but not significantly enough to be reflected in the translation metrics.
That said, turning our attention to the back-translation experiment, we clearly see that under
a rich-resource setting, our TLM approach performs on par with the strong encoder-decoder
baseline while maintaining a monolithic and streamlined architecture.

5.4.5 Multilingual Training

Next, we consider the performance of TLMs under multilingual training settings [Johnson &
Schuster+ 17, Aharoni & Johnson+ 19]. With multilingual training, i.e. combining data from
various language pairs, there are two major benefits:

• First, the model is more compact. Because model parameters are shared across more than
one language pair, the need to maintain a quadratic number of systems with increasing
numbers of supported languages is eased.

• Second, the transfer and zero-shot abilities of the model are improved. Because there may
be intrinsic similarities among different languages, the model may benefit from seeing
multiple languages during training.

Although it is possible to further define language-specific sub-networks to enable better learning
of different languages [Lin & Wu+ 21], it is simpler and more common to simply train one joint
model with all parameters being shared.

In the case of TLMs, multilingual training is straightforward. The handling of word em-
beddings is the same as in traditional methods, i.e. the vocabulary is shared across different
languages. When the vocabulary is strictly disjoint (for instance, consider words made up of
Chinese characters and the English alphabet respectively), this simply corresponds to concate-
nating two smaller word embedding matrices into a bigger one. We prepend language tags to
source and target sentences before concatenating them and feeding them to the model. For
example, the sentence:

I like swimming .→ Ich gehe gerne Schwimmen .

is fed to the system as:

<en> <s> I like swimming . </s> <de> <s> Ich gehe gerne Schwimmen . </s>

Of course, one may argue that the artificial start-of-sentence token is redundant in this case,
but we decided to do it this way because of the simplicity of implementation5 and also the
results that will be shown later, i.e. it having minimal impact on final translation performance.
Alternatively, one can also supply a translation direction tag like <en2de> before the source

4https://data.statmt.org/news-crawl/
5There is no need to change the tokenization code and we can simply prepend the corresponding language tags

to the raw source and target sentences.
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5 Language Modeling For Translation

sentence, but because our setup is sufficient for the goal of comparing the multilingual setup
between the baseline encoder-decoder transformer model and the TLM, we decided not to do
this. Notice that when prepending language tags, the decoding of our system starts with the
first actual target word, i.e. “Ich” in the example above.

To verify that TLMs are also on par with the baseline encoder-decoder transformer models un-
der a multilingual setting, we create a custom multilingual dataset from the News-Commentary
v16 dataset6 [Tiedemann 12]. Specifically, we take all bilingual data in six directions involving
German (de), Spanish (es) and French (fr): de-es, es-de, de-fr, fr-de, es-fr, fr-es, and for each
direction we hold out the first 3000 translation sentence pairs as the test data and the last 3000
pairs as the development data. Then, we train both the baseline system and our system for the
same number of optimization steps and pick the best checkpoint by comparing the development
set perplexity. The results are presented in Table 5.8.

Table 5.8: Bleu[%] scores of multilingual transformer encoder-decoder system and our transla-
tion language model. We train both systems with the same number of optimization
steps and select the best checkpoint with respect to development set perplexity (de-
vPPL). The overall scores are recalculated by merging all test data and are not the
average of previous columns.

architecture devPPL de-es es-de de-fr fr-de es-fr fr-es overall

transformer MT (enc-dec) 6.17 25.7 19.1 21.3 16.9 24.6 26.2 22.5

transformer LM (enc-only) 6.06 25.5 18.8 20.7 16.6 24.4 26.0 22.3

As seen, the encoder-only TLM performs similarly when compared to the baseline system.
Although an absolute −0.2 Bleu[%] score difference can be observed, we think it is within
the normal range of statistical fluctuations because the development perplexity shows that the
encoder-only TLM is even slightly better than the baseline. Therefore, we conclude here that
under a multilingual setup, the encoder-only TLM also performs on par with the encoder-
decoder model, while maintaining a simpler and monolithic architecture.

5.4.6 Pseudo Parallel Data in Large Language Models

Recently, large language models [BigScience Workshop 22, Radford & Wu+ 19b, Brown &
Mann+ 20], especially chatbots based on them [Adiwardana & Luong+ 20, Schulman & Zoph+

22], have gained lots of attention and popularity. One impressive attribute of these models
is their ability to perform zero-shot/few-shot/supervised translation. One central question
revolving around their translation capability is: why can they do translation?

We know that to enable a statistical model to generalize on unseen data/tasks, we need both
good learning of the empirical distribution on the training data and good smoothing/regularization.
In the literature, it is not always clear to what extent parallel data is included or employed
to train the large language models7. That said, it is likely that large quantities of “pseudo”
parallel data is included in the training data8. With our translation language model, and data
augmentation/alternation, it is possible to get a peek into the problem.

6The data is retrieved from https://data.statmt.org/news-commentary/v16/.
7A recent work that delves into this aspect is Briakou et al. [Briakou & Cherry+ 23]
8A concrete example of a naturally occurring bilingual sentence is “I’m not the cleverest man in the world, but

like they say in French: Je ne suis pas un imbecile [I’m not a fool].” (first example from Table 1 in Radford
et al. [Radford & Wu+ 19a])
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Table 5.9: Effect of including (pseudo) machine translation data in translation language model
(TLM) training on IWSLT2014 German-English. All models are trained till con-
vergence with the same optimization parameters, and the checkpoints with the best
development set perplexity (devPPL) are selected. The devPPL, Bleu [%] and Ter
[%] scores are reported on the translation test set. These experiments are different
runs from Table 5.1, and therefore the results in row 1 and 2 are slightly different
from before.

row id model concat.
para. mono.

devPPL Bleu[%] Ter[%]
true pseudo de en

1 enc-dec 1-1 100% - - - 4.84 35.0 44.1

2 enc-only 1-1 100% - - - 4.69 34.9 45.1
3 50% - - - 6.34 31.2 48.2
4 50% - 50% - 6.12 31.9 48.6
5 50% - - 50% 5.83 31.6 50.3
6 - 50% - - 3631.38 0.0 100.0
7 - 50% 50% - 3426.84 0.1 100.0
8 - 50% - 50% 3805.95 0.0 100.0
9 2-2 99.9% - - - 5.05 33.3 46.8
10 4-4 98.0% - - - 5.73 31.0 51.4
11 8-8 59.3% - - - 6.28 13.6 100.0
12 16-16 1.5% - - - 19.44 1.7 100.0

In Table 5.9, we perform a set of experiments changing the data condition and batch prepa-
ration. Specifically:

• We concatenate several sentences on the source and target side respectively, to simulate
the task of learning long-range dependencies. The “concat.” column shows how many
sentences are concatenated into a longer sequence for TLM training. For instance, “2-2”
means “ABXY” is fed to the model, where English sentences X and Y are translations of
German sentences A and B, respectively. The maximum sequence length of both source
and target is set at 1024.

• We alter the parallel training data by breaking up the parallelism, and simulate an un-
supervised learning scenario where both source and target sentences are existent, but
not parallel. The percentages under the “para.” (parallel) and “mono.” (monolingual)
columns denote how much of the original data is used in training. The “pseudo” column
indicates that the parallelism of the source and target text is broken, i.e. although bilin-
gual, the source and target sentences are not direct translations of one another anymore.

• We combine parallel and monolingual data to simulate an implicit multi-task learning
scenario, where both types of data are existent in the data mix. The monolingual data
is the source/target side of the original parallel data, i.e. no additional monolingual data
is used in these setups. When the monolingual data is used in the data mix, it is always
used as the target sentence with no source context, resembling a monolingual language
modeling task (i.e. “0-1”, if one will).

The metrics are development perplexity, test Bleu score and test Ter score.
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As seen, when trained on the same parallel data, the encoder-only translation language
model (TLM) performs on par with the encoder-decoder transformer (row 2 versus row 1,
results agree with previous sections). When only half of the parallel data is utilized, there is
a degradation in translation performance (row 3 versus row 2). Including further monolingual
data, whether source or target, in a multi-task learning fashion, does not seem to significantly
improve or hurt the translation performance9 (row 4, 5 versus row 3). When the parallel
data is of much lower quality, i.e. bilingual but not even maintaining the parallelism in our
setup, the translation performance drops dramatically (row 6, 7, 8 versus row 3). We think
the breakdown of the translation capability in our setup comes from the small scale of the
experiment. In the literature, it is reported [Wei & Tay+ 22] that large language models exhibit
emergent abilities, meaning that their performance on downstream tasks suddenly improves
after a certain model/data size threshold is met10. The poor translation qualities of rows 6, 7
and 8 in Table 5.9 could be simply because our data and model are too small. Finally, expanding
the context to longer ranges also seems to hurt the translation performance a lot (row 9, 10,
11, 12 versus row 2). Our explanation for the degradation is twofold: 1. far fewer training
sentence pairs are used because the length of the concatenated sequence exceeds the maximum
sequence length processable by the model and 2. a mismatch in training and test conditions.
For example, for row 9, we train with “2-2” but test with “1-1”. Naively constructing the
test prefix to be “2-1” and trying to search for the second target sentence sometimes leads to
the model repeating the first target sentence. Alternatively, one may sample from the model
output distributions and generate a sentence in the target language either until the artificial
end token or a pre-defined maximum hypothesis length. In this case, we query the model
with “1-0” and observe a degradation to a Bleu score of 17.9% and a Ter score of 67.5%
using the sampling approach. The models are trained to process long context and predict long
translations, but are only presented with short sentences and asked to predict short translations.
In fact, examining the training perplexity shows that the models had no problem learning the
training distributions. However, the generated hypotheses are significantly longer than they are
supposed to be, meaning that the model tries to artificially prolong the hypothesis generation
to the length that it is used to seeing during the training phase.

With these observations, our insights are:

1. Good-quality parallel data is key to good translation performance.

2. Mixing translation and language modeling data does not have a huge impact on the
translation performance.

3. The model is able to learn long-range dependencies, but one has to be careful in designing
the search process to properly query the model.

5.5 Summary

In this chapter, we visited the issues of model compactness for neural machine translation. For
the task of machine translation we proposed a simple, monolithic model architecture resembling
language models, which is trained on concatenations of source and target sentences and does not

9Note that in this setting we do not supply any “task token”, meaning the model is free to decide on whether
to do language modeling or translation. Such errors are potentially avoidable with additional task tokens, or
a reinforcement learning approach [Ouyang & Wu+ 22] where the task information is supplied to the model
via natural language text.

10This property, however, may be an artifact of how the evaluation is done [Schaeffer & Miranda+ 23].
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require a strict separation between the encoder and the decoder. We discussed the differences in
model dependencies between traditional encoder-decoder transformer models and our encoder-
only translation language models. We further delved into the details of attention masks and the
formulation of the source reconstruction loss. The experimental results confirmed our thinking,
that a separate decoder is not necessary for good translation performance. We verified the claim
under various experimental settings, such as traditional bilingual training, changing the model
size, using different beam sizes, making use of additional target-side monolingual data, and
multilingual training. In light of recent rapid developments of large language models, we also
discussed why many of them exhibit zero-shot/few-shot translation capabilities. In conclusion,
our results show that contrary to previous practice, the strict separation of an encoding and
a decoding step is not necessary for good translation performance, and a joint, monolithic
encoder-only model can perform as well as the state-of-the-art encoder-decoder models for
translation.
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6. aseq: a Sequence Toolkit

The fields of neural language modeling and neural machine translation are fast-moving. In
recent years, the number of major conference papers has grown very rapidly [ACL 23]. This
makes it increasingly hard to keep track of recent progress, as well as recreate interesting work
in existing software. Therefore, the author wrote some custom software called “aseq”, in order
to be agile in writing prototypes for new ideas. In this chapter, we showcase a few features of
the toolkit.

6.1 Related Work

During the period of this work, most software for neural language modeling and neural ma-
chine translation was based on generic neural network back-ends such as TensorFlow [Abadi
& Agarwal+ 15], PyTorch [Paszke & Gross+ 19], Mxnet [Chen & Li+ 15], etc., which provides
essential utilities to build and evaluate neural-network-based models, such as tensors, neural
network modules, automatic differentiation, training criteria, optimizers, schedulers, etc. While
earlier pioneers did not have the benefit of such back-ends and had to resort to building their
own tools, newcomers often provide simple interfaces and focus on extensions aiming at more
efficient computation, easy extension, simple sharing etc. In no particular order, for the conve-
nience of the interested reader, we attach a far-from-exhaustive list of some examples of these
toolkits: RNNLM [Mikolov & Kombrink+ 11a], rwthlm [Sundermeyer & Schlüter+ 14], CUED-
RNNLM [Chen & Liu+ 16a], minGPT [Karpathy 23], Tensor2Tensor [Vaswani & Bengio+ 18],
Sockeye [Hieber & Domhan+ 18], Joey NMT [Kreutzer & Bastings+ 19], NMT-Keras [Peris &
Casacuberta 18], fairseq [Ott & Edunov+ 19], HuggingFace [Wolf & Debut+ 20], OpenNMT
[Klein & Kim+ 17], etc. Along the spectrum from a toy example to industrial-level software,
our toolkit lies somewhere between an end-of-semester big course project and an educational
codebase for newcomers into the field.

6.2 Feature Showcase

6.2.1 uniblock

When cleaning up raw textual data for natural language processing applications, one often
faces the task of getting rid of illegal or foreign characters. This is typically approached by
scripting custom rules on a case-by-case basis. In Gao et al. [Gao & Wang+ 19], we propose
that this step can be simplified by learning a Bayesian Gaussian Mixture Model (BGMM)
[scikit learn 23] on the Unicode block [Unicode 23] distribution on some “clean” data (e.g. the
development set). The BGMM can then be used to score dirty training data, and the scores are
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then useful for filtering before actual neural network training. We gave this method a simple
name: “uniblock”, to highlight how the features are constructed.

Table 6.1: Sample sentence pairs from the WMT2018 Chinese-English dataset and their
uniblock scores. Notice how low scores are assigned to sentences with foreign
characters and characters from rare Unicode blocks, and high scores are assigned
to sentences with characters that are mostly in-block. Zero scores are artificially as-
signed to sentences with characters from unseen Unicode blocks. “Bad” characters
are underlined for easy reading.

side score parallel text

zh -48523.3 リリスノト
en 53.8 Open Directory - Unix

zh 67.7 健康、整洁、卫生和清洁技术组织
en -158.6 Salubrité, propreté, hygiène et techniques d’assainissement

zh 0.0 从系统目录→位置→传送我的位置...
en 0.0 From System Menu → Location → Send My Location...

zh 36.0 在25℃下测定了样品的总交换容量和平衡等温线.
en 40.7 ... and equilibria isotherm at 25 ℃ were determined.

zh 68.6 财务政策及发展小组
en 53.8 Financial Policy and Development Unit

Table 6.2: Bleu [%] scores of neural machine translation systems trained with different amounts
of data, filtered with uniblock, on WMT2018 Chinese-English (zh-en) and English-
Chinese (en-zh). Without the need to script character-filtering rules, expected im-
provements from removing dirty data are observed.

data
zh-en en-zh

test17 test18 test17 test18

100% 25.0 24.5 30.1 33.0

90% 25.2 25.6 30.9 33.1

80% 24.3 25.3 30.3 33.2

70% 24.3 24.8 30.2 33.0

In Table 6.1, we showcase a few examples of scored parallel Chinese-English data, as well
as their uniblock scores. As seen, sentences with “bad” characters are given low scores while
sentences with “good” characters are scored higher. In Table 6.2, we show results of translation
experiments done with data filtered with uniblock to different degrees. As seen, the method is
effective in selectively getting rid of bad training pairs and the resulting smaller training data
in turn slightly improves the test Bleu [%] scores.

6.2.2 Word Vector Norm Initialization

In Herold et al. [Herold & Gao+ 18], we noticed that the norms of word vectors learned
by a neural language model follow a pattern that is related to the word counts in the training
data. Specifically, the more frequent a word is, the longer the learned word vector norm is.
Empirically, the norm and the word frequency rank seemed to have a logarithmic relationship.
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This in turn motivated us to ask: if such a pattern is what the neural network learns, why not
kickstart the training by initializing the word vectors to roughly follow this relationship?

Figure 6.1: Comparison of word-count-based word vector norm initialization against random
word vector initialization on WikiText-2 [Merity & Xiong+ 17]. Test perplexities
are reported. Both models eventually converge to similar perplexities with extended
training. The model whose word vector norms are initialized with word count
information has a slight advantage in early epochs of training.

In Figure 6.1, we plot the test perplexities in early epochs of the training of such a model and
a baseline model whose word vectors are initialized randomly. As seen, there is a clear benefit
with such initialization when the training first starts, but both models eventually converge
to a similar quality. This experiment was conducted on a very small dataset. However, if
the training data is so large that e.g. 100 full epochs over the entire training data is simply
infeasible, the method may prove useful in improving the training result.

6.2.3 Incremental Decoding

Table 6.3: Incremental decoding [Fairseq 23, Ott & Edunov+ 19] improves search speed with-
out hindering translation performance. The results are reported on the WMT2014
English-German dataset.

model implementation caching
search time BLEU TER

(s) (%) (%)

LSTM RNN [Luong & Pham+ 15] - - 20.9 -

ours none 4077.21 21.1 64.9

encoder 1848.86 21.1 64.9

encoder + decoder 297.75 21.1 64.9

transformer [Vaswani & Shazeer+ 17] - - 27.3 -

ours none 1166.99 27.1 55.2

encoder 797.48 27.1 55.2

encoder + decoder 710.72 27.1 55.2

Incremental decoding [Fairseq 23] is a trick to boost the decoding speed of neural machine
translation models. The motivation is twofold: 1. The target sequence probability is factorized
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autoregressively; 2. The calculation of the decoder-internal states only depends on left-side
inputs. In other words, when decoding for the next step i, many of the previously calculated
internal states do not have to be recalculated. The trickiness of the method mainly lies in the
correct caching and retrieval of the internal states, because the active partial hypotheses in
the beam may change during beam search. We implement the method and present the results
in Table 6.3. As seen, compared to no caching at all, or simply caching the encoder outputs
(because the source sentence does not change during decoding), incremental decoding gives
significant speedups in search.

6.2.4 Grammar Sugar for Array Jobs

Many of the experiments involving neural networks can be thought of as a hyperparameter
tuning problem. While sophisticated methods like Bayesian optimization [Snoek & Larochelle+

12] do exist, for fair comparisons and explanatory results, most experiments are done via a grid
search in the combinatorial space of the interesting hyperparameters. While in the literature
there exists sophisticated software [Peter & Beck+ 18] that exactly deals with the complexity of
the problem, here we provide an extremely lightweight solution which is essentially a grammar
sugar.

Assume we have a certain job, and we want to loop over two options opt1 and opt2 for its
hyperparameter arg, we can make use of the f-string [Python 23] in Python, and write both
the bash submission logic as well as the grid search logic (notice how the f-string syntax is
preserved in the definition of t) into a file named “generate.py”:

t = r'''#!/usr/bin/env sh

dataset=/path/to/dataset

job=job.{arg}

submit -gpu 1 -t 24:00:00 -n $job -o $job.log "

aseq job \

--dataset $dataset \

--arg {arg}

"

'''

import os

from aseq import tstr

for arg in ['opt1', 'opt2']:

with open(f'job.{arg}.submit.sh', 'w') as fo:

fo.write(eval(tstr(t)))

Running the code above will then result in a folder structure as below:

generate.py

job.opt1.submit.sh

job.opt2.submit.sh

88



6.2 Feature Showcase

And the content of job.opt2.submit.sh is:

#!/usr/bin/env sh

dataset=/path/to/dataset

job=job.opt2

submit -gpu 1 -t 24:00:00 -n $job -o $job.log "

aseq job \

--dataset $dataset \

--arg opt2

"

The t variable is short for “template-string”, and a tstr function needs to be implemented
to wrap the template string with a literal f such that the formatting options can be effective1:

def tstr(s):

return "fr'''" + s + "'''"

The benefits of such a grammar sugar are two-fold: 1. The space, tab, newline, etc. symbols
that one may desire in a bash job submission script are preserved; 2. The syntax of the f-string
is preserved. The toy example may seem underwhelming, but the simplicity and the clarity
of the method quickly becomes visible, when one needs to write submission scripts for a grid
search involving e.g. three hyperparameters, each taking five possible values, ranging from
numbers, strings, array-like structures, and all resulting in weird-formatted argument values.

1The author wrote an initial implementation, which was (thankfully) greatly simplified to a one-liner by David
Thulke.
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7. Scientific Achievements

In this dissertation, three topics related to improvements in training and modeling for neural
language modeling and neural machine translation are discussed. In accordance with Chapter
2, we briefly outline the scientific achievements of this work:

1. Sampling-based training criteria for neural language modeling:

• We revisited three traditional training criteria, namely mean squared error, binary
cross entropy and cross entropy, and highlighted that the training and testing inef-
ficiencies originate from the need to traverse over the large vocabulary.

• We summarized existing sampling-based training criteria, and made the important
observation that the desired class posterior distribution can be recovered via a cor-
rection step for the criteria considered.

• We further proposed a self-normalized importance-sampling training criterion, and
with extensive experiments, we were able to show that it can perform on par with
the prominent noise contrastive estimation method.

2. Combating overfitting issues in neural machine translation:

• We considered extensive experimental settings for label smoothing, such as which
positions to smooth, with what auxiliary distribution to smooth, and how strongly to
smooth, and found better training recipes that can improve the translation quality.

• We further considered input smoothing and found that plugging in simple auxiliary
distributions such as the uniform and the unigram distribution both at the input
side and at the output side can significantly boost the translation performance.

• We proposed a novel multi-agent mutual learning algorithm, which enables inter-
agent supervised training, at both sentence-level and token-level, and showed that
the ensemble of these agents is superior to simple log-linear model combinations.

3. More compact model via a language modeling approach for machine translation:

• We developed a language modeling approach for machine translation where an
encoder-only model is trained on concatenations of source and target sentences,
and extensively studied different training settings.

• We showed that the encoder-only language modeling approach performs on par with
strong encoder-decoder transformer baseline models under various settings.

• We discussed the implications of such a language modeling approach, and argued
that the translation capabilities of recent large language models are likely rooted in
the existence of parallel training data.
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8. Individual Contributions

According to §5.6 of the doctoral guidelines of the RWTH Aachen University, Faculty of
Mathematics, Computer Science and Natural Sciences, September 7, 2018, we list the following
publications of the author, and highlight his individual contributions:

Publications Directly Related to This Dissertation

• [Gao & Thulke+ 21]: Y. Gao and D. Thulke put forward the theory and derived the
model optimums together. A. Gerstenberger and K. Tran conducted the experiments.
Experimental design was a joint effort.

• [Yang & Gao+ 22]: Z. Yang initially came up with the self-normalization idea, and Y.
Gao and Z. Yang worked out the theory together. Y. Gao, Z. Yang and A. Gerstenberger
designed the experiments together and Z. Yang conducted the experiments.

• [Gao & Wang+ 20]: Y. Gao came up with the initial extensions. Y. Gao and C. Herold
came up with the solutions to the confidence penalty, and Z. Yang showed the detailed
derivation. Y. Gao performed most experiments and analyses. W. Wang conducted the
high-resource experiments.

• [Gao & Liao+ 20]: Y. Gao proposed to explore alternative prior distributions and combine
the smoothing methods. Y. Gao and B. Liao jointly designed the expriments. B. Liao
conducted the experiments and Y. Gao provided the analyses.

• [Liao & Gao+ 20]: B. Liao came up with the two-step mutual learning extensions after
Y. Gao introduced the multi-agent work [Bi & Xiong+ 19] to him. Y. Gao and B. Liao
worked jointly on the methodology and experimental designs. B. Liao conducted the
experiments.

• [Gao & Herold+ 22a]: Y. Gao initially heard of the concept of training language models
for translation on source and target concatenations from K. Irie [Irie 20]. Y. Gao proposed
extensions in attention, auxiliary loss, etc. C. Herold and Z. Yang helped to polish the
methodology. Y. Gao did the implementation and carried out most experiments. C.
Herold conducted the Chinese-English experiments.

• [Herold & Gao+ 18]: Y. Gao discovered the word vector norm distribution and proposed
the initialization method. C. Herold and Y. Gao jointly refined the idea and worked on
the regularization method. Implementation and experiments were joint efforts.
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• [Gao & Wang+ 19]: Y. Gao came up with the idea, implemented the tool and did most
experiments. W. Wang helped to refine the concept and conducted the translation ex-
periments.

• [Gao & Herold+ 22b]: Y. Gao proposed the extensions, did implementations and con-
ducted the experiments. C. Herold and Z. Yang helped to refine the extensions and to
solve implementation issues.

Other Publications

• [Rosendahl & Herold+ 19]: The work was a joint effort for the participation in the shared
task in WMT. Y. Gao mainly contributed to the Chinese-English system, together with
W. Wang.

• [Kim & Gao+ 19]: Y. Kim proposed the method and did most experiments. Y. Gao helped
to refine the idea and conducted experiments in Belarusian-English and Slovenian-English.

• [Gao & Herold+ 19]: Y. Gao came up with the initial concept of context-dependent logit
calculation and softmax. C. Herold and W. Wang helped polish the idea. Y. Gao and
C. Herold implemented the kernels. Y. Gao ran the language modeling and machine
translation experiments. C. Herold ran the analysis experiments.

• [Huo & Gao+ 20]: Y. Gao proposed the idea to apply large-margin softmax in language
modeling. J. Huo and W. Wang contributed with the theory and methodology. J. Huo
implemented the methods and conducted experiments.

• [Yang & Gao+ 20]: Y. Gao made the initial proposal to introduce a length-prediction loss
in the encoder. Z. Yang, Y. Gao and W. Wang designed the sub-network and designed the
experiments together. Z. Yang implemented the concept and conducted the experiments.

• [Huo & Herold+ 20]: The work was a joint effort from RWTH Informatik 6 and eBay
in developing document-level translation systems. Y. Gao put forward the idea of using
target-side context and contributed to the methodology and experimental designs.

• [Wang & Yang+ 21b]: W. Wang proposed the direct hidden Markov models with trans-
former. Z. Yang did the implementation and most experiments. Y. Gao contributed to
the methodology, derivation and automatic differentiation discussions.

• [Tran & Thulke+ 22]: V. Tran, D. Thulke, Y. Gao and C. Herold all contributed to
the Top-K-Train/Search extensions, as well as the experimental designs. V. Tran imple-
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A. Overview of the Corpora

A.1 Switchboard 300h Language Modeling Task

The statistics of the Switchboard 300h language modeling task are shown in Table A.1. We
follow Kazuki Irie [Irie 20] to prepare the validation set. The vocabulary size is 30K. Test results
are reported on the Switchboard and CallHome partitioning of Hub5 00. Further detailed model
parameters are documented in Gao et al. [Gao & Thulke+ 21].

Table A.1: Switchboard 300h language modeling task corpora statistics.

# running words OOV (%) avg. length

train 26.7M 1.6 11.2

validation 133K 0 12.8

test
Switchboard 22K 0.7 12.3
CallHome 23K 1.6 9.1
all 45K 1.1 10.4

A.2 LibriSpeech Language Modeling Task

The statistics of the LibriSpeech language modeling task are summarized in Table A.2. We
follow Kazuki Irie [Irie 20] to prepare the dataset. Notably, the “clean” and “other” subsets are
concatenated together to form the language modeling datasets. The vocabulary size is 200K.
Further detailed model parameters are documented in Gao et al. [Gao & Thulke+ 21].

Table A.2: LibriSpeech language modeling task corpora statistics.

# running words OOV (%) avg. length

train 813M 0.18 19.97

validation 105K 0.38 18.92

test 105K 0.42 18.87
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A.3 AppTek English Language Modeling Task

The statistics of the AppTek English language modeling task are summarized in Table A.3.
This dataset mainly contains textual data that is geared towards telephony speech. The vo-
cabulary size is 250K. Note that the total text data contains 7.4B running words, and in Table
A.3, the number 694M refers to the number of running words that was directly used in neural
language model training. Further detailed model parameters are documented in Gao et al.
[Yang & Gao+ 22].

Table A.3: AppTek English language modeling task corpora statistics.

# running words OOV (%) avg. length

train 694M 4.07 8.7

validation 18K 0.33 13.8

test 142K 0.15 18.0

A.4 IWSLT2014 German-English Translation Task

The original task is from the 11th International Workshop on Spoken Language Translation1

(IWSLT2014). The original data2 is pre-processed with the script3 from the FAIRSEQ [Ott
& Edunov+ 19] toolkit. The texts are lower-cased and tokenized with the Moses [Koehn &
Hoang+ 07] tokenizer. Training sentence pairs are additionally filtered according to source-to-
target ratio and sentence lengths. A 22:1 split is done to obtain the training and validation
data. All available development and test sets are concatenated to be used as the test data4, 5.
The subword-level vocabulary is learned with joint-BPE [Sennrich & Haddow+ 16b] with 10k
merge operations. The out-of-vocabulary (OOV) rates and the test scores are reported on
tokenized data.

Table A.4: IWSLT14 German-English translation task corpora statistics.

German English

vocabulary subword vocabulary 10.1K

train
sentence pairs 160.2K
running subwords 3.9M 3.8M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 7.3K
running subwords 175.3K 171.3K
OOV subwords 0 (0.0%) 1 (0.0%)

test
sentence pairs 6.8K
running subwords 155.1K 150.2K
OOV subwords 47 (0.0%) 5 (0.0%)

1https://workshop2014.iwslt.org
2https://wit3.fbk.eu/2014-01
3https://github.com/facebookresearch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
4Felix Schmidt found that there are 72 misaligned sentence pairs in this test set.
5https://github.com/facebookresearch/fairseq/issues/4146
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A.5 IWSLT2014 Dutch-English Translation Task

A.5 IWSLT2014 Dutch-English Translation Task

The data sources and pre-processing are the same as that described in Section A.4.

Table A.5: IWSLT14 Dutch-English translation task corpora statistics.

Dutch English

vocabulary subword vocabulary 10.1K

train
sentence pairs 153.6K
running subwords 3.5M 3.6M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 7.0K
running subwords 162.2K 166.9K
OOV subwords 3 (0.0%) 1 (0.0%)

test
sentence pairs 5.4K
running subwords 116.5K 120.6K
OOV subwords 5 (0.0%) 0 (0.0%)

A.6 IWSLT2014 Spanish-English Translation Task

The data sources and pre-processing are the same as that described in Section A.4.

Table A.6: IWSLT14 Spanish-English translation task corpora statistics.

Spanish English

vocabulary subword vocabulary 10.2K

train
sentence pairs 169K
running subwords 4.0M 4.0M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 7.7K
running subwords 182.6K 183.1K
OOV subwords 0 (0.0%) 0 (0.0%)

test
sentence pairs 6.8k
running subwords 155.1k 150.2k
OOV subwords 23 (0.0%) 0 (0.0%)
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A.7 WMT2016 English-Romanian Translation Task

We follow Wang [Wang 23] for the preparation of this dataset. The original task is from
the First Conference On Machine Translation6, 7. The original data is taken from the Europarl
[Koehn 05] corpus8 and the OPUS [Tiedemann & Nygaard 04] corpus9. The pre-processing
script is adapted from the tutorial10 from the Marian [Junczys-Dowmunt & Grundkiewicz+

18] toolkit. The punctuation is normalized and Romanian diacritics are removed. The Moses
[Koehn & Hoang+ 07] tokenizer is used for tokenization. Training sentence pairs are addi-
tionally filtered according to source-to-target ratio and sentence lengths and true-cased. The
newsdev2016 set is used as validation data and the newstest2016 set is used as test data. The
subword-level vocabulary is learned with joint-BPE [Sennrich & Haddow+ 16b] with 20k merge
operations. The out-of-vocabulary (OOV) rates and the test scores are reported on tokenized
data.

Table A.7: WMT2016 English-Romanian translation task corpora statistics.

English Romanian

vocabulary subword vocabulary 20.3K

train
sentence pairs 612K
running subwords 17.6M 18.8M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 2.0K
running subwords 63.2K 72.5K
OOV subwords 0 (0.0%) 16 (0.0%)

test
sentence pairs 2.0K
running subwords 59.5K 68.0K
OOV subwords 2 (0.0%) 16 (0.0%)

A.8 WMT2014 English-German Translation Task

We follow Wang [Wang 23] for the preparation of this dataset. The original data is pre-
processed with the script11 from the FAIRSEQ [Ott & Edunov+ 19] toolkit. The validation
set is created by performing a 99:1 split on the original pre-processed training data. The
newstest2014 set is used as test data. The subword-level vocabulary is learned with joint-
BPE [Sennrich & Haddow+ 16b] with 40k merge operations. The out-of-vocabulary (OOV)
rates are reported on tokenized data.

6Previously known as Workshop On Statistical Machine Translation.
7https://www.statmt.org/wmt16/
8http://www.statmt.org/europarl/v7/ro-en.tgz
9http://opus.lingfil.uu.se/download.php?f=SETIMES2/en-ro.txt.zip

10https://marian-nmt.github.io/examples/mtm2017/intro/
11https://github.com/facebookresearch/fairseq/blob/main/examples/translation/

prepare-wmt14en2de.sh
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A.9 WMT2018 Chinese-English Translation Task

Table A.8: WMT2014 English-German translation task corpora statistics.

English German

vocabulary subword vocabulary 43.6K

train
sentence pairs 4.0M
running subwords 112M 115M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 40.1k
running subwords 1.14M 1.17M
OOV subwords 8 (0.0%) 7 (0.0%)

test
sentence pairs 3.0K
running subwords 59.5K 68.0K
OOV subwords 0 (0.0%) 768 (0.1%)

A.9 WMT2018 Chinese-English Translation Task

We follow Wang [Wang 23] for the preparation of this dataset. Uniblock [Gao & Wang+

19] is used to filter the training data. The newsdev2017 is used as the validation set. The
newstest2017 is used as the test set. The subword-level vocabulary is learned separately for
Chinese and English with BPE [Sennrich & Haddow+ 16b] and 32k merge operations.

Table A.9: WMT2018 Chinese-English translation task corpora statistics.

Chinese English

vocabulary subword vocabulary 47.0k 32.2k

train
sentence pairs 17.0M
running subwords 372M 408M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 2.0K
running subwords 58.7K 65.1K
OOV subwords 9 (0.0%) 17 (0.0%)

test
sentence pairs 2.0K
running subwords 55.9K 59.7K
OOV subwords 8 (0.0%) 12 (0.0%)
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A.10 News-Commentary v16 Multilingual Translation Task

A custom multilingual dataset is created from the newscommentary v1612 dataset [Tiede-
mann 12]. We take the data involving German, Spanish and French in all six directions. For the
raw data in each direction, we take the first 3000 sentence pairs as test data and the last 3000
sentence pairs as development data. The subword-level vocabulary is learned with joint-BPE
[Sennrich & Haddow+ 16b] with 32k merge operations. In Table A.10, the statistics of the
concatenated corpora, i.e. all six directions, are reported.

Table A.10: News-Commentary v16 multilingual translation task corpora statistics.

source target

vocabulary subword vocabulary 32.5K

train
sentence pairs 3.5M
running subwords 54.9M 54.9M
OOV subwords 0 (0.0%) 0 (0.0%)

validation
sentence pairs 18.0K
running subwords 578.4K 578.4K
OOV subwords 0 (0.0%) 0 (0.0%)

test
sentence pairs 18.0K
running subwords 557.4K 557.4K
OOV subwords 1 (0.0%) 1 (0.0%)

12https://data.statmt.org/news-commentary/v16/
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C. Pal, R. Pascanu, M. Pezeshki, C. Raffel, D. Renshaw, M. Rocklin, A. Romero, M. Roth,
P. Sadowski, J. Salvatier, F. Savard, J. Schlüter, J. Schulman, G. Schwartz, I.V. Serban,
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for Computational Linguistics.

113



BIBLIOGRAPHY

[Chiang & Knight+ 09] D. Chiang, K. Knight, W. Wang: 11,001 New Features for Statistical
Machine Translation. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational Linguistics,
pp. 218–226, Boulder, Colorado, June 2009. Association for Computational Linguistics.

[Chitnis & DeNero 15] R. Chitnis, J. DeNero: Variable-Length Word Encodings for Neural
Translation Models. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 2088–2093, Lisbon, Portugal, Sept. 2015. Association for Compu-
tational Linguistics.

[Cho & van Merriënboer+ 14a] K. Cho, B. van Merriënboer, D. Bahdanau, Y. Bengio: On the
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