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Abstract—Current time-synchronous sequence-to-sequence au-
tomatic speech recognition (ASR) models are trained by using
sequence level cross-entropy that sums over all alignments. Due
to the discriminative formulation, incorporating the right label
context into the training criterion’s gradient causes normalization
problems and is not mathematically well-defined. The classic
hybrid neural network hidden Markov model (NN-HMM) with
its inherent generative formulation enables conditioning on the
right label context. However, due to the HMM state-tying the
identity of the right label context is never modeled explicitly.
In this work, we propose a factored loss with auxiliary left and
right label contexts that sums over all alignments. We show that
the inclusion of the right label context is particularly beneficial
when training data resources are limited. Moreover, we also show
that it is possible to build a factored hybrid HMM system by
relying exclusively on the full-sum criterion. Experiments were
conducted on Switchboard 300h and LibriSpeech 960h.

Index Terms—CTC, HMM, factored hybrid HMM, full-sum,
end-to-end,

I. INTRODUCTION

The training of time-synchronous automatic speech recogni-
tion (ASR) models requires a set of possible alignment paths
between the input feature and output label sequences, follow-
ing a certain label topology [1]–[4]. The common sequence
level cross-entropy training criterion that uses the sum over
all alignments can be replaced by a frame-wise cross-entropy
on the single best alignment path without significant loss of
performance. This approach is the prevalent technique for
training Gaussian mixture hidden Markov model (GM-HMM)
and later the hybrid neural network (NN)-HMMs [5]. In these
frameworks, after the initial linear segmentation, the alignment
path is iteratively refined through multiple realignment steps.
This type of training is designed to address convergence issues
that occur when using the sum over all alignment paths [4].
Recent advances in encoder architecture design leveraging
global dependencies through the self-attention mechanism and
recurrent layers on the feature input side, along with the use
of downsampling and larger label output units such as word-
pieces and byte-pair encoding units [6] have mitigated part
of this convergence issue. The mentioned modeling choices
reduce the number of alignment paths, thereby imposing fewer
constraints on the alignment quality.

Another difference between the classic and the sequence-
to-sequence (seq2seq) frameworks is the use of the output
label context in the frame-wise probability distribution. The

autoregressive factorization in seq2seq models that use label
context does not allow for the inclusion of right (future)
context. Whereas, in principle, there is no such constraint on
right label context modeling in the classic generative approach.
Nevertheless, even the right label context modeled via gen-
eralized triphone states in classic approaches necessitates a
parameter tying with several inconsistencies in the resulting
statistical model [7], [8]. Moreover, it has been shown that
models such as recurrent neural network transducers (RNN-
T) [2] do not require the full label history to achieve full
performance. The label context history in these models can be
restricted to one or two previous output labels with no word
error rate (WER) degradation [9]–[12].

The issues investigated in this work are two-fold: first,
whether the inclusion of the right label context in the model
definition leads to ASR performance gain with full-sum train-
ing, and second, whether it is possible to build an end-to-
end hybrid HMM system. For the first question we expanded
on an initial investigation [13] with three key extensions
and differences: (1) we evaluate an ASR model trained from
scratch and with no intermediate forced alignment step, (2)
we omit the HMM state prior during training, and (3) we use
the Conformer encoder architecture [14]. We show that the
inclusion of the right label context is particularly beneficial
when data resources are limited. Moreover, we build a factored
hybrid HMM [8], [15] using only the full-sum criterion, and
achieve comparable performance to a multi-stage pipeline
system that relies on an external alignment. To the best of our
knowledge, no prior approach in the literature has explicitly
modeled the right label context for full-sum training.

II. TRAINING CRITERIA AND INFERENCE RULES

A. Modeling Approach

The standard Bayes decision rule for automatic speech recog-
nition for an input feature sequence X and an output word
sequence W is defined in Eq. (1).

X → W̃ (X) = argmax
W

{P
θ
(W |X)} (1)

= argmax
W

{
P

θAM
(X|W ) · P

θLM
(W )

}
(2)

In classic generative approaches the acoustic model (AM) and
the language model (LM) are treated as distinct components,
as indicated in Eq. (2). In contrast, modern seq2seq models,
commonly referred to as end-to-end approaches, eliminate this



separation by integrating the acoustic and language modeling
into a single, unified framework, as in Eq. (1).

The training criterion that determines the optimal parame-
ters θ and θAM for the acoustic models in the two approaches
makes use of a frame-level probability distribution that either
generates an input feature at time frame t or predicts a label
conditioned on the input and, optionally, a label history. The
input and output at each time frame are matched via an
alignment or path through the lattice of all possible alignments
between the two feature and label sequences. Given a phoneme
sequence ϕ corresponding to W , the marginalization over all
alignments is done by using the hidden Markov sequence
S and the blank augmented sequence Y both of length T .
Denote hT

1 = Enc(X) as the neural representation of the input
acoustic feature sequence X with downsampling by a factor
of four for all our models. We focus only on time synchronous
modeling approaches where independent of the intermediate
factorization or use of auxiliary factors, the final learned
probability distribution used in Bayes rule for decoding is
only conditioned on the feature input. Namely, a first order
label context model proposed as (diphone) factored hybrid [8],
[16], and three zero order label context models: a connectionist
temporal classification [1], a posterior HMM [17], and a hybrid
NN-HMM trained with left and right auxiliary factors [13].
The label set across all topologies consists in single state
phonemes from the pronunciation lexicon, with the end-of-
word (EOW) distinction. We consider a single pronunciation
for each word. For the CTC model, an additional blank token
is used, while only the HMM model explicitly utilizes a silence
token.
B. Right Label Context in Full-Sum training

To discuss the integration of the right label context, we first
perform the frame-level factorization under model specific
assumptions for the full-sum training criterion. The frame-
level factorization of CTC model can be seen in Eq. (3).∑

Y

P (ϕ, Y |hT
1 ) =

∑
yT
1 :ϕ

T∏
t=1

P (yt|ht) (3)

The frame-wise posterior of CTC does not allow for the
integration of any type of label context due to the indepen-
dence assumption. Discriminative approaches such as RNN-
T that do not drop the dependency on the label context rely
on a factorization that yields merely a left label history, with
arbitrary length, while excluding any right context. Access
to the right context differs in the generative approach. For
models following the HMM assumption, we first carry out the
decomposition into the emission and transition probabilities
as in Eq. (4a). In neural based HMMs, Eq. (4b) is derived by
applying Bayes identity.∑

S

P (hT
1 , S|ϕ) =

∑
sT1 :ϕ

T∏
t=1

P (ht|st, ϕ)P (st|st−1) (4a)

∼
∑
sT1 :ϕ

T∏
t=1

P (st, ϕ|ht)

Pprior(st, ϕ)
P (st|st−1) (4b)

The additional term P (ht) is constant with respect to both the
training criterion and the Bayes decision rule, and is therefore

omitted here.
In contrast to CTC, the emission probability in Eq. (4a)

generates the input conditioned on the tuple {st, ϕ}. The main
emphasis of the analysis is the extent to which the HMM
state s at time frame t has access to the sequence ϕ. During
training, the phoneme sequence ϕ is fully available, since we
have access to the transcript and the pronunciation lexicon. For
decoding, when using a finite state acceptor, the structure of
the graph can allow the distinction between alignment states of
a certain center phoneme in different contexts following the
context composition C in the HCLG composition [18]. We
consider the augmentation of the phoneme aligned to the state
st at time frame t with its right and left phonemes from the
original phoneme sequence ϕ. Let ast be a position aware
labeling function that given the hidden Markov alignment
state s at time frame t provides the label of the aligned
phoneme within ϕ. For simplicity the access to the adjacent
phoneme labels is done via ast−1 and ast+1, for left and right
phonemes, respectively. Explicit modeling of the left, center,
and right phonemes follows the substitution of {st, ϕ} with
{ast−1, ast , ast+1}, yielding Eq. (5).∑

S

P (hT
1 , S|ϕ) =

∑
sT1 :ϕ

T∏
t=1

P (ast−1, ast , ast+1|ht)

Pprior(ast−1, ast , ast+1)
P (st|st−1) (5)

C. Decoding
The best word sequence for all approaches is obtained via
Viterbi decoding and by using a scaled log linear formulation,
using prior, transition, and language model (LM) scales β, η,
and λ, respectively. The decoding of all hidden Markov models
mentioned in Sec. II-A relies on Eq. (6), except for the diphone
model. This model uses P (ast−1, ast |ht) and P (ast−1, ast)
for the label posterior and priors, respectively [8].

argmax
W

[
Pλ

LM(W )max
sT1 :ϕ

T∏
t=1

P (ast |ht)

Pβ
prior(ast )

P η(st, st−1)
]

(6)

A similar formulation is used also for CTC by omitting the
transition probability [4].
D. Right Label Context Contribution to the Gradient
Following the model definition of Eq. (5), the gradient for the
optimization of the log likelihood criterion with respect to the
acoustic model parameters θAM is

∂

∂θAM
LL(θAM ) = (7a)∑

t,s

[
γt(as−1, as, as+1|hT

1 , θAM )
∂

∂θAM
log

P (as−1, as, as+1|ht)

Pprior(as−1, as, as+1)

]

≈
∑
t

∑
a∈{as−1,as,as+1}

γt(a|hT
1 , θAM )

∂

∂θAM
log

Pαa (a|ht)

Pβa
prior(a)

 (7b)

Where γ defined in Eq. (8) guarantees the local normalization
over the set of acoustic model labels at each time step and is
calculated efficiently via forward-backward algorithm.

γt(ast−1, ast , ast+1|hT
1 , θAM ) =

∑
S:ϕ,st=s

P (hT
1 , S|ϕ, θAM )∑

S:ϕ
P (hT

1 , S|ϕ, θAM )
(8)

For efficient implementation of Eq. (7a), we apply two ad-
ditional simplifying assumptions motivated later in Sec. II-F:
(1) elimination of the dependency to the label context for each
factor, and (2) a state prior scale β equal to zero. The resulting



gradient after the application of the mentioned assumptions
can be seen in Eq. (7b).
E. Role of Scales in Training
The standard solution for training high performance HMM
based systems is to use an external alignment, while the novel
seq2seq approaches such as CTC use the full-sum criterion.
The optimization based on full-sum criterion is performed as
a form of expectation-maximization algorithm. The training
can begin with randomly initialized parameters, eliminating
the need for an alignment between the speech input and the
output label sequences. There are several aspects in the choice
of common CTC approaches that play an important role for
the convergence of the model. This includes the choice of
output label unit, the acoustic input downsampling factor,
and the label topology [4], [19]. For the standard CTC label
topology, the blank label assumes both the role of continuation
of the duration of the last emitted label, and the role of
silence. Due to this ambiguity, the use of blank in the CTC
label topology allows the model to have more freedom in the
choice of the output label start and end boundaries. Given a
segment, the label can be emitted at any arbitrary position.
This is not the case for the HMM topology, where we have
a partition that starts with the emission of the label and ends
after the last label loop. This distinction results also in different
convergence behaviors in the two models. When training a
model from scratch using full-sum training, it is desirable
at the beginning that the model is not too confident with
respect to the segmentation. Too much confidence leads to
the concentration of the sequence-level probability mass into
fewer alignment paths. Early in training, these paths tend to be
of low quality due to the random initialization of parameters.
The uncertainty introduced by the blank label plays a crucial
role in ensuring convergence. The scaling of label posterior
and transition probabilities within the HMM topology plays
a comparable role. The scales regulate the smoothness of the
distribution, influencing the model’s confidence in deciding
whether to remain in the current label or transition to a
different one [20]. Previous work has shown also the relation
between these scales and the input frame shift [21]. Here,
we argue that the contribution of the additional right and
left factors in the gradient of Eq. (7b) have also a role on
the convergence, due to the inclusion of the output labels
information on a wider range.
F. Simplifying Assumptions
1) Context-independent factors
The frame-wise label posteriors in the modern ASR ap-
proaches are modeled using neural networks. In locally nor-
malized models, the final softmax layer defines a probability
distribution over the set of acoustic model labels. Histori-
cally, due to data sparsity issues, the acoustic label units
associated with triphones were defined through parameter
tying, clustering similar triphones according to a predefined
criterion [22]. Even under the assumption that all triphones are
well represented in the data, training a model with a softmax
layer of size equal to the phoneme set raised to the power

of three, as the posterior used in Eq. (7a), is impractical.
Recently, a factored hybrid HMM with no state-tying has been
implemented and extensively evaluated [8], [15], [17], [21].
Factorization of the joint probability P (ast−1, ast , ast+1|ht)
enables the original softmax layer parameters to be split
into three distinct softmax layers, each normalized over the
set of phonemes [8]. The triphone factored hybrid model
is generally trained with frame-wise cross-entropy criterion
with a fixed given alignment, known as Viterbi training. In
order to calculate the original joint distribution, each of the
network branches with context-dependent output needs to be
forwarded with the given context embeddings and the output
of all three softmax layers should be combined. The score
computation for this model is generally more expensive in
full-sum than in Viterbi. At a certain time frame the center
phoneme of an alignment state could appear in different
contexts on different alignment paths. Therefore, we propose a
simplifying assumption for training that after the factorization
of the joint probability in Eq. (7a) drops the dependency to the
phoneme contexts for each factor. The resulting gradient is the
weighted sum of each ∂ log probabilities of left, center, and
left phonemes, where the weight for each ∂ log is obtained
by marginalizing the original joint γ over the remaining
phonemes, as shown in Eq. (7b). In our experiments, we
observed that despite this simplifying assumption, given the
input features, the three separate distributions for left, center,
and right phonemes, learn the triphone structure implicitly.
2) Omitting the Prior During Training

The scaled prior of Eq. (7b) can be estimated on-the-fly during
the training with exponential decaying average [20] or as a
fixed prior estimated on the transcriptions [4]. We observed
convergence problems during training when using a prior and
therefore considered the special case of prior scale β = 0.
Note that for the monophone HMM model that uses only the
center phoneme state, setting the prior scale to zero effectively
results in a posterior HMM [4].

III. EXPERIMENTAL RESULTS AND SETTING

A. Setting

The experiments are carried out on 300h Switchboard-1
(SWB) Release 2 (LDC97S62) [23] and 960h LibriSpeech
(LBS) [24]. We evaluate our models on SWB and Call-
Home subsets of Hub5‘00 (LDC2002S09), the three subsets
of Hub5‘01 (LDC2002S13), as well as LBS dev and test
sets. The loss augmented with the right and left context is
an extension of the CUDA based forward-backward within
RETURNN [25]. Decoding of HMM based models use RASR
for the core algorithms, and its recent extension for CTC
decoding [26], [27]. Our experimental workflow is managed
by Sisyphus [28]. The speech signal is extracted using a 25ms
window with a 10ms shift, yielding Gammatone filterbank
features with dimensions of 40 for SWB and 50 for LBS [29].
SpecAugment is applied across all models [30]. All encoder
architectures consist of a 12-layer Conformer encoder with 75
million parameters [31], [32]. The experiments of Table I are
trained for 50 and 25 epochs for SWB and LBS, respectively.



TABLE I: ASR performance models trained for 50 epochs on
SWB300h and 25 epochs on LBS960h, using a 4-gram LM.
We distinguish between the loss outputs used during training
and the output used for decoding. The notation stands for a
conditional probability of left, center, and right labels ℓ, c, and
r given the encoder output h, respectively.

# Model
Outputs WER [%]

Loss Decode Hub5‘00 Hub5‘01 dev-other test-other
1 CTC

(c|h)
(c|h)

12.8 11.8 6.9 7.4
2

HMM
12.8 12.2 6.9 7.3

3 (ℓ|h)(c|h)(r|h) 12.0 11.6 6.6 7.1
4 (ℓ, c|h) (ℓ, c|h) 12.4 11.9 6.6 7.0

TABLE II: Similar experiments as in Table I with double
amount of epochs. Two diphone Exps. 9 and 10 are initialized
with the models from Exps. 2 and 3. The total number of
epochs is the same as all other models in the table.

# Model
Outputs

Init
WER [%]

Loss Decode Hub5‘00Hub5‘01 dev-othertest-other
5 CTC

(c|h)
(c|h)

-

12.3 11.3 6.6 6.9
6

HMM

12.2 11.7 6.3 6.6
7 (ℓ|h)(c|h)(r|h) 11.6 11.0 6.1 6.5
8

(ℓ, c|h) (ℓ, c|h)
11.8 11.0 6.0 6.4

9 #2 11.8 10.9 6.3 6.7
10 #3 11.6 10.8 6.2 6.8

The total number of epochs is doubled for the experiments
in Table II, also in case of experiments that used the seed
models of Table I for initialization. We use one cycle learning
rate schedule (OCLR) up to peak LR of 6e-4 over 90% of the
training epochs, followed by a linear decrease to 1e-6 [31],
[33]. The Exp. 9 and 10 from Table II are initialized with the
seed model and further trained with a constant learning rate
of 5e-5 on 90% of the training epochs followed by a linear
decrease to 1e-6. An Adam optimizer with Nesterov momen-
tum, together with optimizer epsilon of 1e-8 are used [34].
Decoding is performed using time-synchronous beam search
based on dynamic programming principles with a lexical prefix
tree. We use the official 4-gram LM for both tasks. For the
real time factor measurement experiment, we used an AMD
CPU (released 2021), with 2 logical cores. Example setups
with more details are available.1.
B. Results

We start with the evaluation of a first set of models trained
from scratch in Table I. All models are trained for the same
number of epochs, i.e., 50 epochs for SWB 300h and 25
epochs for LBS 960h. It is possible to see that among the
zero order label context models, the inclusion of the right
context in Exp. 3 yields the best results for SWB task. The
performance gap is smaller when using LBS. However, model
of Exp. 3 still outperforms all other zero-order label context
models. We then evaluate the effect of longer training and the
model initialization in Table II. Here, we use the two models
from Exps. 2 and 3 to initialize the diphone factored hybrid
that is trained for additional 50 and 25 epochs for SWB and
LBS, respectively. All models in Table II are trained for the

1https://github.com/rwth-i6/returnn-experiments/tree/master/2025-factored-fullsum-rightcontext

TABLE III: Comparisons of training time and real time
factor (RTF) for two experiments from Table II on dev-other.

# Outputs Train[h] RTF WER [%]
Loss Decode dev-other

7 (ℓ|h)(c|h)(r|h) (c|h) 300 0.099 6.1
8 (ℓ, c|h) (ℓ, c|h) 330 0.118 6.0

TABLE IV: Diphone factored and monophone hybrid mod-
els on LBS 960h decoded with 4-gram LM. The external
alignment (ext. align) is a from-scratch posterior HMM with
BLSTM encoder trained for 25 epochs. The Viterbi training
for the remaining 20 epochs relies on factored outputs without
the simplifying assumption. The other two models use only
full-sum and do not use any external alignment.

Ext. Train WER [%]
Align Loss Decode Epochs dev-othertest-other
yes (ℓ|h)(c|ℓ, h)

(ℓ, c|h) 45 6.1 6.8

no (ℓ, c|h) 50 6.0 6.4
(ℓ|h)(c|h)(r|h) (c|h) 6.1 6.5

same number of epochs, also when they are trained without
initialization. The diphone model can take advantage of the
pretrained model of Exp. 3 on SWB 300. This does not seem
to be the case for LBS task where the best performance is
obtained by the from-scratch diphone model. However, the
model of Exp. 7 with the right context is also performing in
the same range as the diphone of Exp. 8. In Table III, we
take a closer look at the training time and real time factor
of the monophone HMM with left and right auxiliary losses
(Exp. 7) and diphone factored hybrid (Exp. 8). The model
in Exp. 7 shows a 1.6% relative increase of WER, which is
negligible considering the 10% relative speedup in training
time and 16% relative improvement in RTF. Furthermore,
comparison between the Exps. 1-4 of Table I and the Exps.
5-8 of Table II highlights the advantage of the inclusion of
the right label context even when training for fewer epochs.
Moreover, in all experiments we observed that HMM based
models outperformed the CTC under similar conditions.

In our previous works, we proposed a Viterbi trained di-
phone factored hybrid using the alignment from a monophone
posterior HMM, with comparable or superior performance to
a strictly monotonic RNN-T [15], [21]. As a further step, in
Table IV we show that our proposed end-to-end training can
lead to similar ASR accuracy as the standard hybrid HMM
pipeline, bringing our HMM based systems closer to the end-
to-end approaches, in terms of simplicity.

IV. CONCLUSIONS

We showed that the inclusion of right label context in training
of time-synchronous ASR models lead to performance gain
particularly when data resources are limited. We also proposed
an end-to-end training solution for hybrid HMM systems
eliminating the need for the standard complex multi-stage
pipeline and the external alignments while still achieving
comparable performance.
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