
ar
X

iv
:2

50
1.

18
89

5v
2 

 [
cs

.C
L

] 
 4

 F
eb

 2
02

5

Efficient Supernet Training with Orthogonal

Softmax for Scalable ASR Model Compression

Jingjing Xu∗†‡, Eugen Beck∗‡, Zijian Yang†‡, Ralf Schlüter†‡

†Machine Learning and Human Language Technology Group, RWTH Aachen University, Germany
‡AppTek GmbH, Germany

Abstract—ASR systems are deployed across diverse environ-
ments, each with specific hardware constraints. We use supernet
training to jointly train multiple encoders of varying sizes, en-
abling dynamic model size adjustment to fit hardware constraints
without redundant training. Moreover, we introduce a novel
method called OrthoSoftmax, which applies multiple orthogonal
softmax functions to efficiently identify optimal subnets within
the supernet, avoiding resource-intensive search. This approach
also enables more flexible and precise subnet selection by allowing
selection based on various criteria and levels of granularity.
Our results with CTC on Librispeech and TED-LIUM-v2 show
that FLOPs-aware component-wise selection achieves the best
overall performance. With the same number of training updates
from one single job, WERs for all model sizes are comparable
to or slightly better than those of individually trained models.
Furthermore, we analyze patterns in the selected components
and reveal interesting insights.

Index Terms—Speech recognition, Supernet training, CTC,
FLOPs-aware.

I. INTRODUCTION

Balancing accuracy and latency in automatic speech recog-

nition (ASR) is a critical and active area of research. The quest

for higher accuracy has driven the development of larger, more

complex models [1]–[3], resulting in increased latency and

higher energy consumption. This trade-off is especially chal-

lenging in resource-constrained environments like client-edge

devices, where computational power (measured in floating-

point operations per second, or FLOPS) and memory (the

number of parameters) are limited [4].

To reduce the model size with minimal loss of perfor-

mance, model compression techniques such as pruning [5]–

[8], knowledge distillation [9]–[11], quantization [12], [13] are

commonly used in ASR. Quantization is orthogonal to other

methods and can be applied to almost any model. However, the

first two methods typically require a converged base model,

followed by separate fine-tuning for each compressed model of

varying sizes, causing redundant training and re-optimization

efforts [14]. Hence, another line of methods—supernet train-

ing, first proposed in [15]—aims to jointly train a supernet

encompassing multiple subnets with a single training process.

In this way, the supernet can generalize across various subnet

configurations, being adaptable to different model sizes.

Recent works [14], [16]–[20] in ASR have explored the

concept of supernet training and achieved promising results.

The challenge, however, remains in determining the optimal

∗ Denotes equal contribution

subnets efficiently from the supernet. The authors of [16]–

[18] identify subnets by manually selecting the bottom layers

or layers at regular intervals. The authors of [14], [19] use

evolutionary search to find the most performant subnets from

a predefined search space at each training step. Meanwhile,

the authors of [20], [21] conduct search after training. In

both cases, the search process is computationally expensive.

Recently, this issue is addressed in [22] by combining pruning

with supernet training to automatically learn the optimal sub-

nets during training. However, the limitations are: 1) selection

is restricted to entire layers, 2) the subnet size is determined by

the number of layers, without considering other criteria such as

number of parameters, 3) the use of straight through estimator

(STE) [23] introduces gradient inconsistency, causing training

instability and degraded performance [24].

Therefore, in this work, we propose a method called Or-

thoSoftmax, which apply multiple softmax functions to inde-

pendent, learnable score vectors. We also introduce orthogonal

constraint to let each softmax only select one distinct group

of parameters. The softmax results are then aggregated to

generate binary masks that determine the subnets. During

training, this approach begins with a uniformly distributed soft

mask and then progressively converges to a binary hard mask

for each subnet. Compared to other commonly used binary

mask learning approaches, this method avoids the approx-

imation inaccuracies commonly associated with continuous

relaxations of discrete operations, further details are discussed

in Sec III-B. We also extend [22] by enabling finer selection

granularity and introducing additional selection criteria, which

facilitates more precise and flexible subnet selection. We

evaluate our approach by conducting experiments with the

Conformer [25] connectionist temporal classification (CTC)

[26] model on both Librispeech and TED-LIUM-v2 datasets.

The results show that FLOPs-aware component-wise selection

performs best, yielding models that achieve WERs on par

with individually trained ones while significantly reducing

total training time. We also analyze the patterns in component

selection for subnets of varying sizes in Sec III-F.

II. EFFICIENT SUPERNET TRAINING PIPELINE

This section explains how we use supernet training to

generate one supernet and M subnets with fully shared

parameters across varying sizes. Let the acoustic encoder

have learnable parameters θ, decomposed into N param-

eter groups {θj}
N
j=1. The costs for each group are c =

http://arxiv.org/abs/2501.18895v2


{cj}
N
j=1. Each of the M subnets has a different total cost

constraint, denoted as {τ1, τ2, . . . , τM}. For each subnetwork

nm, we learn a binary mask zm ∈ {0, 1}N , where param-

eter group θj is retained in the encoder nm if zjm = 1.

Therefore, we can formulate the joint training problem as:

min
θ,{zm}M

m=1

E(x,y)∈D

[

LASR(x, y; θ) +

M
∑

m=1

λmLASR(x, y; θ ⊙ zm)

]

(1)

subject to

N
∑

j=1

zjm · cj < τm, ∀m ∈ {1, . . . ,M}, (2)

where D is the training data, ⊙ denotes the element-wise

product. To better balance the loss scales between differ-

ent encoders, we apply focal loss [27] as in [28] to com-

pute λm (we set βfocal to 1), where p denotes the model

posterior of target sequence y given input sequence x:

λm = [1− p(y|x, θ ⊙ zm)]βfocal (3)

Our efficient training pipeline consists of two steps: Step 1

aims at learning masks zm for each subnet nm. Step 2 jointly

trains the supernet and subnets determined by zm to further

enhance WER. We allocate 60% of the total training steps to

Step 1 and 40% to Step 2, as recommended by [22].

A. Step 1 - Learning Subnet Binary Mask

To enable smooth adjustment and gradient-based optimiza-

tion of component inclusion, we propose OrthoSoftmax. This

method uses N softmax functions to compute a soft mask

zm ∈ [0, 1]N , where each value reflects the importance of

different parameter groups. We introduce a learnable score

matrix S ∈ R
N×N , initialized to zeros. Applying N softmax

functions to the rows of S produces the weight matrix W ∈

[0, 1]N×N
, where Wi,j = softmaxi(Si,j) = e

Si,j/T

∑N
j=1

e
Si,j/T ,

softmaxi denotes the ith softmax. Temperature T is annealed

from 1 to a minimum of 0.1 by factor of 0.999992 at each

step. Assuming the maximum number of parameter groups for

subnetwork nm that fit the cost constraint τm is km, we design

the training to achieve the following objectives for the W :

1) Orthogonality: Ensure all row pairs in W are orthogonal.

This will force each softmax selects exactly one non-

overlapping parameter group.

2) Importance Ranking: Ensure that the parameter groups

selected from the upper rows are more critical to ASR

performance than those selected from the lower rows.

we compute zm =
∑km

i=1 Wi,:, zm initially starts with a

uniform distribution and will naturally converge to a km-hot

vector during the training process.

Determine km for Each Subnetwork nm. For each training

step, we compute km that satisfies the cost constraint τm:

km = max{k} s.t.

k
∑

i=1





N
∑

j=1

Wij · cj



 < τm (4)

During training, km will adjust according to W . As each row

Wi,: approaches a one-hot vector, km becomes more reliable.

Orthogonality. The orthogonal constraint helps achieve the

design objective 1. Orthogonal constraints have been used in

other work [29], [30] to improve the numerical stability of

matrices. Assume km is computed in the current training step.

We apply the orthogonal constraint to the top km rows of

the matrix W . For all i, j ∈ {1, . . . , km} with i 6= j, we

expect Wi,: ⊥ Wj.:, meaning Wi,: · Wj,: = 0. Suppose the

product of sub-matrix W1:km,: and its transpose W
⊺

1:km,: is

D ∈ Rkm×km . We aim to force D to be close to the identity

matrix I ∈ {0, 1}km×km by minimizing the Frobenius norm

of their difference. Since D is symmetric, we only take its

upper triangle part, Dut = [Dij | i ≤ j] for loss computation:

Lorthog = ‖Dut − I‖F =

√

√

√

√

km
∑

i=1

(Di,i − 1)2 +

km
∑

i=1

km
∑

j=i+1

D2
i,j (5)

Importance Ranking. Since we select rows from top to

bottom, matrix W is forced to place parameter groups that

are more critical for ASR performance in upper rows. To

elaborate, τm < τm′ implies km < km′ , the parameter groups

selected for subnet nm′ encompass those selected for subnet

nm. The km parameter groups for subnet nm should be the

most important among km′ parameter groups for subnet nm′ .

1) Training Loss: The overall training loss of Step 1 can

be formulated as:

LASR(x, y; θ) + λLASR(x, y; θ ⊙ zm) + βLorthog(W1:km,:), (6)

where m is randomly selected from the set {1, . . . ,M} at each

training step. Compared to Eq.1, Eq.6 trains only the supernet

with one subnet to avoid scaling the training cost with the

number of subnets but still maintain overall performance.

B. Step 2 - Supernet/Subnet Joint Train

In Step 2, zm is rounded to an exact binary vector to define

each nm. We then jointly train the supernet with the selected

subnets to further enhance performance. To improve training

efficiency, in each training step, we apply the sandwich rules

[15] by forwarding only three models at once: the smallest

subnet, the largest subnet, and one medium subnet randomly

sampled from the remaining M−2 subnets. To mitigate mutual

interference between the supernet and subnets, we apply layer

dropout [31] on layers where all groups from that layer are

not selected for the smallest subnet. Additionally, we adapt

the dropout magnitude in the feed-forward module (FFN)

following [14], scaling it by cm
cs

, where cs, cm is the number

of hidden channels in the supernet and subnet nm respectively.

C. Selection Criteria and Granularity

We decompose the Conformer encoder into distinct param-

eter groups with varying granularities and assign each group

a cost based on real-world requirements.

Sparsity/FLOPs-aware Selection. We compute the cost of

each parameter group using two metrics: sparsity and the total

number of floating-point operations (FLOPs). Sparsity, which

is the proportion of zero-valued parameters in a model, directly

affects model size and storage memory. FLOPs is indicative of

inference cost, making it crucial for use cases where inference

speed is critical. We use fvcore1 to calculate the FLOPs.

1https://github.com/facebookresearch/fvcore



TABLE I: ASR results comparison of different training meth-

ods, selection criteria, and granularities for training two

models on the TED-LIUM-v2 test set.

Training

method

Select
criteria

Select
granularity

Large Small
WER

[%]
Params.

[M]
FLOPs

[108]
WER

[%]
separately

-
- 7.8

21.6 2.53
8.2

Aux-Loss block 7.7 8.8

Simple-Top-k

layer
7.7 20.7 2.47 8.3

sparsity
7.7 21.3 2.45 8.2

component 7.8 21.0 2.49 8.5

FLOPs
layer 7.7 20.9 2.46 8.2

component 7.9 20.4 2.45 8.6

L0-Norm sparsity
layer 8.0 20.8 2.48 8.2

component 8.1 20.7 2.48 8.5

OrthoSoftmax

-
layer

7.6 22.8 2.62 8.3

sparsity
7.7 21.5 2.53 8.1

component 7.7 21.0 2.49 8.2

FLOPs
layer 7.8 21.9 2.55 8.1

component∗ 7.7 21.5 2.52 8.0
* used as the baseline for Table II and Table III

Layer/Component-wise Selection. For layer-wise selection,

we perform selection directly on entire FFN, convolution

module (Conv), multi-headed self-attention module (MHSA)

as in [22]. Inspired by [5], we extend the decomposition

granularity to components: hidden channel chunks in FFN,

attention heads in MHSA, and entire Conv layers.

III. EXPERIMENTS

A. Experimental Setup

Our experiments are conducted on 200h TED-LIUM-v2

(TED-v2) [32] and 960h Librispeech (LBS) [33] dataset. We

use a phoneme-based CTC model from the previous work [22]

as baseline. The output labels are 79 end-of-word augmented

phonemes [34]. The acoustic encoder consists of a VGG

front end and 12 Conformer [25] blocks. We set the model

size dmodel to 512 for LBS and 384 for TED-v2 corpus,

respectively. The number of attention heads is dmodel

64 and FFN

intermediate dimensions is 4 × dmodel. For component-wise

selection in Sec II-C, we set channel chunk size to dmodel,

so each FFN layer is decomposed into 4 chunks. The total

number of parameters for TED-v2 is 41.7M with 3.97×108

FLOPs, while for LBS it is 74.2M with 6.19×108 FLOPs. To

ensure a fair comparison, we train for 730k steps in the LBS

experiments and for 380k steps in the TED-v2 experiments

across all methods. The same learning rate schedule from [22]

is used. We apply Viterbi decoding with a 4-gram word-level

language model. We use RETURNN [35] to train the acoustic

models and RASR [36] for recognition. All our config files

and code to reproduce the results can be found online2.

B. 1 Supernet + 1 Subnet

Table I compares ASR results using different training

methods, selection criteria, and granularities on a full-size

supernet and a subnet about half its size. “Separately” refers

to training and tuning the models individually for each size

category. For the Aux-Loss, we add intermediate CTC loss

2https://github.com/rwth-i6/returnn-experiments/tree/master/2024-
orthogonal-softmax

TABLE II: WERs[%] for varying loss scales λ and β in train-

ing two models with OrthoSoftmax FLOPs-aware component-

wise selection on the TED-LIUM-v2 dev and test set.

loss scale λ loss scale β

WER [%]
Large Small

dev test dev test

adaptive

0.5 7.7 7.9 7.8 8.0
1 7.7 7.8 7.9 8.2

1.5 7.7 8.0 7.9 8.3

0 → 1

7.5 7.7 7.9 8.0
0.1 7.5 7.8 8.6 8.9
0.5 7.6 7.9 7.8 8.3
1 7.7 7.9 7.8 7.9

TABLE III: ASR results of ablation study on TED-LIUM-v2

test and dev set. Baseline is ∗ in Table I.

Ablation Study
WER [%]

Large Small
dev test dev test

baseline 7.5 7.7 7.9 8.0

- softmax temperature annealing 7.6 7.7 7.7 7.9

- adaptive dropout in FFN 7.6 7.9 7.7 8.1

- layer dropout 7.5 7.7 7.8 8.0

[37] to the output of 6-th Conformer block. We extend

Simple-Top-k [22] by applying selection criteria. We also

compare with L0-Norm [38], which is widely used in pruning

ASR models [5]–[8] to identify the subnet. We integrate

L0-Norm into Step 1 to calculate the mask z. We use the

implementation from [39] and keep all other training aspects

unchanged for a fair comparison. The results show that the

WERs of Simple-Top-k and L0-Norm degrade for both large

and small models as select granularity becomes finer. This

contrasts with the OrthoSoftmax results, where finer granu-

larity improves subnet selection. Such behavior stems from

inherent limitations in both methods. Simple-Top-k uses STE

and suffers from gradient inconsistency. L0-Norm uses a hard

concrete distribution to relax the binary mask z with a random

variable u ∼ U(0, 1). While this makes z differentiable,

it also introduces training instability due to the fluctuating

influence of u. Finer granularity increases binary elements in

z to be relaxed, exacerbating gradient approximation errors

and hindering model convergence. In contrast, OrthoSoftmax

updates z smoothly across each training step.

C. Ablation Study

Table II compares WERs across different loss scales. The

term “adaptive” refers to using Eq.3, to dynamically adjust

the subnet loss scale at each training step based on its CTC

probability. The results show that compared to constant values,

the adaptive approach effectively balances the supernet and

subnet, resulting in strong performance for both. The term

“0 → 1” indicates that β is linearly increased from 0 to 1

during Step 1. A larger β worsens WER for smaller encoders,

likely due to premature subnet selection from accelerated

softmax orthogonalization. Contrarily, “0 → 1” prioritizes

ASR loss early, enabling more informed component selection

later when their impact on ASR performance is clearer.

Table III shows the impact of each training method. Remov-

ing softmax T annealing in Step 1 slightly improves WER for



TABLE IV: ASR results of three encoders of large, medium,

and small sizes on TED-LIUM-v2 test set

Training
Select
criteria

Select
granularity

Large Medium Small
WER
[%]

Parm.
[M]

FLOPs

[108]
WER
[%]

Parm.
[M]

FLOPs

[108]
WER
[%]

separately
-

- 7.8
28.4 3.01

8.1
14.7 2.06

8.9
Aux-Loss block 7.6 8.0 10.1

Ortho-
Softmax

sparsity
layer 7.7 27.7 2.96 8.0 14.9 2.06 9.0

component 7.8 28.1 2.99 8.1 14.8 2.06 8.8

FLOPs
layer 7.7 28.3 3.00 7.9 15.3 2.09 8.7

component 7.8 28.3 3.00 8.0 15.0 2.07 8.6

TABLE V: ASR results of three encoders of large, medium,

and small sizes on Librispeech test-clean and test-other set.

Training

method

Select
criteria

Select
granl.

Large Medium Small
WER[%] Prm.

[M]
FLOPs

[108]
WER[%] Prm.

[M]
FLOPs

[108]
WER[%]

cln oth cln oth cln oth

separately
-

- 3.3 7.1
49.9 4.50

3.5 7.7
25.7 2.80

3.6 8.4

Aux-Loss block 3.2 6.9 3.6 7.9 4.5 9.7

Ortho-
Softmax

sparsity
layer 3.2 7.1 49.8 4.48 3.3 7.4 25.0 2.74 3.8 9.0
cmp 3.2 6.9 49.8 4.48 3.3 7.3 24.4 2.71 3.7 8.8

FLOPs
layer 3.2 7.1 48.7 4.41 3.2 7.4 26.1 2.81 3.7 8.7
cmp 3.2 7.0 49.8 4.48 3.4 7.5 25.6 2.79 3.6 8.4

small encoders. However, empirical observations show that for

larger k, T annealing can accelerate softmax orthogonalization

and help convergence. Therefore, we retain it in our approach.

D. 1 Supernet + 2 Subnets

Table IV and Table V report the results of jointly training

three encoders on TED-v2 and LBS test set. OrthoSoftmax

significantly outperforms Aux-Loss on medium and small

models. WER discrepancies increase as model size decreases,

likely because Aux-Loss leverages the lower layers at the

bottom, which are used to capture low-level features. For Or-

thoSoftmax, FLOPs-aware selection generally performs better

than sparsity-aware selection. Using components as the gran-

ularity of selection proves more effective than using layers,

especially for small-sized models. The WERs with FLOPs-

aware component-wise selection are at least as good as those

of the individually trained model across all model sizes and

datasets, while significantly reducing training time.

E. 1 Supernet + 4 Subnets

The results shown in Fig.1 are consistent with the observa-

tions in Sec III-D. For both TED-v2 and LBS test sets, the red

line closely matches the blue line, indicating that the FLOPs-

aware component-wise approach achieves on-par WER across

all five models compared to individual training.

F. Remaining Ratio Analysis

Fig.2 shows that Convs are retained the most in all models,

which is also observed in [5], [22], indicating that Convs are

generally more important for the Conformer model. Besides,

we observe that a large portion of the 1st block is retained,

even in the smallest model. This is likely because the 1st block

captures the initial temporal and phonetic characteristics. Also,

fewer parameters are preserved in the lower layers compared

to the higher layers, suggesting that the lower layers of the

Conformer contain more redundancy. Furthermore, the MHSA

heads are distributed sparsely across blocks. The authors of

10 20 30 40

8

10

12

Param. [M]

W
E

R
[%

]

separately train

Aux-Loss

FLOPs-aware layer-wise

FLOPs-aware cmp-wise

(a) TED-LIUM-v2 test

20 40 60 80

8

10

12

Params. [M]

separately train

Aux-Loss

FLOPs-aware layer-wise

FLOPs-aware cmp-wise

(b) Librispeech test-other

Fig. 1: ASR results comparison of training five encoders.

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100
FFN2 Conv MHSA FFN1

1.94 ×108 (34.1%) FLOPs

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

2.79 ×108 (45.1%) FLOPs

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

3.65 ×108 (58.8%) FLOPs

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

4.92 ×108 (79.3%) FLOPs

Fig. 2: The remaining ratio for each layer in encoders of

varying sizes, trained using the FLOPs-aware component-wise

OrthoSoftmax method, as shown in Fig.1b.

[40] find that only a small subset of heads is crucial, and re-

moving the vast majority of heads does not significantly affect

performance. For smaller models, no MHSAs are preserved in

the upper two layers, which aligns with the conclusion from

[41] that these upper attention layers may be less useful due

to the nearly diagonal attention score matrix. Although not

shown in Fig.2, we observe that sparsity-aware approaches

also select Convs the most. However, compared to the FLOPs-

aware method, they favor FFN components over MHSA heads.

IV. CONCLUSION

In this work, we introduce OrthoSoftmax for learning binary

masks to identify optimal subnets during supernet training.

Additionally, our approach enables subnet selection based

on different levels of granularity and selection criteria. Ex-

perimental results show that FLOPs-aware component-wise

selection performs overall the best. With the same number of

training updates as a single training job, this approach achieves

WERs comparable to or even better than those of individually

trained models across various model sizes. By analyzing the

selected components, we find that the 1st Conformer block is

important, and Convs are the most critical component.

ACKNOWLEDGEMENT

This work was partially supported by NeuroSys, which as part of the initiative

“Clusters4Future” is funded by the Federal Ministry of Education and Research BMBF

(03ZU1106DA), and by the project RESCALE within the program AI Lighthouse Projects

for the Environment, Climate, Nature and Resources funded by the Federal Ministry

for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection

(BMUV), funding ID: 6KI32006B.



REFERENCES

[1] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
Framework for Self-Supervised Learning of Speech Representations,”
in NeurIPS, virtual, Dec. 2020.

[2] W. Hsu, B. Bolte, Y. H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mo-
hamed, “HuBERT: Self-Supervised Speech Representation Learning by
Masked Prediction of Hidden Units,” IEEE ACM Trans. Audio Speech

Lang. Process., vol. 29, pp. 3451–3460, 2021.

[3] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust Speech Recognition via Large-Scale Weak
Supervision,” in ICML, Hawaii, USA, July 2023, pp. 28492–28518.

[4] A. Gupta, T. Bau, J. Kim, Z. Zhu, S. Jha, and H. Garud, “Torque based
Structured Pruning for Deep Neural Network,” in WACV, Waikoloa, HI,
USA, Jan. 2024, pp. 2699–2708.

[5] H. Jiang, L. L. Zhang, Y. Li, Y. Wu, S. Cao, T. Cao, Y. Yang, J. Li,
M. Yang, and L. Qiu, “Accurate and Structured Pruning for Efficient
Automatic Speech Recognition,” in Interspeech, Dublin, Ireland, Aug.
2023, pp. 4104–4108.

[6] Y. Peng, K. Kim, F. Wu, P. Sridhar, and S. Watanabe, “Structured
Pruning of Self-Supervised Pre-Trained Models for Speech Recognition
and Understanding,” in ICASSP, Greece, June 2023, pp. 1–5.

[7] Y. Peng, Y. Sudo, M. Shakeel, and S. Watanabe, “DPHuBERT:
Joint Distillation and Pruning of Self-Supervised Speech Models,” in
Interspeech, Dublin, Ireland, Aug. 2023, pp. 62–66.

[8] H. Wang, S. Wang, W. Zhang, H. Suo, and Y. Wan, “Task-Agnostic
Structured Pruning of Speech Representation Models,” in Interspeech,
Dublin, Ireland, Aug. 2023, pp. 4104–4108.

[9] H. Chang, S. Yang, and H. Lee, “Distilhubert: Speech Representation
Learning by Layer-Wise Distillation of Hidden-Unit Bert,” in ICASSP,
Singapore, May 2022, pp. 7087–7091.

[10] Y. Lee, K. Jang, J. Goo, Y. Jung, and H. R. Kim, “FitHuBERT:
Going Thinner and Deeper for Knowledge Distillation of Speech Self-
Supervised Models,” in Interspeech, Incheon, Korea, Sept. 2022, pp.
3588–3592.

[11] T. Ashihara, T. Moriya, K. Matsuura, and T. Tanaka, “Deep versus Wide:
An Analysis of Student Architectures for Task-Agnostic Knowledge
Distillation of Self-Supervised Speech Models,” in Interspeech, Incheon,
Korea, Sept. 2022, pp. 411–415.

[12] S. Ding, D. Qiu, D. Rim, Y. He, O. Rybakov, B. Li, R. Prabhavalkar,
W. Wang, T. N. Sainath, Z. Han, J. Li, A. Yazdanbakhsh, and S. Agrawal,
“USM-Lite: Quantization and Sparsity Aware Fine-Tuning for Speech
Recognition with Universal Speech Models,” in ICASSP, Seoul, Korea,
Apr. 2024, pp. 10756–10760.

[13] O. Rybakov, P. Meadowlark, S. Ding, D. Qiu, J. Li, D. Rim, and Y. He,
“2-bit Conformer Quantization for Automatic Speech Recognition,” in
Interspeech, Dublin, Ireland, Aug. 2023, pp. 4908–4912.

[14] Y. Shangguan, H. Yang, D. Li, C. Wu, Y. Fathullah, D. Wang, A. Dalmia,
R. Krishnamoorthi, O. Kalinli, J. Jia, J. Mahadeokar, X. Lei, M. Seltzer,
and V. Chandra, “TODM: Train Once Deploy Many Efficient Supernet-
Based RNN-T Compression For On-device ASR Models,” in ICASSP,
Seoul, Korea, Apr. 2024, pp. 10216–10220.

[15] J. Yu, L. Yang, N. Xu, J. Yang, and T. S. Huang, “Slimmable Neural
Networks,” in ICLR, New Orleans, USA, May 2019.

[16] S. Ding, W. Wang, D. Zhao, T. N. Sainath, Y. He, R. David, R. Botros,
X. Wang, R. Panigrahy, Q. Liang, D. Hwang, I. McGraw, R. Prab-
havalkar, and T. Strohman, “A Unified Cascaded Encoder ASR Model
for Dynamic Model Sizes,” in Interspeech, Incheon, Korea, Sept. 2022,
pp. 1706–1710.

[17] A. Narayanan, T. N. Sainath, R. Pang, J. Yu, C. Chiu, R. Prabhavalkar,
E. Variani, and T. Strohman, “Cascaded Encoders for Unifying Stream-
ing and Non-Streaming ASR,” in ICASSP, Toronto, Canada, June 2021,
pp. 5629–5633.

[18] Y. Shi, V. Nagaraja, C. Wu, J. Mahadeokar, D. Le, R. Prabhavalkar,
A. Xiao, C. Yeh, J. Chan, C. Fuegen, O. Kalinli, and M. L. Seltzer,
“Dynamic Encoder Transducer: A Flexible Solution for Trading Off
Accuracy for Latency,” in Interspeech, Brno, Czechia, Aug. 2021, pp.
2042–2046.

[19] H. Yang, S. Yuan, D. Wang, M. Li, P. Chuang, X. Zhang, G. Venkatesh,
O. Kalinli, and V. Chandra, “Omni-Sparsity DNN: Fast Sparsity
Optimization for On-Device Streaming E2E ASR Via Supernet,” in
ICASSP, Virtual and Singapore, May 2022, pp. 8197–8201.

[20] R. Wang, Q. Bai, J. Ao, L. Zhou, Z. Xiong, Z. Wei, Y. Zhang, T. Ko,
and H. Li, “Lighthubert: Lightweight and Configurable Speech Repre-

sentation Learning with Once-for-all Hidden-unit Bert,” in Interspeech,
Incheon, Korea, Sept. 2022, pp. 1686–1690.

[21] J. Lee, J. Kang, and S. Watanabe, “Layer Pruning on Demand with
Intermediate CTC,” in Interspeech, Brno, Czechia.

[22] J. Xu, W. Zhou, Z. Yang, E. Beck, and R. Schlüter, “Dynamic Encoder
Size Based on Data-Driven Layer-wise Pruning for Speech Recognition,”
in Interspeech, Kos, Greece, Sept. 2024, To Appear.

[23] Y. Bengio, N. Leonard, and A. Courville, “Estimating or Propagating
Gradients Through Stochastic Neurons for Conditional Computation,”
arXiv:1308.3432, Aug.2013.

[24] P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, and J. Xin, “Understanding
Straight-Through Estimator in Training Activation Quantized Neural
Nets,” in ICLR, New Orleans, LA, USA, May 2019.

[25] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, and R. Pang, “Conformer: Convolution-augmented
Transformer for Speech Recognition,” in Interspeech, Shanghai, China,
Oct. 2020, pp. 5036–5040.

[26] A. Graves, S.Fernández, F.Gomez, and J.Schmidhuber, “Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks,” in ICML, Pittsburgh, Pennsylvania, USA,
June 2006, pp. 369–376.

[27] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal Loss for
Dense Object Detection,” in ICCV, Venice,Italy, Oct. 2017, pp. 2999–
3007.

[28] W. Zhou, H. Wu, J. Xu, M. Zeineldeen, C. Lüscher, R. Schlüter, and
H. Ney, “Enhancing and Adversarial: Improve ASR with Speaker
Labels,” in ICASSP, Rhodes Island, Greece, June 2023, pp. 1–5.

[29] A. Zhang, A. Chan, Y. Tay, J. Fu, S. Wang, S. Zhang, H. Shao, S. Yao,
and R. Ka-Wei Lee, “On orthogonality constraints for transformers,” in
ACL/IJCNLP, Virtual, Aug. 2021, pp. 375–382.

[30] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal
convolutional neural networks,” in CVPR, Seattle, WA, USA, June 2020,
pp. 11502–11512.

[31] A. Fan, E.Grave, and A. Joulin, “Reducing Transformer Depth on
Demand with Structured Dropout,” in ICLR, Addis Ababa, Ethiopia,
Apr. 2020.

[32] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-LIUM
Corpus with Selected Data for Language Modeling and More TED
Talks,” in LREC, Reykjavik, Iceland, May 2014, pp. 3935–3939.

[33] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR Corpus based on Public Domain Audio Books,” in ICASSP, South
Brisbane, Queensland, Australia, Apr. 2015, pp. 5206–5210.

[34] W. Zhou, S. Berger, R. Schlüter, and H. Ney, “Phoneme Based Neural
Transducer for Large Vocabulary Speech Recognition,” in ICASSP,
Toronto, Canada, June 2021, pp. 5644–5648.

[35] A. Zeyer, T. Alkhouli, and H. Ney, “RETURNN as a Generic Flexible
Neural Toolkit with Application to Translation and Speech Recognition,”
in ACL, Melbourne, Australia, July 2018, pp. 128–133.

[36] S. Wiesler, A. Richard, P. Golik, R. Schlüter, and H. Ney, “RASR/NN:
the RWTH neural network toolkit for speech recognition,” in ICASSP,
Florence, Italy, May 2014, pp. 3281–3285.

[37] J. Lee, and S. Watanabe, “Intermediate Loss Regularization for CTC-
Based Speech Recognition,” in ICASSP, Toronto, Canada, Jun. 2021,
pp. 6224–6228.

[38] C. Louizos, M. Welling, and D. P. Kingma, “Learning Sparse Neural
Networks through L0 Regularization,” in ICLR, Canada, Apr. 2018.

[39] M. Xia, Z. Zhong, and D. Chen, “Structured Pruning Learns Compact
and Accurate Models,” in ACL, Ireland, May 2022, pp. 1513–1528.

[40] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned,” in ACL, Aug. 2019, pp. 5797–5808.

[41] S. Zhang, E. Loweimi, P. Bell, and S. Renals, “On the Usefulness of
Self-Attention for Automatic Speech Recognition with Transformers,”
in SLT, Shenzhen,China, Jan. 2021, pp. 89–96.

http://arxiv.org/abs/1308.3432

	Introduction
	Efficient Supernet Training pipeline
	Step 1 - Learning Subnet Binary Mask
	Training Loss

	Step 2 - Supernet/Subnet Joint Train
	Selection Criteria and Granularity

	Experiments
	Experimental Setup
	1 Supernet + 1 Subnet
	Ablation Study
	1 Supernet + 2 Subnets
	1 Supernet + 4 Subnets
	Remaining Ratio Analysis

	Conclusion
	References

