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Abstract—In statistical classification and machine learning,
classification error is an important performance measure, which
is minimized by the Bayes decision rule. In practice, the unknown
true distribution is usually replaced with a model distribution
estimated from the training data in the Bayes decision rule.
This substitution introduces a mismatch between the Bayes
error and the model-based classification error. In this work,
we apply classification error bounds to study the relationship
between the error mismatch and the Kullback-Leibler divergence
in machine learning. Motivated by recent observations of low
model-based classification errors in many machine learning tasks,
bounding the Bayes error to be lower, we propose a linear
approximation of the classification error bound for low Bayes
error conditions. Then, the bound for class priors are discussed.
Moreover, we extend the classification error bound for sequences.
Using automatic speech recognition as a representative example
of machine learning applications, this work analytically discusses
the correlations among different performance measures with
extended bounds, including cross-entropy loss, language model
perplexity, and word error rate.

Index Terms—machine learning, classification error bound,
speech recognition, mismatch condition

I. INTRODUCTION

In statistical classification and machine learning tasks, such
as automatic speech recognition (ASR), Bayes decision rule
is used to minimize the classification error, which is the most
critical performance measure for these tasks. However, since
the true distribution in Bayes decision rule is unknown, in
practice, a probabilistic model trained on the training data is
applied to approximate the true distribution in Bayes decision
rule. Thus, there is a difference between the true distribution
of the data and the probabilistic model [1], [2]. While this
difference is not addressed in most of the studies, we will make
a mathematically strict distinction between true and model
distributions in this work. As the classification error mismatch
between the Bayes error and the model-based decision error
reflects the proximity of model performance to the optimum,
we will study the relationship between error mismatch and
other statistical measures in this work.

Kullback–Leibler (KL) divergence is another important
statistical measure in machine learning tasks. It is closely
associated with the cross-entropy (CE) loss and language
model (LM) perplexity (PPL). While the correlation between
word error rate (WER) and LM PPL has been observed
for a long time [3]–[5], most of the works only empirically

demonstrate the correlation. In this work, we aim to examine
the relationship from an analytical perspective.

The relationship between error mismatch and KL divergence
was first investigated in [1]. There, Ney introduced two error
bounds on the error mismatch. Later, Nussbaum et al. derived a
generalized statistical bound on error mismatch [2], [6], which
included the KL divergence as an implicit upper bound of the
error mismatch. The bound derived in [2], [6] was proven to
be tight when the true distribution is arbitrary. However, when
more information about the true distribution is obtained, the
bound can be improved. In practice, many systems/tasks have
low Bayes errors. For instance, the WER of human speech
recognition, is typically low [7], often dropping below 1%
for a wide range of conditions [8], indicating a bound on the
Bayes error to be lower. In [9], a refined tight bound between
error mismatch and KL divergence is derived when Bayes
error is lower than a threshold. In this work, we will revisit
classification error bounds within the context of machine
learning under the low Bayes error condition. Contributions
of this work are as follows:

• Simplify the bound with a linear approximation under the
low Bayes error condition

• Propose the bound for class priors and verify its tightness
• Extend classification error bounds for sequences

With the extended bounds, correlations among different per-
formance measures including cross-entropy, language model
perplexity and word error rate will be discussed.

II. STATISTICAL MEASURES

In a statistical classification problem, also known as multiple
hypothesis testing in information theory, for a joint event
(c, x), where c ∈ C is a class and x ∈ X is a discrete
observation, the expected error is defined as:

E[c|x] =
∑
c′

pr(c′|x)
(
1− δ(c, c′)

)
= 1− pr(c|x) (1)

where δ is Kroneker-Delta and pr(c|x) is the true posterior
distribution. The minimum classification error is obtained by
the Bayes decision rule:

c∗(x) = argmax
c

pr(c|x) (2)

In practical applications, the true distribution is unknown.
Therefore, a model distribution q(c, x) is employed to es-
timate the true distribution. Recently, sequence-to-sequence



(Seq2Seq) modeling methods have achieved significant suc-
cess in machine learning tasks, attaining low classification
errors on different tasks. [10]–[13]. Instead of modeling the
joint distribution q(c, x), these models directly model the
posterior q(c|x). For generalization purposes, we consider the
modeling of joint distribution q(c, x) in this paper, unless
otherwise specified. All the results can be generalized to the
posterior modeling by defining q(c, x) := q(c|x) · pr(x). The
model-based decision rule is defined as:

cq(x) = argmax
c

q(c|x) (3)

In statistical classification, the most important performance
criterion is the classification error. The global Bayesian and
model-based classification errors are then obtained by com-
puting the expectation across all observations:

E∗ =
∑
x

pr(x)E[c∗(x)|x], Eq =
∑
x

pr(x)E[cq(x)|x]

(4)
In the mismatch problem, we are interested in the global

classification error mismatch ∆q between E∗ and Eq:

∆q = Eq − E∗ =
∑
x

pr(x)
(
pr(c∗(x)|x)− pr(cq(x)|x)

)
(5)

Note that ∆q ≥ 0, i.e. Eq is lower bounded by E∗. Therefore,
minimizing ∆q pushes the model toward achieving the
optimal classification error.

KL divergence is another statistical measure used to assess
the difference between two distributions, which is defined as:

DKL(pr ∥ q) =
∑
x,c

pr(c, x) log
pr(c, x)

q(c, x)
(6)

III. CLASSIFICATION ERROR BOUNDS

A. Existing Error Bounds

In the field of information theory, instead of the error
mismatch ∆q , the relationship between total variation distance
V and KL divergence has been elucidated in the past years.
In [14], Vadja proposed a refinement of Pinsker’s inequality.
In machine learning, [15, p.10] introduced the Bretagnolle-
Huber bound for density estimation. These bounds were not
proposed for the error mismatch ∆q . However, as pointed out
in [1] that V is lower bounded by ∆q , the bounds for ∆q

can be obtained by replacing the total variation distance V
in the inequalities with ∆q . In [1], starting from V , Ney also
derived an error bound for DKL(pr ∥ q) as a function of ∆q

more directly. Nevertheless, unlike V , the error mismatch ∆q

is asymmetric. As a result, introducing V in the derivation
leads to a non-tight bound for ∆q ∈ (0, 1]. In [2], [6], started
directly from ∆q , the following bound of ∆q on DKL(pr ∥ q)
is derived, which is a tight bound for the entire domain of ∆q

when the true and model distributions are unconstrained.

DKL(pr ∥ q) ≥ 1

2

(
(1 + ∆q) log(1 + ∆q)

+ (1−∆q) log(1−∆q)
)

:= g(∆q)

(7)

B. Error bounds with Constraints on E∗

The bound g introduced in (7) is a tight bound when the
true distribution pr is unconstrained. However, if the true
distribution is subject to some constraints, the bound can
be further improved. In machine learning tasks like pattern
and speech recognition, the Bayes error is typically low. For
instance, WERs of human speech recognition can be below
1% for a wide range of conditions [8], and the Bayes error is
bounded to be lower. Under the constraint that E∗ ≤ t < 0.5,
where t is a given threshold, the bound can be refined.

Fig. 1: Comparison of the Nussbaum bound and the refined
bound in Theorem 1. The simulation is done under the
constraint E∗ ≤ 0.01. The grey dots refer to simulation points.

Theorem 1. When E∗ ≤ t < 0.5, DKL(pr ∥ q) is lower-
bounded by the following function of the mismatch ∆q ,

DKL(pr ∥ q) ≥

{
(∆q + 2t)g(

∆q

∆q+2t ), 0 ≤ ∆q < 1− 2t

g(∆q), 1− 2t ≤ ∆q ≤ 1︸ ︷︷ ︸
:=ht(∆q)

(8)
where ht is the refined bound, and g is defined as in (7).

A detailed proof and the tightness of the bound are derived
in our previous work [9]. Figure 1 shows the comparison of
the bound derived in [2], [6] and the refined bound in [9], with
each grey dot representing the result of a single simulation.
The simulation was conducted by generating various distribu-
tion pairs (pr, q) until all the reachable areas were covered.
All the simulations in this paper are done with |C| = 7 and
|X | = 15. The simulation result show that the bound derived
in [2], [6] is not tight under the constrained E∗ ≤ t, while the
bound in [9] exhibits tightness across the full range of ∆q .

C. Linear Approximation of the Bound

By computing the derivative of ht(∆q), it can be observed
that when ∆q ≫ t and within the range 0 ≤ ∆q ≤ 1 − 2t,
the derivative is almost a constant value. Therefore, the bound
can be approximated linearly when t is small:

DKL(pr ∥ q) ≥ log(2− 2t) ·∆q + β. (9)

where β = t · (log(1− t)+ log t+2 log 2). Note that since ht

is convex, this linear bound is valid. Figure 2 demonstrates
the comparison between the refined bound and its linear
approximation. As illustrated in the lower figure for t = 0.01,



Fig. 2: The linear approximation of the refined bound in
Theorem 1. The simulations in the upper figure are under the
constraint E∗ ≤ 0.08, and for the lower figure, the constraint
is E∗ ≤ 0.01. Grey dots refer to the simulation points.

the exact bound is effectively approximated by the linear
bound across nearly the entire domain of ∆q . However, for
t = 0.08 in the upper figure, the accuracy of the approximation
diminishes when ∆q is small, as ∆q ≫ t is not fulfilled.

D. Error Bound for Class Priors

Class prior is important in many statistical classification
tasks. For instance, in ASR, an LM (class sequence prior)
is usually combined with the acoustic model (AM) to achieve
better performance. Therefore, it is crucial to investigate the
effect of the class prior. To quantify the discrepancy between
the true class prior and the model class prior, the KL diver-
gence between two priors pr(c) and q(c) is employed.

DKL
(
pr(c) ∥ q(c)

)
=

∑
c

pr(c) log
pr(c)

q(c)

To eliminate the influence of modeling the AM, we assume
a perfect acoustic model q′(x|c) = pr(x|c). Effectively, we
apply such modeling q′(c, x) = q′(c)pr(x|c) where q′(c) is
the model prior for classes. In this case, the KL divergence
between joint distributions collapses to between class priors,
and the bound proposed in Theorem 1 can be applied:

DKL(pr ∥ q′) =
∑
c

pr(c) log
pr(c)

q′(c)
≥ ht(∆q′) (10)

Due to the specific assumption of the joint model distribution
q′(c, x), we must reconsider the tightness of the bound. The
equality for ∆q′ ∈ [0, 1−2t) can be achieved with the follow-
ing parameterized distribution with parameter λ ∈ [0.5, 1−2t):

pr(c, x1) =

{
1− t

1−λ , c = c1
0, otherwise

(11)

pr(c, x2) =


tλ

1−λ , c = c2
t, c = c3
0, otherwise

(12)

q′(c) = lim
ϵ→0+


1− t

1−λ , c = c1
t

1−λ · (0.5− ϵ), c = c2
t

1−λ · (0.5 + ϵ), c = c3
0, otherwise

(13)

For ∆q′ ∈ [1−2t, 1], since the distributions used to achieve
equality in [2] meet the condition q(x|c) = pr(x|c), the same
distributions can be applied to obtain equality here. Figure 3
presents the simulation result for the KL divergence between
class priors and the error mismatch. As shown in the figure,
the bound derived for joint distributions also holds for class
priors and maintains its tightness.

Fig. 3: Simulation results for KL divergence between class
priors vs. error mismatch. The simulation is done with E∗ ≤
0.01. Grey dots refer to the simulation points.

IV. ERROR BOUND FOR SEQUENCES

Since many machine learning tasks involve Seq2Seq
modeling, in this section, we will delve into the application
of previously derived bounds within the context of sequence-
related scenarios, which bridges the theoretical bound with
the practical Seq2Seq machine learning tasks. To simplify the
discussion, we assume that all the class sequences have the
same length N . The class sequence is defined as cN1 , while the
observation sequence is defined as X . A straightforward way
to extend the results from single observations to sequences
is to treat the full sequences cN1 and X as individual events.
In this case, ∆q is computed on sequence level, i.e. sentence
error mismatch. However, in Seq2Seq machine learning tasks
like ASR, metrics are typically defined at the token or state
level for each position. Therefore, a position-wise-defined
error function is needed. We consider a position-wise defined
error function L for the sequence pair cN1 and c̃N1 .

L[cN1 , c̃N1 ] :=
1

N

N∑
n=1

[1− δ(cn, c̃n)] (14)

The expected error for a given sequence pair (X, cN1 ) is:

E[cN1 |X] =
∑
c̃N1

pr(c̃N1 |X)L[cN1 , c̃N1 ] = 1− 1

N

∑
n

prn(cn|X)

(15)



where prn(c|X) is the marginal distribution at position n.

prn(c|X) =
∑

cN1 :cn=c

pr(cN1 |X) (16)

For each position n, the minimum of the expected error is
obtained by the following Bayes decision rule:

cn∗ (X) = argmax
c

prn(c|X) (17)

Consequently, the Bayes decision rule and the corresponding
Bayes error for the whole sequence are defined as:

c∗(X) = cN1 |cn = cn∗ (X), E∗ =
∑
X

pr(X)E[c∗(X)|X]

(18)

The model-based decision rule and classification error can be
defined similarly:

cnq (X) = argmax
c

qn(c|X), cq(X) = cN1 |cn = cnq (X) (19)

Eq =
∑
X

pr(X)E[cq(X)|X] (20)

The error mismatch for the whole sequence is then computed
as follows:

∆q = Eq − E∗ =
1

N

∑
n

∆n
q (21)

where

∆n
q =

∑
X

pr(X)
[
prn

(
cn∗ (X)|X

)
− prn

(
cnq (X)|X

)]
(22)

By employing Ineq. (25) in [9] and log-sum inequal-
ity, the relationship between the sequence-level KL diver-
gence DKL(pr ∥ q) and ∆q can be derived as follows:

DKL(pr ∥ q) ≥
∑
X

pr(X)
∑
cN1

pr(cN1 |X) log
pr(cN1 |X)

q(cN1 |X)︸ ︷︷ ︸
Ineq. (25) in [9]

=
∑
X

pr(X)
1

N

∑
n

∑
c

∑
cN1 :cn=c

pr(cN1 |X) log
pr(cN1 |X)

q(cN1 |X)︸ ︷︷ ︸
apply log-sum inequality

≥
∑
X

pr(X)
∑
c

1

N

∑
n

prn(c|X) log
prn(c|X)

qn(c|X)

=
1

N

∑
n

∑
X

pr(X)
∑
c

prn(c|X) log
prn(c|X)

qn(c|X)︸ ︷︷ ︸
apply Theorem 1

≥ 1

N

∑
n

ht(∆
n
q )︸ ︷︷ ︸

ht is convex

≥ ht(
1

N

∑
n

∆n
q ) = ht(∆q) (23)

A. Error Bound for the Model Classification Error

KL-divergence can be reformulated in terms of cross-
entropy H(pr, q) and entropy H(pr).

DKL(pr ∥ q) = H(pr, q)−H(pr) (24)

For a given task, the true distribution, E∗ and H(pr) are
fixed. Therefore, by applying (9) and (23), the model error Eq

is linear bounded by H(pr, q):

DKL(pr ∥ q) ≥ log(2− 2t) · (Eq − E∗) + β

⇒ H(pr, q) ≥ log(2− 2t) · Eq + const (25)

B. Error Bound and CE Training Loss

When there is enough data, as discussed in [1], the true
distribution can be approximated by the empirical distribution:

pr(cN1 , X) ≈ 1

M

M∑
m=1

δ(cN1 , cm) · δ(X,Xm), (26)

H(pr, q) = −
∑
X,cN1

pr(cN1 , X) log q(cN1 , X)

≈ − 1

M

M∑
m=1

log q(cm, Xm) (27)

where (cm, Xm) are sequence pairs in the training data and M
is the number of sequences. Substituting the true distribution
with the empirical distribution transforms H(pr, q) into the
standard CE training loss. The error bound (25) implies that
the model error is linearly upper bounded by the CE loss.

C. The Correlation between Word Error Rate and Perplexity

In this section, we investigate the correlation between WER
and LM PPL via the derived error bound. Since the exact
WER computation involves the alignment problem, which
makes the problem much more complicated, we study the
averaged Hamming distance instead, which is an upper bound
to the WER, if the hypothesis is not longer than the reference.
By definition, Eq is the error rate when applying Hamming
distance as the metric. Similar to the discussion in Section
III-D, we assume a perfect acoustic model to eliminate the
influence of modeling the AM. In this case, the cross-entropy
is H

(
pr(cN1 ), q′(cN1 )

)
, which is effectively the logarithm of

the LM PPL. By applying (25), the relationship between LM
PPL and WER can be approximately derived as:

log PPL ≥ log(2− 2t)Ēq′ + const ≥ log(2− 2t)WER+ const

This inequality indicates that the WER is linearly upper-
bounded by the logarithm of PPL. In [5], a log-linear rela-
tionship is observed between PPL and WER. To verify this
relationship in theory, refined lower/upper bounds with further
constraints on true/model distributions would be needed.

V. CONCLUSION

In this work, bounds on the mismatch between the Bayes
and model classification error based on Kullback–Leibler
divergence were discussed for low Bayes error conditions. A
linear approximation of the bound was proposed for these low
Bayes error conditions. Following discussions on the bound
for class priors, classification error bounds were extended for
sequences. Based on extended bounds, linear bounds between
different performance metrics including cross-entropy loss,
language model perplexity, and word error rate were derived.
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abe, “End-to-end speech recognition: A survey,” arXiv preprint
arXiv:2303.03329, 2023.

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in Proceedings of the 23rd international
conference on Machine learning, 2006, pp. 369–376.

[12] A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv preprint arXiv:1211.3711, 2012.

[13] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2016, pp. 4945–4949.
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