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Abstract

Neural networks present a major advance in modeling for statistical machine translation sys-
tems. These data-driven systems consist of an encoder that computes a representation of the
source sentence and a decoder that accesses the encoder output and generates a probability dis-
tribution over all target sentences. The components are connected via a cross-attention layer and
trained jointly to minimize the cross-entropy loss on a corpus of bilingual training data, i.e. a
set of sentence pairs where one is the translation of the other. In this dissertation, we focus on
two important aspects of neural machine translation systems, namely the training data and the
attention layer.

Since sentence-aligned bilingual data is a scarce resource and availability depends on the lan-
guage pair, we investigate the use of monolingual data to improve the performance of the machine
translation system. We verify the results reported with the use of synthetic data (back-translation)
and extended language model fusion and introduce pre-training to neural machine translation.
Using a language model trained on monolingual target data is an established method in count-
based machine translation approaches. We adapt this to neural machine translation and extend
the approach by training the parameters of the translation model as part of a greater fusion
model. Furthermore, we use monolingual source and target data to find a better initialization for
the training. This pre-training also allows the use of monolingual source data, which is commonly
ignored in machine translation systems. We evaluate these methods empirically on four different
language pairs with different data conditions and report improvements for all described methods
over a purely bilingual baseline. Overall, back-translation provides the best results with respect
to translation performance and data efficiency.

Inspired by existing work on alignment models, we also incorporate a first-order dependency
in the attention layer. In contrast with previous machine translation models, the transformer is a
purely feed-forward model without any recurrent layers. This means that no information about the
previous attention decision is input to the computation of the attention layer. Modeling attention
with first-order dependencies allows the attention layer to access previous attention decisions,
which is an important prerequisite to express, e.g. source coverage. We adapt and propose several
extensions to include this time-dependent information. Interpreting attention as a soft-lookup of
a query to a list of key-value pairs, we introduce the previous attention information in different
ways and using different encodings. All methods are verified on several machine translation tasks
and we conclude that a zero-order attention model is sufficiently strong for the task of machine
translation.
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Kurzfassung

Künstliche neuronale Netze stellen einen bedeutenden Fortschritt in der Modellierung von
maschinellen Übersetzungssystemen mittels statistischen Methoden dar. Aktuelle maschinelle
Übersetzungssysteme auf Basis neuronaler Netzwerke bestehen aus einem Encoder, der eine Re-
präsentation des Quellsatzes berechnet, und einem Decoder, der auf die Encoderausgabe zugreift
um eine Wahrscheinlichkeitsverteilung über alle Zielsätze zu erzeugen. Diese beiden Komponen-
ten sind mittels eines Cross-Attention Layers verbunden und werden gemeinsam trainiert. Dabei
werden die Parameter des neuronalen Netzwerks so gewählt, dass die Verlustfunktion auf den
zweisprachigen Trainingsdaten minimiert wird. Im Rahmen dieser Dissertation konzentrieren wir
uns auf zwei zentrale Aspekte neuronaler Übersetzungssysteme: die verwendeten Trainingsdaten
und das Cross-Attention Layer.

Da zweisprachige, satzweise-parallele Trainingsdaten eine knappe Ressource sind, deren Ver-
fügbarkeit stark vom betrachteten Sprachpaar abhängt, untersuchen wir die Verwendung mono-
lingualer Daten, also einsprachiger Sätze ohne zugeordnete Übersetzungen, um die Leistung eines
maschinellen Übersetzungssystems zu verbessern. Wir verifizieren bestehende Ergebnisse, wel-
che durch den Einsatz von synthetischen Daten (Rückwärtsübersetzung oder ‘back-translation’)
und der Integration von Sprachmodellen erzielt wurden, darüber hinaus führen wir ein neu-
es Vorabtraining für maschinelle Übersetzungssysteme ein. Die Verwendung eines Sprachmo-
dells, das auf monolingualen Daten in der Zielsprache trainiert wurde, ist eine etablierte Me-
thode in phrasen-basierten maschinellen Übersetzungsansätzen. Wir passen dieses Vorgehen an
neuronale Übersetzungssysteme an und erweitern den Ansatz, indem wir die Parameter des
Übersetzungsmodells als Teil eines fusionierten Modells trainieren. Des weiteren verwenden wir
monolinguale Daten, um einen besseren Initialisierungspunkt für das Training zu finden. Dieses
Vorabtraining ermöglicht unter anderem die Verwendung monolingualer Daten in der Quellspra-
che, welche üblicherweise bei der Verwendung maschineller Übersetzungssystemen ignoriert wer-
den. Wir evaluieren alle beschriebenen Methoden empirisch anhand von vier verschiedenen Sprach-
paaren mit unterschiedlichen Datenbedingungen. Alle Methoden erzielen bessere Ergebnisse als
ein starkes Baseline-System, das im Training ausschließlich zweisprachige Daten verwendet. Wir
beobachten, dass Rückwärtsübersetzung insgesamt die besten Ergebnisse liefert, sowohl in Bezug
auf die Qualität des resultierenden Übersetzungssystems als auch im Bezug auf die Dateneffizienz.

Inspiriert von früheren Arbeiten im Bereich der Alignment-Modelle integrieren wir eine Ab-
hängigkeit erster Ordnung in das Cross-Attention Layer. Aktuelle neuronale Übersetzungsmodelle
sind reine Feed-Forward-Netzwerke, ohne rekurrente Layer. Das bedeutet, dass die Attention-
Entscheidungen, die das aktuelle Zielwort generieren, keinen Einfluss auf die Attention-Entschei-
dung für Folgewörter haben. Die Modellierung eines Attention Layers mit Abhängigkeiten erster
Ordnung ermöglicht es auf frühere Attention-Entscheidung zuzugreifen, was eine wichtige Vor-
aussetzung ist, um z. B. auszudrücken welche Worte des Quellsatzes bereits durch die aktuelle
Übersetzung abgedeckt sind. Im Rahmen dieser Arbeit adaptieren wir bestehende Erweiterungen
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des Cross-Attention Layers und schlagen mehrere neue vor, um diese zeitabhängige Information
einzubeziehen. Alle Methoden werden auf verschiedenen Sprachpaaren geprüft und wir kommen
zu dem Schluss, dass ein Attention-Modell ohne erweiterte Abhängigkeiten ausreichend ist.
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1. Introduction

The task of machine translation is to build an algorithm that transfers a sentence from a nat-
ural source language into a desired target language while preserving its meaning. Crucially, all
steps of the process are executed by a computer program and do not require human intervention.
To express the connection between the source and target language, historically two major types
of tools are used: human-crafted rules and statistical models. As Koehn points out, these two
approaches are frequently mixed and interconnected (See [Koehn 10, Sec 1.5.2 ]); however broadly
speaking, rule-based translation systems require human experts on one or more languages to craft
rules that either describe how a language is set up or how it is transformed into another lan-
guage. In contrast to this, statistical methods are data-driven, meaning that a human-engineered
probabilistic model is adapted to the task by optimizing its free parameters in such a way that a
loss function is minimized on a corpus of language data. In this work we focus only on statistical
approaches to the machine translation problem, which provide state-of-the-art results and are
used in many commercial applications.

1.1 Statistical Machine Translation

Machine translation is considered a text-to-text problem, assuming both input and output sen-
tences are represented as strings. Count-based approaches on word- [Brown & Cocke+ 90] and
phrase-level [Zens & Och+ 02] proved that statistical machine translation systems are powerful
tools capable of translating between a variety of languages [Ney 01, Koehn & Monz 06]. These
data-driven systems require a corpus of bilingual training data, namely a set of pairs each con-
sisting of a source sentence together with a translation. In an optimization process called training
the free parameters of the stochastic model are chosen in such a way that they fit the available
training data. Neural networks presented a major advancement in modeling for statistical ma-
chine translation systems [Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15, Vaswani & Shazeer+

17]. Early neural machine translation (NMT) systems encode the source sentence into a single
vector of fixed length [Sutskever & Vinyals+ 14] using a long short-term memory (LSTM) layer
[Hochreiter & Schmidhuber 97]. This vector is then decoded to a series of target words and the
resulting encoder-decoder structure is used to this day in all neural machine translation systems.
The introduction of an attention layer was a major advance for machine translation systems in
two ways. First, a cross-attention layer was introduced to overcome the single vector bottleneck
between the encoder and the decoder, which functions as a target-to-source soft-alignment [Bah-
danau & Cho+ 15]. In the second step, the expressiveness of the attention layers is increased
via a multi-head attention mechanism, and the introduction of self-attention allows the replace-
ment of the LSTM layers within the encoder and decoder [Vaswani & Shazeer+ 17]. This current
state-of-the-art architecture, introduced in 2017 as transformer [Vaswani & Shazeer+ 17], yields
superior performance across a variety of language pairs exemplified by the submissions and results
of the prestigious shared task on machine translation by the Conference on Machine Translation
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1 Introduction

(WMT) [Kocmi & Bawden+ 22]. Neural machine translation systems are commonly optimized
to minimize the cross-entropy loss on a bilingual corpus. As statistical systems, they can only
reproduce patterns that are observed during this training process. In this work, we focus on two
central aspects of neural machine translation systems, namely the training data and the attention
layer. Specifically, we increase the amount of training data by incorporating monolingual data,
which is widely available, into the system and extend the attention layer to allow for first-order de-
pendencies. In the following, we introduce both aspects of this investigation, discuss the scientific
background and outline the proposed approaches.

1.2 Data in Statistical Machine Translation

Training data is extremely important for statistical systems in general and for neural machine
translation in particular. Koehn and Knowles report that “NMT systems have a steeper learning
curve with respect to the amount of training data, resulting in worse quality in low-resource
settings, but better performance in high-resource settings” [Koehn & Knowles 17, p. 1]. They
describe the amount of training data as one of six important challenges for the progression of
machine translation systems. Another challenge is the handling of low-frequency words, which
is directly tied to the amount of training data since the likelihood of unseen or rare words is
increased if only small amounts of training data are available.

Sentence-aligned bilingual data is a scarce resource and the availability depends heavily on the
language pair. Thus many approaches aim to increase or improve the training data of a machine
translation system. This can be done by training on a resource-rich language to transfer the
optimized parameters to a system for the intended language pair [Zoph & Yuret+ 16] or by directly
training a multilingual system that combines training data of up to a hundred languages [Johnson
& Schuster+ 17, Cettolo & Federico+ 17, Aharoni & Johnson+ 19]. Data augmentation techniques
manipulate existing data to increase the diversity of the training signal either directly in the data
[Fadaee & Bisazza+ 17] or in the model representation of the data, e.g. via dropout [Srivastava
& Hinton+ 14]. Other approaches raise the amount of training data directly by accessing new
resources, most commonly by the crawling of bilingual websites, which allows the extraction of
several billion sentence pairs for many different language pairs [Bañón & Chen+ 20]. A drawback
of webcrawling is, that it commonly results in very noisy data which requires extensive data
filtering [Rossenbach & Rosendahl+ 18, Chaudhary & Tang+ 19, Parcheta & Sanchis-Trilles+

19, Koehn & Chaudhary+ 20].
Obtaining bilingual data is always challenging, whether it involves human experts translating,

the automatic crawling of sentences from sources like the internet or navigating the legal require-
ments to access existing bilingual resources such as translated speeches or books. Most of these
problems arise from the fact that machine translation systems require bilingual training data,
which needs to be aligned as a sentence-by-sentence translation.

While obtaining bilingual data is problematic and resources are limited for a lot of language
pairs, monolingual data is widely available for many languages. This raises the question of how
to use this rich resource. Historically, in count-based, phrase-based machine translation sys-
tems monolingual data is used to train a separate language model that predicts the a priori
probability of a word sequence [Zens & Och+ 02]. In the current state-of-the-art method of
back-translation [Schwenk 08, Sennrich & Haddow+ 16b], the bilingual data is used to train
a target-to-source translation system which is used to translate monolingual target data. This
creates a synthetic bilingual corpus, that consists of human-written target sentences and automat-
ically generated source sentences, which is added to the training data. In this work, we consider
this state-of-art approach, verify its results and compare the performance to other approaches
which include an external language model in training and search or use the monolingual data to

2



1.3 Alignment and Attention

train the parameters of the machine translation system.
When investigating the use of monolingual data it is important to consider the overall data sit-

uation. For certain language pairs no bilingual data is available, leading to the development of un-
supervised machine translation systems that are trained exclusively on monolingual data [Artetxe
& Labaka+ 18]. Other works start with a tiny bilingual corpus which is insufficient to train a
usable machine translation system but provides a starting point to add further resources [Chaud-
hary & Tang+ 19]. In this work, we consider the case of a supervised task where enough bilingual
data is present to build a machine translation with strong translation performance and focus
on the question of how such a system can be improved using the vast amount of monolingual
data available. We investigate a variety of data conditions with respect to the amount and do-
main of the bilingual and monolingual data and put a strong emphasis on a diversity of different
approaches.

1.3 Alignment and Attention

Attention is an essential component of machine translation systems first applied to the task by
Bahdanau et al. [Bahdanau & Cho+ 15]. In the transformer architecture [Vaswani & Shazeer+ 17],
the current state-of-the-art [Akhbardeh & Arkhangorodsky+ 21], attention is used as a sequence
processing layer and as a connection between the encoder and the decoder. In this work, we
focus on the encoder-decoder attention or cross-attention, which was originally introduced as a
replacement for an alignment model [Bahdanau & Cho+ 15]. For each target word a probability
distribution over the words in the source sentence is generated, to weigh how much a certain
source word ‘influences’ the current target word. This is a relaxation of a traditional target-to-
source alignment model which maps each target word to a single source word and many works
investigate the relationship between attention and alignment [Alkhouli & Bretschner+ 16, Alkhouli
& Bretschner+ 18, Li & Li+ 19, Zenkel & Wuebker+ 20].

Crucially, the cross-attention layer is the only component that transports information about
the source sentence into the decoder. Since it is the only connection between the decoder and the
encoder, it is the only layer in which source and target information are merged. Obtaining the
right information about the source sentence is a prerequisite for a good translation. Hence, in this
work we consider the input to the cross-attention component, analyze which information is avail-
able and extend its dependencies. Previous works disagree on whether additional dependencies
are beneficial for the overall performance. Some works report improvements of 1.1-2.0 Bleu [%]

absolute [Feng & Liu+ 16, Tu & Lu+ 16] while other investigations fail to show a performance in-
crease [Peter 20]. In this work, we aim to advance the debate on whether additional dependencies
to the cross-attention layer are warranted.

We reproduce existing approaches and propose new extensions to the cross-attention layer. In
this work, we aim to improve a state-of-the-art machine translation model, namely the transformer
architecture [Vaswani & Shazeer+ 17]. This is in contrast to almost all prior attention extensions,
which operate on a recurrent architecture. Unlike these attention-based models [Bahdanau &
Cho+ 15], the transformer uses several cross-attention layers as well as multi-head attention within
each layer. It employs strictly multiplicative attention while previous models often considered
additive attention layers. Furthermore, the transformer is a purely feed-forward model without
any recurrent layers. This means that no information about the previous attention decision is
input to the computation of the attention layer. In statistical terms, it means that the attention
layer is of zero-order dependency. In contrast to this, many count-based alignment models use
higher-order dependencies [Vogel & Ney+ 96, Och & Ney 03]. Hence, we focus on the question of
whether the attention mechanism benefits from additional dependencies, derived from a higher-
order model.
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1 Introduction

1.4 Publications
The following scientific publications were all published by the author in cooperation with col-

leagues at peer-reviewed conferences during the time of this dissertation.

Directly related to the work in the dissertation are:

• Recurrent Attention for the Transformer [Rosendahl & Herold+ 21]

• Language model fusion for automatic speech recognition [Wynands & Michel+ 22]

In addition, the author made major contributions to the following publications, which, however,
are not directly related to the content of this dissertation.
Machine translation

• Analysis of Positional Encodings for Neural Machine Translation [Rosendahl & Tran+ 19]

• Integrated Training for Sequence-to-Sequence Models Using Non-Autoregressive Transformer
[Tokarchuk & Rosendahl+ 21]

• Locality-Sensitive Hashing for Long Context Neural Machine Translation [Petrick & Rosendahl+
22]

Data filtering for machine translation

• The RWTH Aachen University Filtering System for the WMT 2018 Parallel Corpus Filter-
ing Task [Rossenbach & Rosendahl+ 18]

• Data Filtering using Cross-Lingual Word Embeddings [Herold & Rosendahl+ 21]

• Detecting Various Types of Noise for Neural Machine Translation [Herold & Rosendahl+
22]

International evaluation campaigns on machine translation

• The RWTH Aachen University English-German and German-English Machine Translation
System for WMT 2017 [Peter & Guta+ 17] (minor contribution)

• The RWTH Aachen Machine Translation Systems for IWSLT 2017 [Bahar & Rosendahl+
17]

• The RWTH Aachen University Supervised Machine Translation Systems for WMT 2018
[Schamper & Rosendahl+ 18]

• The RWTH Aachen University Machine Translation Systems for WMT 2019 [Rosendahl &
Herold+ 19]

Lastly, the author participated as a co-author in the following publication:

• Learning Bilingual Sentence Embeddings via Autoencoding and Computing Similarities with
a Multilayer Perceptron [Kim & Rosendahl+ 19]

As required by §5.6 of the doctoral guidelines of the RWTH Aachen University, a description of
the individual contribution of the author to his publications related to this dissertation is given
in Sections 4.5 and 5.6.
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2. Scientific Goals

In this thesis, we aim to answer a series of research questions, based on two major topics.

Monolingual Data in Machine Translation

For common translation tasks, there is a lot more monolingual data available than bilingual
data, e.g. for the Romanian→English task considered in this thesis we use around ninety times
more monolingual than bilingual target data. In this work we answer the following scientific
questions:

• Is monolingual data helpful to train a machine translation system?

• What is the best way to incorporate monolingual data?

These are the two major research questions that guide all investigations in Chapter 4. In answering
those, a series of sub-questions arise, some of which related only to certain approaches:

• Does monolingual data allow for a better representation of the target language? Or is it
only helpful to adapt to a specific domain that is not sufficiently represented in the bilingual
training corpus?

• There is no established way to use monolingual source data in a machine translation system.
How can we use source data and does it improve translation performance?

• Language model fusion incorporates monolingual data via an explicit language model into
the translation model. How can we obtain a well-formed probability distribution from the
two models? Does the normalization have an impact? Is it beneficial to train the translation
and language model jointly?

• Pre-training approaches introduce a new loss which is used to optimize a subset of the model
parameters. These parameters are used as an initialization for the actual main training. We
investigate how to pre-train a maximum number of parameters. This includes the search
for a suitable sub-task, for which a subset of the model parameters and a loss needs to be
defined.

• Back-translation [Bertoldi & Federico 09, Sennrich & Haddow+ 16b] is the established state-
of-the-art method to include monolingual data. Can we verify the results from the literature
in our work?

• For all approaches this culminates in the question: How much do they help the translation
performance?
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2 Scientific Goals

Encoder-Decoder Cross-Attention
We also investigate the cross-attention layer that connects the encoder to the decoder and is

often interpreted as a replacement for an alignment model. Many alignment models used first-
or higher-order dependencies [Vogel & Ney+ 96, Och & Ney 03] when modeling the relation
between source and target, while the cross-attention layer obtains no explicit information from
the previous target time step. There is no consensus in the scientific literature on whether cross-
attention benefits from higher-order dependencies, with some works finding strong improvements
[Feng & Liu+ 16, Tu & Lu+ 16] and others reporting no significant impact [Peter & Guta+

17, Peter 20]. We provide a new perspective by investigating the cross-attention within the
transformer architecture [Vaswani & Shazeer+ 17]. This is an important difference from previous
works because the transformer introduced several crucial changes to all attention layers. With
this in mind, we focus on the following core question throughout Chapter 5:

• Does cross-attention benefit from additional dependencies and information?

Answering this raises several related questions concerning the cross-attention layer:

• What information is beneficial?

• How should the additional dependency be represented?

• How should the additional dependency be included?

• Do the observations from recurrent translation systems [Feng & Liu+ 16, Tu & Lu+ 16, Peter
20] carry over to the transformer architecture?

We evaluate all our proposed methods on publicly available tasks, which allows comparison with
findings from other researchers. Since the effects of adding monolingual data might depend on
the environment of the language pair, we specifically focus on a variety of scenarios with respect
to the available training data, ensuring that low- and high-resource tasks are considered and that
the training data originates from different domains across the tasks.
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3. Preliminaries

In this chapter, we introduce the terminology and concepts of statistical machine translation
that are used throughout this work. This includes a general background of machine translation
as well as an in-depth presentation of the state-of-the-art architecture.

3.1 Terminology and Notation

Machine translation aims to create a system that is able to automatically convert a sentence
from a source language to the desired target language, producing an output sentence that is valid
in the intended language while preserving the original meaning. In statistical machine translation
(SMT; see Section 3.2) the translation software relies on a statistical model that is optimized or
trained on a bilingual training corpus T that consists of sentence pairs. Each pair consists of two
sequences

fJ1 := f1, f2, . . . , fj , . . . , fJ source sentence
eI1 := e1, e2, . . . , ei, . . . , eI target sentence

where fj and ei are the source and target words, respectively, and the notation fJ1 denotes the
sequence of J source words. In general, we use f and e to denote words of the source and target
language respectively. An n-gram refers to a sequence of n words, usually a subsequence of a
sentence, e.g. eii−2 = ei−2, ei−1, ei describes a 3-gram selected from the target sentence eI1.

In this work we only consider bilingual corpora that are sentence-aligned, meaning that the
source fJ1 and target sentence eI1 are translations of each other. Within a sentence pair (fJ1 , eI1) a
target-to-source word alignment b can be created by assigning each target ei word a corresponding
source word fbi = fb(ei). The idea behind this is that each target word is put into the target
sentence because it translates some aspect of the source. An alignment expresses this by assigning
each target word a source word. In this work we do not investigate explicit alignment models as
they are not part of state-of-the-art architectures; however, the idea of a word alignment has been
guiding the research on statistical machine translation for many years and concepts deduced from
alignments are still central in the architecture and interpretation of modern machine translation
systems.

Bilingual corpora typically consist of human-created translations, meaning that one sentence
from each pair is created by a native speaker and then translated by a human translator. However,
note that the direction of the human translation does not need to coincide with the direction of
the translation system.

The progression of machine translation systems is evaluated using development or evaluation
sets, sometimes shortened to dev or eval set. These terms refer to a dataset that has no or very
little sentence-pair overlap with the original bilingual training corpus. The development set is
used to guide design decisions during the optimization of the model, allowing the comparison
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3 Preliminaries

of different hyperparameters, etc. In contrast to this, test sets are not used in the creation
of the model. Instead, test sets are used to compare the performance of different systems across
models and research groups. After training, the machine translation system translates each source
sentence of a certain test set to generate a list of hypothesis translations. These are compared
against the gold standard translations provided by the test set using an evaluation measure or
metric (see 3.4), resulting in a performance score. The correct translation is called the reference.

In this work, we investigate the use of monolingual training data Tmono, i.e. a corpus of sentences
in either the source or the target language. We use Tsrc or Ttrg to specify a monolingual training
corpus of the corresponding language.

Next, we present a brief background on statistical machine translation in general and an in-
depth description of state-of-the-art neural machine translation in particular.

3.2 Statistical Machine Translation
Statistical machine translation is a sub-task of the field of natural language processing (NLP)

that uses statistical methods to model translation as a probabilistic problem. Formally translation
is described as finding the target sentence êÎ1 that minimizes the decision errors by maximizing
the true translation probability Pr( • |fJ1 )

fJ1 7→ êÎ1 := êÎ1

(
fJ1

)
:= arg max

eI1,I

{
Pr(eI1|fJ1 )

}
.

This means we assume a true probability distribution Pr(eI1|fJ1 ) that is conditioned on the source
sentence fJ1 and describes for each possible target sentence eI1 how likely it is as a translation of
the source sentence fJ1 . A translation is obtained by applying Bayes’ decision rule on the true
distribution.

From this theoretical framework several challenges emerge. Notably, the true probability dis-
tribution Pr is a theoretical concept and not available in practice. Instead, we rely on statistical
models p that are optimized on training data to guide the decision-making process in translation.
The statistical modeling is faced with three major problems [Ney 01]:

• The modeling problem considers the question of how a model p should be formulated to
approximate Pr.

• The training problem arises since most models p = pθ rely on a set of free parameters θ
that govern the behavior of the model. This training aims to find an assignment for each free
parameter such that pθ mimics Pr as well as possible. Since Pr is not directly observable,
it is estimated from a sufficiently big set of training data.

• The search problem originates from the arg max operation over all possible target se-
quences. Performing this operation naively is infeasible in practice, since e.g. 30, 000 target
words can be arranged in 5.9× 1044 different sequences of ten words.

The main focus of this work lies on the training and modeling problems.
In this work, we consider two types of statistical models: language models and translation

models. A language model pLM describes the prior probability pLM(eI1) = p(eI1) that the sentence eI1
is a valid sentence in the language under consideration. The translation probability pTM(eI1|fJ1 ) =
p(eI1|fJ1 ) models the posterior probability that the source sentence fJ1 is translated to eI1. Since
both language and translation models are sequential models, we can decompose the probability
distribution of both by the chain rule of conditional probabilities

pTM(eI1|fJ1 ) :=
I∏
i=1

pTM(ei|ei−1
0 , fJ1 )
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3.2 Statistical Machine Translation

where an artificial symbol e0 := 〈BOS〉 is added to the target to mark the beginning of the
sequence. A similar symbol eI+1 := 〈EOS〉 is appended to the end of the sequence to denote the
end of the sentence. For simplicity of notation, we shift I by one and consider the end-of-sequence
token to be in the last position.

The presented sentence decomposition is very general and has been used to segment sentences
as sequences of phrases [Zens & Och+ 02], words [Brown & Pietra+ 93], sub-words [Sennrich &
Haddow+ 16c], characters [Costa-jussà & Fonollosa 16], bytes [Costa-jussà & Escolano+ 17] or a
hybrid of different segmentations [Wang & Cho+ 20, Carrión-Ponz & Casacuberta 22]. State-of-
the-art architectures can work with most of these sentence segmentations and we use the word
token as a general term to describe the individual units of the input and output sequence.

3.2.1 Neural Machine Translation

Over the last three decades, a variety of approaches were proposed for how to model the
translation probability pTM. Early works relied on word-level models with explicit alignment and
language models [Brown & Pietra+ 93]. Phrase-based models extended the translation model such
that several consecutive words are translated as a single unit [Zens & Och+ 02, Koehn & Och+

03]. Both modeling approaches are traditionally implemented as count-based models, meaning
that they estimate the probability of an event by counting how often it occurred in the training
data. Sentences are broken down into sequences of fixed length and their co-occurrence across
the training data is counted. In order to model complex events such as long word sequences
these count-based models typically require a sparse probability table, together with smoothing
strategies such as backing-off [Kneser & Ney 95].

In contrast to this, neural machine translation systems operate on word sequences of arbitrary
length with implicit smoothing techniques. The underlying artificial neural network extracts
information from the training data and stores it within the matrices that comprise its layers.
Most neural translation architectures consist of two major parts: an encoder that extracts features
from the input signal, i.e. the input sentence, and a decoder that produces a series of probability
distributions over the target language vocabulary. Early systems featured an architecture where
the encoder and decoder were connected with a simple adapter, which caused an information
bottleneck [Sutskever & Vinyals+ 14]. The introduction of the cross-attention layer to connect
the encoder and the decoder created a breakthrough [Bahdanau & Cho+ 15, Luong & Pham+ 15]
and established neural machine translation systems as the new state-of-the-art method [Bojar &
Chatterjee+ 16]. In the next section, we focus on the current state-of-the-art self-attentive neural
machine translation system called transformer [Vaswani & Shazeer+ 17].

3.2.2 Building Blocks

Here, we describe the components that are the building blocks of state-of-the-art neural machine
translation and language model architectures. Neural machine translation models use an encoder-
decoder architecture, i.e. they consist of two major components. The task of the encoder is to
map the source sentence to a sequence of hidden states

hJ1 := Encoder
(
fJ1

)
(3.1)

that captures all relevant information of the source sentence. The decoder obtains this represen-
tation as well as the current target context and returns a probability distribution over the target
vocabulary

pTM(ei|fJ1 , ei−1
0 ) = Decoder(hJ1 , ei−1

0 )

9



3 Preliminaries

e0 e1 eI−1f1 f2 fJ

Encoder

Decoder

p
(
e1|e0, hJ1

)
p
(
e2|e10, h

J
1
)

p
(
eI |eI−1

0 , hJ1
)

... ...

...

...

h1 h2 hJ

Figure 3.1: Structure of the encoder-decoder architecture. The encoder maps the input sequence
fJ1 to the representation hJ1 . The decoder generates a sequence of probability distri-
butions based on these representations as well as the partial target sentence ei−1

0 .

which is used to generate a target sentence. This structure is visualized in Figure 3.1.
In neural machine translation, the encoder and decoder together build an artificial neural

network. This neural network consists of different layers, i.e. differentiable functions, that are
stacked upon each other, by the composition of their corresponding functions. The layers of
modern machine translation systems are rather complex (see Section 3.2.3), consisting of sub-
layers with more elemental computations. We start by introducing these general-purpose sub-
layers, such as embedding, attention and feed-forward layers, before depicting the full architecture.

Embedding Layer

The first layer of both the encoder and the decoder is a word embedding or, more precisely, a
token embedding layer. Neural network-based models operate on a closed vocabulary of source Vf
and target tokens Ve. Note that this does not imply a closed vocabulary at the language level. For
example, a fixed set of characters as source model-vocabulary Vf can cover an unlimited number
of source words. In particular, such a system can generalize to previously unseen words, meaning
that the technical vocabulary of the model is closed but the vocabulary it covers in a language
is open. For further discussion on these approaches we refer the reader to Section 3.3.2. In this
work, we use the term vocabulary to refer to the technical vocabulary of the model. The entries
of the vocabulary are the tokens of the segmented sentences.

No matter whether the tokens of the vocabulary are characters, sub-words or words, they
are always discrete symbols, while neural networks operate fundamentally in a continuous space
of hidden states. An embedding maps these discrete input tokens to continuous representations
which can be trained with the rest of the model (see Section 3.2.4). This is achieved by representing
the source token f ∈ Vf from the source vocabulary as a one-hot vector

1f :=
{

1 v = f

0 else
∀ v ∈ Vf .

The resulting vector 1f ∈ R|Vf | is multiplied with an embedding matrix Ef ∈ Rdmodel×|Vf |

˜̃f := Ef1f (3.2)

i.e. it is passed through a fully connected linear layer without an activation function. Note that
this multiplication is functionally equivalent to selecting the f -th column of the matrix Ef .
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3.2 Statistical Machine Translation

Positional Encoding

Given a source sentence fJ1 , each word embedding ˜̃fj is a context-free representation of the
corresponding source token fj . In recurrent neural networks [Sutskever & Vinyals+ 14], the
sequence order of the input sentence is implicitly encoded by the order of operations. In contrast
to this, all sequence layers in self-attentive encoders are invariant to the order of their input
sequence. A permutation of the input sequence simply causes an identical permutation of the
output sequence. Since the order of words in a sentence does matter, the transformer [Vaswani
& Shazeer+ 17] relies on an explicit positional encoding

f̃j := ˜̃fj + pos(j) (3.3)

where the j-th position of the input sequence is encoded in the positional vector

pos(j)k :=

sin
(

j

100002k/dmodel

)
k is even

cos
(

j

10000(2k−1)/dmodel

)
k is odd

∀k ∈ Rdmodel .

These sinusoidal positional embeddings are not trainable. Instead, they rely on fixed sine and
cosine functions with different frequencies. Since the encoding of a certain position j is not a
learned vector, it is possible to generate encodings of positions that are not observed during
training. Hence the sinusoidal positional embeddings are capable of generalizing to sequences of
arbitrary length.

We sometimes include layer normalization [Ba & Kiros+ 16] in the positional encoding

f̃j := LayerNorm(f̃j)

which can make the training more stable. We denote explicitly if layer normalization is applied.

Attention

The attention mechanism is the core component that fueled two of the last major jumps in
machine translation performance [Bahdanau & Cho+ 15, Vaswani & Shazeer+ 17].

Attention is often interpreted as a mapping that performs a soft lookup of a query vector on a
sequence of key, value pairs. The input is a sequence of query vectors

q1, . . . , qI ∈ Rdq

together with a sequence of key and value pairs

(k1, v1), . . . , (kJ , vJ) ∈ Rdk × Rdv .

In the case of a ‘hard’ lookup table, the value vj is returned if its key kj matches the query qi
exactly

lookup(qi; kJ1 , vJ1 ) :=
{
vj ∃j : kj = qi

〈not found〉 else.

Instead, attention performs a soft lookup where the current query qi is compared against each
key kj via a similarity measure α̂

α̂i,j := α̂(qi, kj) := 1√
d

(Wkkj)TWqqi (3.4)
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Attention Input: qi, kJ1 , vJ1

AttentionLayer(1) ...

Concatenate
(
ĉ

(1)
i , . . . , ĉ

(M)
i

)
=: ĉ(full)

i

Fully Connected Layer

AttentionLayer(2) AttentionLayer(M)

ĉ
(1)
i

...ĉ
(2)
i ĉ

(M)
i

Attention Output: ci = c
(full)
i

Figure 3.2: Multi-head attention layer with M heads.

with weight matrices Wq ∈ Rd×dq and Wk ∈ Rd×dk . These attention energies α̂ assign a measure
of importance and similarity to each key. Normalizing them yields the attention weights

α(j|i) := exp (α̂i,j)∑
j′ exp

(
α̂i,j′

) , (3.5)

a probability distribution over the positions J . Each value vector vj should influence the output
of the soft lookup proportionally to its similarity to the query vector qi. Hence, the attention
outputs a weighted average over all values

ci :=
∑
j

α(j|i)Wvvj

Overall, the attention layer is a function

ci = AttentionLayer
(
qi, k

J
1 , v

J
1 ;Wq,Wk,Wv

)
.

This general attention layer is used in various ways in the transformer architecture.

Multi-Head Attention
The transformer architecture introduces multi-head attention [Vaswani & Shazeer+ 17]. Instead

of using a single attention layer, a total of M attention layers operates on the same input in
parallel. These individual layers are commonly called attention heads and each uses its own set
of weight matrices W (m)

q ,W
(m)
k ,W

(m)
v

c
(m)
i := AttentionLayer(m)

(
qi, k

J
1 , v

J
1

)
:= AttentionLayer

(
qi, k

J
1 , v

J
1 ;W (m)

q ,W
(m)
k ,W (m)

v

)
The output of all M attention heads is concatenated to a new hidden state

ĉ
(full)
i :=


c

(1)
i
...

c
(M)
i


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3.2 Statistical Machine Translation

which is passed through a fully connected layer

c
(full)
i := Wfcĉ

(full)
i

without an activation function or a bias term. Figure 3.2 illustrates the multi-head attention
sub-layer. Since multi-head attention showed solid improvements [Vaswani & Shazeer+ 17], all
systems in this work use multi-head attention for all attention components.

Self-Attention

Self-attention layers are a special case of general attention where key, query and value are
identical

qI1 = kI1 = vI1 .

However, their corresponding weight matrices are still distinct. Self-attention layers are sequential
feed-forward layers; this distinguishes them from the recurrent sequence layers such as LSTMs
[Hochreiter & Schmidhuber 97] and GRUs [Cho & van Merrienboer+ 14] previously used in neural
machine translation. Since there is no dependency between the computation of c(full)

i and c
(full)
i+1 ,

these values can be calculated in parallel.
Self-attention layers that access the full key sequence for each query are called bidirectional.

In many text-generation tasks, however, unidirectional self-attention layers are required. These
layers restrict the query qi to only access the previous i′ ≤ i key, value pairs (ki′ , vi′). This can be
achieved by modifying the attention energies from Equation 3.4 to assign artificially low values
to all other positions

α̂i,i′ =


1√
d
(Wi′ki′)TWqqi i′ ≤ i

−∞ else.

This means that after the normalization described in Equation 3.5 all future positions i′ > i
obtain an attention weight of zero. This approach is also sometimes called causal attention or
left-to-right attention.

Feed-Forward Block

The transformer architecture features advanced linear layers that consist of two stacked, fully
connected layers. The first fully connected layer, with a rectified linear unit (ReLU) as activation
function and parameters W1, b, projects the input vector x ∈ Rdmodel to a higher dimension

x̂ := FullyConnected(x)
= ReLU (W1x+ b) ∈ Rdff

where commonly dff = 4 × dmodel. Next the intermediate state x̂ is mapped back to its input
dimension dmodel via a fully connected layer without activation function and bias vector

y := W2x̂

= W2 · ReLU (W1x+ b)

where W2 denotes the weight matrix.
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Layer Input

Layer Normalization

Main Operation

Layer Output

Add

(a) Pre-Norm

Layer Input

Layer Normalization

Main Operation

Layer Output

Add

(b) Post-Norm

Figure 3.3: Structure of most transformer sub-layers, namely self-attention, cross-attention and
feed-forward blocks. Embedding, projection and positional encoding layers are used
without modifications. In contrast with the original transformer architecture [Vaswani
& Shazeer+ 17] that utilizes the post-norm approach (b), we use the pre-norm (a) for
all experiments.

3.2.3 Transformer
In this section, we describe the transformer architecture as introduced in 2017 by Vaswani et

al. [Vaswani & Shazeer+ 17]. This architecture is so universally accepted as state-of-the-art, that
in 2021 all 170 submitted solutions to the prestigious shared task on machine translation of the
Conference on Machine Translation (WMT) used a variant of it [Akhbardeh & Arkhangorodsky+

21].
The transformer consists of two major parts, the encoder and the decoder, each of which is

composed of several sub-layers. In the following, we describe the structure of these sub-layers
before introducing the architecture of the encoder and decoder.

Structure of a Sub-Layer

Self-attention, cross-attention and feed-forward blocks are essential components of the trans-
former architecture. Each of these is wrapped in the sub-layer structure depicted in Figure 3.3(a).
Layer normalization [Ba & Kiros+ 16] is applied on the input xI1 of the layer

x̂I1 = LayerNorm(xI1).

These layer-normalized hidden states are processed by the main operation of the layer

ˆ̂xI1 = MainOperation(x̂I1)

where the main operation is either an attention layer or a feed-forward block. The original input
xI1 of the sub-layer is added to the hidden state ˆ̂xI1

yi = ˆ̂xi + xi ∀1 ≤ i ≤ I

forming a residual connection or skip connection that facilitates the training of deep neural ar-
chitectures [He & Zhang+ 16]. The sub-layer outputs the sequence yI1 . Due to the residual
connection, each vector yi in the output sequence has the same dimension as its corresponding

14



3.2 Statistical Machine Translation

h(`−1)
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J
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f1 f2 fJ
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f̃1 f̃2 f̃J
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Figure 3.4: Encoder of the transformer architecture with Lenc layers. Sub-layers with computa-
tional operations are denoted in rectangles and important hidden states are shown
in circles. The self-attention layer and feed-forward block use the structure of linear
normalization and residual connection with the pre-norm approach as described in
Figure 3.3(a).

input vector xi. Hence, the hidden state between two transformer sub-layers is always of the same
dimension dmodel.

Note that the pre-norm sub-layer structure as described above differs from the post-norm ap-
proach used in the original transformer paper, where layer normalization is instead applied after
the addition operation, as depicted in Figure 3.3(b). Different works investigate the connection
between layer normalization, training stability and the use of warm-up steps in training [Xiong &
Yang+ 20, Huang & Pérez+ 20, Nguyen & Salazar 19]. Since pre-norm architectures are found to
be more stable in training and do not require warm-up steps, they are used in all our experiments.

Encoder

The transformer encoder consists of an embedding, a positional encoding and a stack of encoder
layers as depicted in Figure 3.4. The input sequence fJ1 is first passed through an embedding layer
before adding a positional encoding. The resulting sequence of embedded tokens f̃J1 is passed on
to the stack of encoder layers.

Conventionally a neural network layer contains a single, relatively simple operation. However,
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in the context of the transformer architecture, the term ‘encoder layer’ refers to a rather complex
structure, consisting of several elaborate sub-layers. Each encoder layer consists of a bidirectional
self-attention layer followed by a feed-forward block layer, as shown in Figure 3.4. Both of these
operations are individually wrapped in a sub-layer block using layer normalization and a residual
connection with the pre-norm approach (see Figure 3.3(a)). The self-attention layers are multi-
headed with M heads and the number of encoder layers stacked is denoted by L = Lenc where
no parameters are shared between the layers. We denote the input of layer ` ∈ {1, . . . , Lenc} by
(hJ1 )(`−1) = h(`−1) and initialize

h(0) =
(
h(0)

)J
1

= f̃J1

using the sequence of the embedded source tokens f̃J1 . Since we use a pre-norm approach the
output h(L) of the last layer is not layer-normalized. Hence, we apply a final layer normalization
on top of the encoder. For simplicity, we do not display this operation in further figures and
merge the positional encoding into the embedding layer.

Decoder

The decoder closely resembles the architecture of the encoder. As shown in Figure 3.5, the target
sentence eI0 is passed through an embedding layer and combined with a positional encoding before
entering the first decoder layer. The term decoder layer refers to a structure of several complex
sub-layers, the first of which is a multi-headed self-attention layer. Due to the requirements on
the decoder in search, this self-attention layer is unidirectional and outputs the decoder hidden
state si = s

(`)
i . Note that there is an index shift between the input word ei−1 and the generated

hidden state vector si. This hidden state is passed to a cross-attention layer.
Cross-attention [Bahdanau & Cho+ 15] was a breakthrough in machine translation systems,

removing the bottleneck between the encoder and the decoder of previous architectures [Sutskever
& Vinyals+ 14] and enabling neural network standalone systems to establish themselves as the new
state-of-the-art model in machine translation. The cross-attention layer is a multi-head attention
layer with shared keys and values

q
(`)
i := s

(`)
i(

k(`)
)J

1
:=
(
v(`)

)J
1

:= hJ1

i.e. the queries are the decoder states and the keys and values are the encoder outputs. As a
consequence, the queries are layer-specific, while the key-value pairs are shared across all layers.
Cross-attention is a major focus of this work and we refer the reader to Section 5.1 for an in-depth
discussion.

The output of the cross-attention layer, typically called the context vector ci = c
(`)
i , contains

information about the source and the partial target sentence. It is passed through a feed-forward
block, which is the final building block of a decoder layer. All three sub-layers, namely self-
attention, cross-attention and the feed-forward block, are wrapped in the pre-norm sub-structure
shown in Figure 3.3(a), including a residual connection and layer normalization. The residual
connection in particular means that the output of a decoder layer has the same dimensions and
sequence length as its input.

In the decoder Ldec layers are stacked upon each other and commonly we use Ldec = Lenc = L.
After the last decoder layer, a final layer normalization is applied before a linear layer projects
the hidden states to the size of the vocabulary. This projection layer does not use an activation
function.

The output of the projection layer is normalized via a softmax operation and the result is a
probability distribution over the target vocabulary Ve.
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Figure 3.5: Decoder of the transformer architecture. Layers with computational operations are
denoted in rectangles and important hidden states are shown in circles.

Transformer Architecture for Translation Models

By connecting the encoder and the decoder we obtain the transformer architecture [Vaswani
& Shazeer+ 17] as depicted in Figure 3.6. We simplify the figure by omitting technical details
such as the final layer normalization operations for the encoder and decoder. For all further
representations, we merge the positional encoding into the embedding layer.

Note that the transformer is a fully feed-forward architecture, meaning that the hidden states
of a layer can be computed in parallel across the whole input sequence. This yields a huge
improvement in training speed and is one important reason why the transformer architecture
outperforms recurrent LSTM-based systems [Zeyer & Bahar+ 19].

In the transformer architecture many hyperparameters are shared between layers. For example,
all hidden states output from a sub-layer are of size dmodel for each time step both in the encoder
and the decoder. All self- and cross-attention layers in the transformer architecture are multi-head
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Figure 3.6: Unrolled transformer architecture for a source and target sentence of length J = I = 3.

with the number of heads M shared across all layers and the dimension of the projected query,
key or value vector is dhead = dmodel

M . The feed-forward blocks use an internal dimension of dff
commonly set to dff = 4dmodel.

3.2.4 Training

Most neural network layers contain free parameters, commonly in the form of weight matrices.
The process of estimating the free parameters θ of a neural network is called training. This is
commonly done by selecting a training set T of example data points and choosing a training
criterion F or objective function. During training an optimization algorithm iteratively finds an
assignment θτ of the network parameters for each training step τ such that the desired objective
function is reduced. In the case of machine translation, each data point is a pair (fJ1 , eI1) of source
and target sentence which are translations of each other. In this work we only consider supervised
training, meaning that for each sample the correct output is known during training.

In the following, we introduce the training criterion and optimizer used throughout this work.
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Training Criterion

In accordance with the literature [Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15, Vaswani &
Shazeer+ 17], we use the training criterion

F (θ) := 1
|T |

∑
(fJ1 ,eI1)∈T

log p(eI1|fJ1 , θ)

to estimate the parameters θ of the model p = pθ = p( • |θ) over the training data T . Since the
training criterion is only used to find the maximizing argument

θ∗ := arg max
θ

F (θ)

we commonly drop the scaling factor and use the equivalent training criterion

F (θ) =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 , θ). (3.6)

Maximizing F is equivalent to minimizing the negative cross-entropy loss

LCE(θ) = − 1
|T |

∑
(fJ1 ,eI1)∈T

pdata(eI1|fJ1 ) log p(eI1|fJ1 , θ) (3.7)

where pdata is the empirical probability of observing the translation from fJ1 to eI1 on the training
data. Since the empirical probability distribution focuses all probability mass on a single point
for each training pair (fJ1 , eI1), Equation 3.7 can be simplified

LCE(θ) = − 1
|T |

∑
(fJ1 ,eI1)∈T

log p(eI1|fJ1 , θ) (3.8)

and the scaling factor 1
|T | is often omitted since it does not affect the optimization problem.

Label smoothing [Szegedy & Vanhoucke+ 16] proved to be an effective technique to reduce
overfitting, i.e. learning specifics of the training data instead of the general patterns of the task.
In the vanilla training criterion, we assume that the probability mass p( • |fJ1 ) should be focused
entirely on the ground truth translation eI1

F (θ) =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 , θ)

=
∑

(fJ1 ,eI1)∈T

I∑
i=1

∑
e∈Ve

δ(e, ei) log p(e|ei−1
0 , fJ1 , θ)

where the Kronecker delta δ(e, ei) yields an empirical, one-hot probability distribution over the
target vocabulary Ve. The idea of label smoothing is to take an amount of ε > 0 of the ground
truth label and spread this probability mass uniformly across all classes Ve

Fsmoothed(θ) =
∑

(fJ1 ,eI1)∈T

I∑
i=1

∑
e∈Ve

[
(1− ε)δ(e, ei) + ε

|Ve|

]
log p(e|ei−1

0 , fJ1 , θ). (3.9)

Many variations of label smoothing exist [Gao & Wang+ 20]; however, throughout this work, we
use Fsmoothed as the training criterion if not stated differently.
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Optimizer

Optimizing the parameters of the transformer architecture requires the solution of a non-convex
optimization problem with typically 50M-300M free parameters (see e.g. [Vaswani & Shazeer+

17, Ott & Edunov+ 18, Fan & Gong+ 21]). Since no close-form solution is known for this problem,
iterative methods such as stochastic gradient descent (SGD) are used to train neural models.
Gradient descent methods update the parameters θ of the objective function F (θ) based on its
current gradient

θτ+1 := θτ − λ
∂F

∂θ
(θτ ) (3.10)

where the step size or learning rate λ is a hyperparameter of the training.
Since the training criterion F and its gradient depend on a sum over the entire training data, an

exact computation of either is infeasible. Hence, in practice, stochastic gradient methods partition
the training data into mini batches of a fixed batch size and compute an approximation of the
true gradient based on each sub-selection of the training data. Note that we distinguish between
the technical batch size, i.e. the batch size that is computed in parallel on the hardware, and the
effective batch size, which can be increased by accumulating the gradients computed from several
technical batches before applying one update step as described in Equation 3.10.

The gradient of a neural network with hundreds of millions of parameters can be computed
efficiently due to the layered structure of the underlying function. Stacking layers in a neural
network is equivalent to the composition of differentiable functions, which allows for efficient
computation of the gradient via the chain rule of calculus. This property is the core of the
backpropagation algorithm [Rumelhart & Hinton+ 86] that allows computation of the gradient of
big neural networks. In this work, we rely on the automatic computation of the gradient of all
neural networks via backpropagation provided by the Tensorflow toolkit [Abadi & Agarwal+ 15].

The approach of parameter estimation via stochastic gradient descent with gradients computed
from backpropagation is the gold standard in neural-network-based machine learning approaches.
However, there are many variations to the stochastic gradient descent algorithm used in the
training of neural networks in general [Sun & Cao+ 20] and machine translation in particular
[Bahar & Alkhouli+ 17]. In this work, we rely on the Adam [Kingma & Ba 15] optimizer to
train all machine translation models. An important parameter of the Adam algorithm is the
learning rate λ. We start with a given λ and scale it down whenever the model fails to increase
validation set performance for several consecutive updates. This procedure is commonly called
newbob learning rate reduction.

The transformer architecture is commonly trained using a series of warm-up steps during which
the learning rate is increased [Vaswani & Shazeer+ 17]. After a fixed amount of warm-up steps,
the learning rate can only be kept or decreased for the rest of the training. Since we use a pre-
norm structure for the transformer sub-layer (see Section 3.2.3 for details), warm-up steps are
not needed to obtain stable training [Nguyen & Salazar 19]. Hence, we do not use any warm-up
steps, in contrast to many common implementations of the transformer architecture.

A training run with a gradient descent algorithm creates a series of model iterations, most of
which are immediately overwritten by their successor state. At regular intervals, based on the
number of training steps, we store the intermediate version of the model as a model checkpoint for
evaluation. These checkpoints are evaluated by the target metric on the development set, namely
Bleu (see Section 3.4.1) for machine translation models and perplexity (see Section 3.4.3) for
language models, and the best checkpoint according to the respective metric is selected for further
use. This procedure is equivalent to validation-based early stopping.
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3.2.5 Search

From the training we obtain a translation model p = p( • |θ). To translate a source sentence
fJ1 we ideally apply the Bayes’ decision rule with length normalization

êÎ1 := arg max
I,eI1

{
I

√
p(eI1|fJ1 )

}
(3.11a)

= arg max
I,eI1

{1
I

log p(eI1|fJ1 )
}

(3.11b)

and select the hypothesis êÎ1 with the highest probability according to the translation model.
However, the set of possible candidates eI1 of length I is |Ve|I . A small vocabulary contains
around |Ve| = 3, 000 entries and the average target sentence length is around Iavg = 20 tokens for
many tasks. This means that there are 3, 00020 = 1069 possible sequences to consider, which is
infeasible in practice. Instead, we apply beam search to approximate the maximization.

Beam search is the dominant algorithm for performing translation with neural translation
models [Sutskever & Vinyals+ 14, Bahdanau & Cho+ 15, Vaswani & Shazeer+ 17]. Performing
left-to-right decoding, the search algorithm starts with an empty hypothesis e0 = 〈BOS〉. Each
active hypothesis ei0 is iteratively expanded by generating the probability distribution p(e|ei0) over
the target vocabulary. The n expanded hypotheses with the highest probability form the new set
of active hypotheses. The parameter n is the beam size and for n = ∞ beam search is an exact
search algorithm. The beam search algorithm outputs an n-best list Bn consisting of the n best
hypotheses with respect to the model p. The sentence with the highest probability êÎ1 is used as
the translation or hypothesis of the model.

3.2.6 Transformer Architecture for Language Models

A variant of the transformer architecture has become a very successful language model (LM)
[Al-Rfou & Choe+ 19, Dai & Yang+ 19, Irie & Zeyer+ 19]. A language model assigns a probability
distribution over a vocabulary Ve for a sequence of words eI1

pLM(eI1) =
I∏
i=1

pLM(ei|ei−1
0 )

also called the prior. For simplicity, we commonly denote p = pLM. Language models measure
the fluency of the sentence eI1 or, more formally, how probable it is to observe the sentence eI1
in the respective language. Similar to machine translation, the task of language modeling relies
on statistical approaches, with neural networks providing state-of-the-art results. Notably, these
models are trained using monolingual data, which by nature is easier to obtain than bilingual data.
We refer to Appendix A.1 for a comparison between the amount of monolingual and bilingual
data available across several tasks.

In this work, we only use transformer language models as described by Irie et al. [Irie &
Zeyer+ 19]. The architecture is depicted in Figure 3.7 and is similar to a transformer decoder
without cross-attention layers. The input sequence is first passed through an embedding layer and
combined with a sinusoidal positional embedding. This is followed by a stack of L transformer
language model layers each consisting of a unidirectional self-attention sub-layer as well as a
feed-forward block. Both of these are nested in the sub-structure of transformer sub-layers as
described in Section 3.2.3. In contrast to translation models, we use a post-norm architecture
for all standalone language models [Irie & Zeyer+ 19]. The output of the L-th transformer
language model layer is passed through a linear layer without an activation function which projects
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Figure 3.7: Language model based on the transformer architecture.

the hidden state to match the size of the vocabulary Ve. A softmax layer transforms it into a
probability distribution over Ve.

In this work, we use language models for two main purposes: (a) as a standalone model used in
log-linear model combination and (b) during multi-task training as a sub-model of a transformer
translation model. Based on those two applications, two different language model setups are
utilized.

For the standalone models (a) we follow the best practices for the architecture laid out by Irie
et al. [Irie & Zeyer+ 19]. In particular, the sub-layers use a post-norm approach and training
is performed using plain stochastic gradient descent training. Furthermore, queries, keys and
values share the same dimensionality across all heads and layers. However, we use an explicit
positional encoding, and due to the necessity to fit the language and translation models together
in the memory of a single graphics processing unit (GPU), we restrict the model size. For details
regarding the model setup and size we refer the reader to Section 4.4.1

Language models used in multi-task and pre-training approaches (b) need to be compatible
with the translation models, namely, they are required to be a sub-model of the transformer
architecture. Hence we use pre-norm approaches for all language models involved and train them
using the Adam optimizer [Kingma & Ba 15].

3.3 Pre-Processing
To simplify and regularize the input text we apply several pre-processing steps before passing

it to the statistical models. Pre-processing is applied to the source and target sentences to reduce
the system vocabularies and decrease data sparsity.

3.3.1 Tokenization
Tokenization refers to the act of segmenting an input sentence into a series of words and

punctuation marks. In many languages, punctuation marks are directly attached to a neighboring
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word, e.g. a full stop is appended to the last word in the sentence while an opening quotation mark
is attached to the beginning of the next word. Tokenization tools commonly add a whitespace
to separate a punctuation mark from the word it is attached to. In order to distinguish these
occurrences from punctuation marks that can be considered part of a token or expression, such
as e.g. or don’t, tokenization tools are used. Widely used tokenizers, such as the one provided by
the Moses toolkit [Koehn & Hoang+ 07], are rule-based systems that cover common patterns.

3.3.2 Sub-Word Units

Translation models in general and neural machine translation models in particular commonly
operate on fixed (technical) vocabulary for the source and target language. In the transformer
architecture this is caused by the embedding layer in which a one-hot representation 1e ∈ Ve of the
target word e is multiplied with the embedding matrix E ∈ Rdmodel×|Ve|. Since the vocabulary Ve
is generated from the available training data, any word that is unknown at the time of generation
of the vocabulary ê /∈ Ve cannot be represented by the embedding layer. Besides causing out-of-
vocabulary (OOV) or unknown words, a fixed-size vocabulary frequently suffers from data sparsity.
Because many words occur only once or twice in a training corpus it is impossible to make reliable
statistical statements about them. This problem increases if we consider longer sequences of words
as individual events in a statistical model.

Sub-word methods approach both these problems by splitting the words in a text into smaller
character groups. The most common approach, the byte-pair encoding (BPE) algorithm [Sennrich
& Haddow+ 16c], splits all words in a text corpus down to sequences of characters. Then the most
frequent character pair across all words is merged into a new token that replaces all occurrences
of the underlying character pair in the text corpus. This process is repeated for a fixed number
of merging operations, commonly around 5k-70k times. At the end of the process, all words are
either merged completely or can be expressed as a sequence of relatively frequent sub-word units.
The sequence of merge operations is stored as a BPE model, which can be applied to any text
to obtain a consistent sub-word segmentation. Words that are unknown during training time
can be expressed via these sub-words and, in the extreme case, spelled as sequences of individual
characters. This means that sub-word segmentation approaches are a fluid middle ground between
word-level and character-level methods, where an infinite number of merge operations yields a
word-segmented corpus and zero merge operations achieve a character-level representation of
the input text. Hence, byte-pair encoding acts as a bridge between an open vocabulary that
can represent all possible words from a given alphabet and a system with a vocabulary that is
technically closed.

A lower number of merge operations yields high sequence lengths of the text with low data
sparsity and a small vocabulary. In contrast, a high number of merge operations returns a byte-
pair encoding with shorter sequences from a large vocabulary that is exposed to higher data
sparsity.

Several variations of the BPE algorithm are proposed, e.g. by incorporating morphological
information [Huck & Riess+ 17] or non-deterministic word segmentation [Kudo 18].

3.4 Evaluation Measures

Evaluating the quality of a translation hypothesis is an important step in building reliable,
well-performing machine translation systems. While human evaluation is the gold standard of
metrics, it is too costly and time-consuming to perform in practice during system development.
Many automatic metrics have been developed, aiming to score translations comparably to human
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annotators. The shared task on metrics1 of the WMT 2021 listed 15 metrics ranging from count-
based to systems relying on neural network and word embeddings, working on a granularity
ranging from word n-grams to characters [Freitag & Rei+ 21].

Despite human judgment being the official metric of the WMT shared task on news translation,
automatic evaluation measures have always played a crucial role. In this work, we rely on two
long-time standard evaluation measures that allow comparison with both previous publications
and state-of-the-art systems. However, starting in 2022 the WMT has been using Comet [Rei
& Stewart+ 20] as primary and ChrF [Popović 15] as secondary automatic metric [Kocmi &
Bawden+ 22], indicating a shift towards a new standard in automatic evaluation measures for the
scientific community.

3.4.1 Bilingual Evaluation Understudy (BLEU)

The Bilingual Evaluation Understudy (Bleu) measures how many n-grams of a translation
hypothesis êÎ1 can be explained through the reference [Papineni & Roukos+ 02]. For many years it
has been the de-facto gold standard for the evaluation of machine translation models, and despite
much criticism [Callison-Burch & Osborne+ 06, Mathur & Baldwin+ 20, Freitag & Grangier+ 20],
the metric is used in almost every work on the matter. The core component of the Bleu metric
is the modified n-gram precision

Precn
(
eI1, ê

Î
1

)
:=
∑
wn1

min
{

count(wn1 ; eI1), count(wn1 ; êÎ1)
}

∑
wn1

count(wn1 ; êÎ1)

where the sum over wn1 considers each n-gram of the hypothesis êÎ1 once and count(wn1 ; eI1) is
defined as the number of times wn1 appears in eI1. Note that the denominator can be simplified to∑

wn1

count(wn1 ; êÎ1) = Î − n+ 1

i.e. the count of all n-grams in the hypothesis. Since precision-based metrics are prone to over-
valuing short hypotheses, Bleu uses an explicit brevity penalty

BP(I, Î) :=

1 I ≤ Î
e1− I

Î else

that reduces the score of short translations.
Sentence-level Bleu (Bleus) is computed as a geometric mean of four modified n-gram preci-

sions multiplied with the brevity penalty

Bleus
(
eI1, ê

Î
1

)
:= BP(I, Î) · 4

√√√√ 4∏
n=1

1
4Precn

(
eI1, ê

Î
1

)
.

Instead of Bleus on the sentence level, the Bleu score is computed at the document level, that
is, both the numerator and the denominator of the n-gram precision are accumulated over all
sequences of the test set. Furthermore, it is common practice to report Bleu [%] scores ranging
from 0 to 100 by multiplying the ratio by a factor of 100. Since Bleu [%] is a precision-based
metric, higher Bleu scores indicate better translations.

1https://www.statmt.org/wmt21/metrics-task.html
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3.4.2 Translation Edit Rate (TER)
The Translation Edit Rate (Ter) [Snover & Dorr+ 06] is an error metric based on the Leven-

shtein distance between a hypothesis and a reference translation. In the first step, the minimum
number of edits needed to transform the hypothesis êÎ1 into the reference eI1 is computed. This
distance is then divided by the length of the reference to obtain the Ter metric at the sentence-
level

Ters
(
eI1, ê

Î
1

)
:= min number of edits to convert êÎ1 to eI1

I
.

Ter allows substitution, deletion, and insertion of words as well as shifts of word sequences as
possible edits to convert êÎ1, and all edits are assigned equal costs.

Similar to Bleu, we report document-level Ter[%] by accumulating the number of edits for
each sentence pair of the dataset, dividing it by the accumulated hypothesis length and report
the result as a percentage rather than as a ratio. Note that Ter[%] is an error measure, meaning
lower values refer to a better hypothesis, and that Ter[%] scores of more than 100% are possible.

3.4.3 Perplexity
Language models are evaluated using perplexity (Ppl). This measurement is used in infor-

mation theory to assess how well a probability distribution describes a series of data points.
Perplexity is a transformation of the cross-entropy (see Equation 3.8)

Ppl = Ppl(pθ,D) := exp(LCE)

= exp

− 1
|T |

∑
eI1∈D

ln p(eI1|θ)


where D is the dataset on which the perplexity is reported.

Note that the perplexity is influenced by the underlying vocabulary in general and by the
granularity of the input in particular. This means that sub-word perplexities (like BPE) are not
comparable to word-level measurements.
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4. Monolingual Data in Neural Machine
Translation

Statistical machine translation requires text data from the languages involved. In the most
common approach, bilingual, sentence-aligned data is used to train a machine translating system.
This requires good-quality corpora with several hundreds of thousands of parallel sentence pairs.
Looking at different data collections, such as Europarl1, OpenSubtitles2 or the data selection for
the shared task on news translation of the Conference on Machine Translation (WMT)3, it is
evident that the amount of available bilingual data depends heavily on the language pair. An
overview of the bilingual and monolingual data used in this work is given in Table 4.1.

Monolingual text data is an additional resource that is easier to obtain in practice and could
provide important information about the structure of the languages involved. For English in par-
ticular, the bottleneck for monolingual data is computational power and possibly model capacity,
not the amount of data available.

In recent years many works have investigated the training of unsupervised machine transla-
tion systems that rely purely on monolingual training data [Artetxe & Labaka+ 18, Lample &
Conneau+ 18, Artetxe & Labaka+ 19, Kim & Graça+ 20]. In this work, however, we investigate
how strong machine translation systems, trained on bilingual data, can benefit from additional
monolingual text. We consider three different approaches: (1) We introduce an explicit language
model into the training and search of the machine translation system, (2) we propose a multi-task
training objective that relies on additional monolingual data and (3) we verify the results of the
state-of-the-art method of back-translation [Sennrich & Haddow+ 16b].

4.1 Language Model Fusion
Language models are a straightforward way to use monolingual data, and proved to be helpful

in other language processing areas such as automatic speech recognition and handwriting recog-
nition. In all state-of-the-art architectures for machine translation the decoder acts as a target-
side language model predicting the upcoming target word ei provided the target history ei−1

0 . A
drawback of this implicit or internal language model is that it requires either bilingual training
data or special handling of monolingual data (see Section 4.3).

In this section, we discuss several approaches to combine an explicit language model pLM(eI1)
with a machine translation model pTM(eI1|fJ1 ). Since both the language model and the translation
model provide a distribution over the target vocabulary for every target position i, we can combine
them in a log-linear model

q(ei; ei−1
0 , fJ1 ) = pαTM(ei|ei−1

0 , fJ1 ) · pβLM(ei|ei−1
0 )

1https://www.statmt.org/europarl/
2https://opus.nlpl.eu/OpenSubtitles-v2018.php
3e.g. for the year 2020 https://www.statmt.org/wmt20/translation-task.html
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4 Monolingual Data in Neural Machine Translation

Table 4.1: Overview of the amount of bilingual and monolingual data for the shared tasks used
in this work. Tasks are provided by the IWSLT and the WMT.

task # words
source target

biling mono biling mono
IWSLT En→It 4.7M 2.5G 4.4M 1.2G
WMT Ro→En 16.2M 54.8M 15.9M 1.4G
WMT De→En 111.1M 2.4G 117.7M 1.0G
WMT Zh→En 99.9M 117.2M 389.0M 1.0G

where α and β are the weights of the translation and language model respectively. Note that
the log-linear combination requires that both models operate on the same target vocabulary Ve,
which is particularly important if subword-level systems are employed.

The log-linear model combination q of the two normalized models pTM, pLM is not generally
normalized. In order to obtain a normalized fusion model from q we introduce an explicit renor-
malization which can be done on either the symbol or sequence level. In the following, we discuss
symbol-level and sequence-level normalization strategies both for training and search.

4.1.1 Symbol-level Normalization
Symbol-level or local normalization is obtained by enforcing normalization of the fusion model

at each target position i over the target vocabulary Ve

p(eI1|fJ1 ) =
I∏
i=1

q(ei; ei−1
0 , fJ1 )∑

ẽ∈Ve q(ẽ; e
i−1
0 , fJ1 )

=
I∏
i=1

pαTM(ei|ei−1
0 , fJ1 )pβLM(ei|ei−1

0 )∑
ẽ∈Ve p

α
TM(ẽ|ei−1

0 , fJ1 )pβLM(ẽ|ei−1
0 )

.

This requires a sum over the target vocabulary Ve for each target position i, resulting in O(I · |Ve|)
probabilities that need to be computed per sentence pair.

From Equation 3.6 we derive the training criterion

Flocal =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 )

=
∑

(fJ1 ,eI1)∈T

I∑
i=1

log pαTM(ei|ei−1
0 , fJ1 )pβt-LM(ei|ei−1

0 )∑
ẽ∈Ve p

α
TM(ẽ|ei−1

0 , fJ1 )pβt-LM(ẽ|ei−1
0 )

(4.1)

and from Equation 3.11a the decision rule with length normalization

êÎ1 = êÎ1(fJ1 )

= arg max
I,eI1

{
1
I

I∑
i=1

log pαTM(ei|ei−1
0 , fJ1 )pβs-LM(ei|ei−1

0 )∑
ẽ∈Ve p

α
TM(ẽ|ei−1

0 , fJ1 )pβs-LM(ẽ|ei−1
0 )

}
(4.2)

which is used to generate a hypothesis êÎ1. Note that different language models can be used during
training and search, hence we distinguish between the language model pt-LM used in the training of
the log-linear combination and ps-LM, the language model applied during the search. As a special
case, we consider the case where a language model is only introduced during the search, which is
equivalent to choosing a training language model pt-LM = 1

|Ve| with uniform distribution.
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4.1.2 Sequence-level Normalization

Sequence-level or global normalization of a fusion model is achieved by normalizing over all
possible target sequences

p(eI1|fJ1 ) = q(eI1; fJ1 )∑
Ĩ,ẽĨ1

q(ẽĨ1; fJ1 )
(4.3a)

=
∏I
i=1 p

α
TM(ei|ei−1

0 , fJ1 )pβLM(ei|ei−1
0 )∑

Ĩ,ẽĨ0

∏Ĩ
i=1 p

α
TM(ẽi|ẽi−1

0 , fJ1 )pβLM(ẽi|ẽi−1
0 )

(4.3b)

= 1
Z(fJ1 )

I∏
i=1

pαTM(ei|ei−1
0 , fJ1 )pβLM(ei|ei−1

0 ). (4.3c)

In the denominator, a sum over all target sequences ẽĨ0 is carried out, called the normalization
term Z(fJ1 ). Restricting the target sequences to a maximum length of Imax yields a total of
O(V Imax

e ) summands. This exponential number of computations prohibits sequence-level nor-
malization in practice, where the target vocabulary Ve easily reaches a size of 30k entries and
sequences of length 25 or more are common, leading to 8 × 10111 possible sequences. In the
following, we discuss both the impact and possible solutions to this problem.

First, we consider the search problem for a sequence-level normalized model. Starting from the
Bayes’ decision rule (Equation 3.11a) we obtain

êÎ1 = arg max
I,eI1

{
I

√
p(eI1|fJ1 )

}

= arg max
I,eI1

 I

√√√√ q(eI1; fJ1 )∑
Ĩ,ẽĨ1

q(ẽĨ1; fJ1 )


where the denominator is a constant with respect to the maximization, hence we can omit it.
Together with Equation 4.3 we get

arg max
I,eI1

{
I

√
p(eI1|fJ1 )

}
= arg max

I,eI1

{
1
I

I∑
i=1

log
(
pαTM(ei|ei−1

0 , fJ1 )pβs-LM(ei|ei−1
0 )

)}

which does not rely on the computationally problematic sum over all target sentences. This makes
the implementation of the search for sequence-level normalized models straightforward. Note that
we can simplify the scaling factors in the exponent as well

arg max
I,eI1

{
I

√
p(eI1|fJ1 )

}
= arg max

I,eI1

{
1
I

I∑
i=1

log
(
pTM(ei|ei−1

0 , fJ1 )p
β
α
s-LM(ei|ei−1

0 )
)}

(4.4)

which can be controlled by a single parameter γ := β
α .

Crucially, these simplifications cannot be applied during the training of the log-linear model.
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4 Monolingual Data in Neural Machine Translation

The training criterion for sequence-level normalized models is

Fglobal :=
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 ) (4.5)

=
∑

(fJ1 ,eI1)∈T

log
∏I
i=1 pTM(ei|ei−1

0 , fJ1 )αpt-LM(ei|ei−1
0 )β∑

Ĩ,ẽĨ1

∏Ĩ
i=1 pTM(ẽi|ẽi−1

0 , fJ1 )αpt-LM(ẽi|ẽi−1
0 )β

=
∑

(fJ1 ,eI1)∈T

α
I∑
i=1

log pTM(ei|ei−1
0 , fJ1 )

+
∑

(fJ1 ,eI1)∈T

β
I∑
i=1

log pt-LM(ei|ei−1
0 )

−
∑

(fJ1 ,eI1)∈T

log

∑
Ĩ,ẽĨ1

Ĩ∏
i=1

pαTM(ẽi|ẽi−1
0 , fJ1 )pβt-LM(ẽi|ẽi−1

0 )

 .
However, the exact computation of the full denominator from Equation 4.3

Z(fJ1 ) =
∑
Ĩ,ẽĨ1

Ĩ∏
i=1

pαTM(ẽi|ẽi−1
0 , fJ1 )pβt-LM(ẽi|ẽi−1

0 ) (4.6)

is prohibitive in practice. Note that this is an infinite sum since Z(fJ1 ) sums over all possible
length values I. In practice, we can ignore this and assume that for a given source sentence fJ1
an upper target length Imax, beyond which there is no correct translation.

Even if we consider only a finite number of O(V Imax
e ) target sequences, computing the nor-

malization term Z(fJ1 ) is infeasible in practice. In the following, we discuss several possible
approximations.

n-best list approximation

Instead of computing the full sum over all possible sequences, we consider the subset of the
most probable translations. We rely on an n-best list Bn := Bn(pTM) generated from the not
normalized log-linear model q to approximate

Z(fJ1 ) =
∑
Ĩ,ẽĨ0

Ĩ∏
i=1

pαTM(ẽi|ẽi−1
0 , fJ1 )pβLM(ẽi|ẽi−1

0 )

≈
∑
ẽĨ0∈Bn

Ĩ∏
i=1

pαTM(ẽi|ẽi−1
0 , fJ1 )pβLM(ẽi|ẽi−1

0 ).

This process is depicted in Figure 4.1. In practice, an n-best list Bn, usually containing around
10-1000 sentences, is tiny compared to the full possible space of target sentences.

Limited context assumption and trellis computation

Computing a sum over the scores of all possible sentences is a well-known problem in machine
translation, going back to the IBM models [Brown & Pietra+ 93]. In the case of the IBM models,
the full sum can be computed efficiently due to the very limited target context used by the
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BCC

Z ≈
∑
eI0∈B3

q
(
eI0

)
=

 q(AAB)
+ q(BCB)
+ q(BCC)



3-best list

Figure 4.1: Example of a 3-best list generated from a model q by a beam search with beam size 3.
Nodes are colored gray to indicate that they are pruned from the search graph since
none of their descendants are kept in the beam. To approximate the denominator the
sum over the resulting 3-best list B3 is computed.

models. This stands in strong contrast to neural machine translation and language models, which
in principle allow unlimited context size.

To get a better approximation of Z(fJ1 )

Z(fJ1 ) =
∑
Ĩ,ẽĨ0

Ĩ∏
i=1

pαTM(ẽi|ẽi−1
0 , fJ1 )pβt-LM(ẽi|ẽi−1

0 )︸ ︷︷ ︸
=:q(ẽi; ẽi−1

0 ,fJ1 )

for modern, neural-network-based models, we assume that only the last k words of the translation
are relevant to predict the next word

pTM(ei|ei−1
0 , fJ1 ) ≈ pTM(e|ei−1

i−k+1, ẽ
i−k
0 , fJ1 ) ∀ẽi−k0 .

This means we assume that the probability distribution for the current word ei depends only
on the last k target words and that any target context beyond this threshold does not affect
the current probability distribution and is thus interchangeable. Since all relevant language and
translation models have unlimited history, this generally does not apply; however, we can do an
approximation.

pTM(ei|ei−1
i−k+1, e

i−k
0 , fJ1 ) ≈ pTM(ei|ei−1

i−k+1, ê
i−k
0 , fJ1 )

with

êi−k0 = arg max
ei−k0

{
pTM(ei|ei−1

i−k+1, e
i−k
0 , fJ1 )

}
.

We apply the same approximation to the language model pLM and, for simplicity of notation, we
drop the dependence on the source side on q(ei; ei−1

0 ) = q(ei; ei−1
0 , fJ1 ).

Formally, we assume a model with a fixed context of size k on the target sequence

q(ei; ei−1
0 ) = q(ei; ei−1

i−k)
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Figure 4.2: Example of a trellis with context k = 2 and vocabulary V = {A,B}.

We define the sum over the scores of all sequences of length i that end with the subsequence eii−k

Q(i, eii−k) :=
∑

ẽi0:ẽi
i−k=ei

i−k

i∏
i′=1

q(ẽi′ ; ei
′−1
i′−k).

Since q has a context of limited length k, we can compute the sum Q(i, eii−k) via dynamic pro-
gramming. Starting from the definition of Q we obtain

Q(i, eii−k) :=
∑

ẽi0:ẽi
i−k=ei

i−k

i∏
i′=1

q(ẽi′ ; ei
′−1
i′−k)

= q(ei; ei−1
i−k)

∑
ẽi0:ẽi

i−k=ei
i−k

i−1∏
i′=1

q(ẽi′ ; ei
′−1
i′−k).

where the last token ei is identical for all sequences in the sum

Q(i, eii−k) = q(ei; ei−1
i−k)|Ve|

∑
ẽi−1
0 :ẽi−1

i−k=ei−1
i−k

i−1∏
i′=1

q(ẽi′ ; ei
′−1
i′−k).

This can be formulated as a sum over all tokens at the position i− k − 1

Q(i, eii−k) = q(ei; ei−1
i−k)

∑
ei−k−1∈Ve

 ∑
ẽi−1
0 :ẽi−1

i−k−1=ei−1
i−k−1

i−1∏
i′=1

q(ẽi′ ; ei
′−1
i′−k)


= q(ei; ei−1

i−k)
∑

ei−k−1∈Ve
Q(i− 1, ei−1

i−k−1).

To compute Q(i, eii−k) a trellis can be constructed where each node of depth i corresponds to a
sequence eii−k and holds a Q(i, eii−k). An example of a trellis with k = 2 is depicted in Figure
Figure 4.2, where each node represents a sequence ending with eii−2.

Note that in practice, even with limited context, the exact computation of the sum over all
sequences

Zk =
∑
I,eI

I−k

Q(I, eII−k).
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+ p(B) · p(C|B) · p(A|BC)
+ p(B) · p(C|B) · p(C|BC)

T1

Q(1, [A]) = p(A) ≈ Q(3, [B])

Figure 4.3: Example of a trellis for a model with context k = 1 generated by a beam search
with beam size 3. If two nodes of the same depth share a history of k = 1 tokens
(highlighted in orange), the nodes are merged. Nodes are colored in gray to indicate
that they are pruned from the search graph since none of their descendants are kept
in the beam. To approximate the denominator Z the sum over the resulting trellis T1
is computed. Approximations in the calculation are marked in red.

is still too costly, since at each time step i it requires the storing and computation of each possible
sequence ending eii−k. Even for small vocabularies of 5,000 entries and a history size of 2, this is
infeasible in practice.

Because creating the full trellis is impossible, we use a modified beam search procedure to create
an approximation of the trellis by focusing on the most relevant target sentences. This beam search
with recombination requires an additional parameter k controlling the recombination history limit.
The algorithm step closely resembles a traditional beam search where a list of n partial hypotheses
is iteratively expanded before being pruned according to the beam size n. In beam search with
recombination, candidates for recombination are identified before the hypotheses are expanded.
Candidates are selected for recombination if their last k tokens are identical. If this is the case,
these hypotheses are merged into a single beam entry by adding their scores and selecting the
sequence with the highest score as the partial hypothesis. A visualization for history length k = 1
can be found in Figure 4.3.

In total, the trellis-based global normalization method relies on two approximations:

1. Instead of all possible sentences, the trellis is obtained from a beam search which prunes
low-probability sequences.

2. Instead of using a ‘true’ limited context model, a full-context neural network model is ap-
plied, which relies on the most probable sentence that ends in the relevant context sequence.
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4.1.3 Related Work

For a long time, the difference in availability between monolingual and bilingual data has
made language model integration appealing. Historically, language models are included in the
search procedure for machine translation systems, by applying the Bayes’ theorem to the posterior
probabilities such that the direction of the translation model is inverted [Brown & Cocke+ 90].
Traditional phrase-based translation systems rely on language models as a crucial component to
increase system performance [Brants & Popat+ 07, Bojar & Chatterjee+ 16]. In contrast to these,
neural machine translation systems perform extremely well without an external language model
[Bahdanau & Cho+ 15, Vaswani & Shazeer+ 17].

In neural machine translation systems, language model integration showed improvements on
low-resource tasks by combining either the scores or the hidden states of the neural translation
model and the language model [Gülçehre & Firat+ 15, Gülçehre & Firat+ 17]. These two ap-
proaches are often referred to as shallow fusion and deep fusion respectively. In contrast to the
work described in this thesis, the training of the machine translation system and the language
model are independent in both approaches and both models are only fused during the search
process. Different score combinations with local re-normalization and joint training provided
small improvements across several low-resource tasks [Stahlberg & Cross+ 18]. While these meth-
ods showed improvements on low-resource and narrow domain datasets, they were not used in
competitive neural machine translation systems [Bojar & Federmann+ 18, Barrault & Bojar+ 19].

To the best of our knowledge, no research has been published on globally normalized neural
machine translation systems. The scarce existing work relies on approximations via 1-best lists
[Murray & Chiang 18]. However, the underlying problem of summing over all possible target
sequences arises similarly for the concept of minimum risk training. Recent work also relies on
n-best lists to approximate the space of all sequences [Shen & Cheng+ 16, Wu & Schuster+ 16].

Globally normalized models are employed in other natural language processing tasks [Collobert
& Weston+ 11, Huang & Xu+ 15, Andor & Alberti+ 16] and automatic speech recognition [Michel
& Schlüter+ 20].

During the end-phase of this dissertation large language models [Brown & Mann+ 20] gained a
lot of attention inside and outside the scientific community. The training data for these models
is typically several orders of magnitude bigger, compared to established language models. Early
results show that these models are capable of translation [Brown & Mann+ 20, Vilar & Freitag+

23] opening new ways to use language models and monolingual data for the task of machine
translation.

4.2 Pre-Training and Multi-Task Learning
In this section, we consider the use of monolingual data to provide an auxiliary loss to the task

of machine translation. Since state-of-the-art language and translation models are quite similar
with respect to their architecture [Dai & Yang+ 19, Irie & Zeyer+ 19], it is possible to carry over
the trained parameters of a language model to a translation model. The Bidirectional Encoder
Representations from Transformers for Language Understanding (BERT) introduces another ap-
proach to train transformer-like architectures using only monolingual data by predicting missing
words in a corrupted input sequence [Devlin & Chang+ 19]. In this section, we propose and
investigate different approaches using these monolingual models to improve a translation model.
Instead of maintaining two separate models that are combined on the level of a probability dis-
tribution, we use the monolingual model to initialize certain parameters of the translation model.
This pre-training approach can be extended to a multi-task model that is trained simultaneously
on both translation and language modeling.

Formally, we consider a situation with two systems: a monolingual, and a translation model.
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Each task requires the optimization of the corresponding training criterion with respect to a set
of parameters on a set of training data. For the monolingual model pmono(eI1|θmono) we consider
the training criterion Fmono(θmono) with parameters θmono and monolingual training data Tmono.
Similarly, for translation the training criterion

FTM(θ) =
∑
eI1∈T

log p(eI1|fJ1 , θ).

is optimized with respect to the model parameters θ.
Fundamentally, the application of either pre-training or multi-task learning methods requires

that the model parameters are not disjoint θ ∩ θmono 6= ∅.
We distinguish pre-training and multi-task learning approaches. Pre-training is a multi-stage

approach consisting of:

1. Train monolingual model(s) and obtain θ∗mono by optimizing Fmono(θmono).

2. Transfer the language model parameters θ∗mono to the translation model initialization θ0,
initialize all remaining parameters randomly.

3. Train a translation model starting from θ0.

This pre-training approach relies on the fact that machine translation models are trained using an
optimizer whose performance is based on the starting point θ0. Hence, parameter transfer from
the monolingual model to the translation model is possible at initialization.

Multi-task approaches require a single training with a joint training criterion

Fmulti(θmono, θ) =
∑

eI1∈Tmono

Fmono(θmono; eI1) +
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 , θ),

where θmono ∩ θ 6= ∅. Since the parameters are optimized on the two datasets Tmono and T ,
iterative training procedures like SGD typically alternate update steps between the individual
losses.

It is important to point out that the auxiliary loss function Fmono can be defined on monolingual
training data Tmono from either the source or the target language. This is a crucial advantage
since all machine translation approaches that utilize monolingual data rely on monolingual target
data and there is no established method to benefit from monolingual source data.

4.2.1 Pre-Training
Language Model Pre-Training

Transformer translation models rely on an encoder-decoder architecture. The encoder consists
of several stacked bidirectional self-attention and feed-forward layers which transform the input
source sentence fJ1 into a sequence of hidden states hJ1 . The decoder of a transformer translation
model operates rather similarly on the target sentence eI0. However, there are two important
differences: i) the decoder self-attention layer is unidirectional and ii) an encoder-decoder cross-
attention layer is added that allows the decoder to access the encoder states hJ1 . For a more
detailed description of the transformer architecture, we refer the reader to Section 3.2.3. In the
following, we split a transformer network into an encoder with parameters θenc-LM and a decoder
with parameters θdec = θdec-LM∪̇θatt, where we denote the parameters of the cross-attention θatt
separately.

The notable difference between a transformer decoder and a language model is the cross-
attention layer. For the task of language modeling there is no source sentence information, hence
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Figure 4.4: Schematic view of a transformer architecture. Highlighted layers compose a language
model. Layers colored green denote a target-side language model in the decoder
and blue components a source language model in the encoder, where dashed lines
indicate components that are added to the encoder to create an encoder language
model. Components highlighted in red are differences between the transformer and
the corresponding language models.

both the encoder and the encoder-decoder cross-attention are omitted. However, this means that
the vast majority of layers and parameters are arranged in the same way in translation decoders
compared to language models. We denote this collection of these parameters θdec-LM to highlight
that it only incorporates the language model part of the decoder and lacks the parameters of the
cross-attention. The parameters of θdec-LM are marked in green in Figure 4.4 and are pre-trained
via the training criterion

Ftrg-LM(θdec-LM) =
∑

eI1∈Ttrg

log ptrg(eI1|θdec-LM)

on the monolingual target data Ttrg.
The architectures of the encoder and the decoder of a transformer translation model are very

similar. This means that after some small modifications the encoder can also be interpreted
as a language model (see Figure 4.4). The main difference is the context available in the self-
attention layer. In a translation model, the whole input sentence is available to the encoder,
hence information from former and future input words is used at every source position j in the
bidirectional self-attention layer. In contrast to this, language models cannot access future words
at positions j′ > j, thus their architecture features unidirectional self-attention layers. Dropping
all connections to future words allows for language model pre-training of the encoder. When
employed in the full translation model, these connections are added again. Since the connections
under consideration do not require additional parameters, this means that the full self-attention
layer of the encoder is pre-trained. However, the parameters are used in a slightly different manner
in the translation model. This mismatch will be discussed further later in this section.

In order to pre-train the encoder as a language model, we add a feed-forward projection layer
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Wproj and a softmax output layer on top of the last layer L

psrc( • |f j−1
1 ) = softmax(Wproj · h(L)

j ) ∈ R|Vf |

and denote the additional parameters by θsrc-proj The resulting model psrc is optimized according
to the training criterion

Fsrc-LM(θenc, θsrc-proj) =
∑

fJ0 ∈Tsrc

log psrc(fJ0 |θenc, θsrc-proj). (4.7)

To be consistent with language modeling approaches we also introduce a special token f0 that
marks the beginning of the source sentence. Note that the projection layer adds new parameters
θsrc-proj to this source-side language model that are not part of the encoder.

Looking at the full parameters θ of the translation model, we observe that

θ = θdec-LM ∪̇ θatt ∪̇ θenc (4.8)

i.e. all parameters except the cross-attention are pre-trained. Next, we consider pre-training
setups that allow training all parameters θ of the final translation model as well as reducing the
architectural mismatch between training and pre-training.

While it is undeniably handy that language model pre-training can be applied equally to encoder
and decoder, this generality comes with a drawback. By mapping both parts of the translation
model to the same language model task, we reduce them to their lowest common denominator.
For example, pre-training the cross-attention layers will not be possible with a generalized scheme,
since these layers are not present in the encoder. This means that it is necessary to specialize
the pre-training approaches to either the encoder or the decoder such that they better reflect the
final architecture.

Source Data Pre-Training for the Encoder Using BERT

The main difference between the architecture of an encoder and a language model is the direc-
tion of the self-attention (see Figure 4.4). An encoder can access the full input sentence using a
bidirectional self-attention layer. However, adding information about future tokens in the input
sequence makes the language modeling task trivial. In order to use monolingual data to train bidi-
rectional architectures, the masked language model task, a variation of the language model task,
and the Bidirectional Encoder Representations from Transformers for Language Understanding
(BERT) was proposed [Devlin & Chang+ 19]. BERT is commonly used to train encoder-style
architectures on a huge amount of monolingual data. The resulting model is either fine-tuned to
a downstream task or used as a contextualized word embedding [Dou & Yu+ 19, Peters & Ruder+

19, Zhang & Kishore+ 20]. Since machine translation models already produce strong word em-
beddings [Hill & Cho+ 15] that do not benefit from external training for realistic amounts of
training data [Qi & Sachan+ 18], we fine-tune the BERT model for the downstream task of ma-
chine translation encoding rather than using BERT as a fixed, standalone word embedding. The
BERT architecture is a very close adaptation of a transformer encoder, hence, all parameters of
the encoder θenc are pre-trained.

In the following, we briefly describe the BERT architecture and training strategy as introduced
by Devlin et al. [Devlin & Chang+ 19] and propose how to employ it in the training of translation
models. So far we discussed encoder pre-training by using a source-side language model p(fj |f j−1

0 ).
Instead of generating a sequence left-to-right, the BERT architecture aims to recover an input
sequence fJ1 from a distorted input τ(fJ1 ) via the probability distribution

pbert
(
fJ1 |τ(fJ1 )

)
=

J∏
j=1

pbert
(
fj | j, τ(fJ1 )

)
.

37



4 Monolingual Data in Neural Machine Translation

Input

Distort Symbol?

History is a great teacher .

No Yes Yes No Yes No

Select Distortion Mask Keep
Replace

Randomly

Output History 〈MASK〉 a great organize .

Figure 4.5: Example of the two-stage sequence distortion applied in BERT training. Example
text is taken from newstest2014 of the WMT English→German task.

To generate a consistent sequence all words fJ1 are generated from a series of shared hidden states.
However, note that all J positions are predicted simultaneously and that at position j there is
no dependence on previous words fj′ with j′ < j. This means that pbert is a non-autoregressive
model, which limits its expressive power but allows for time-parallel training of the architecture.
For transformer-style architectures this is very significant for the training speed.

BERT uses a two-stage distortion scheme τ in which each input token fj is considered inde-
pendently. First, each input fj is randomly selected for distortion or left untouched. Formally,
we sample from a Bernoulli distribution with parameter ρdistort for the events ‘DISTORT’ and
‘UNTOUCHED’ with

pdist(X = DISTORT) = ρdistort.

For each input fj we sample independently from this distribution and place it accordingly either
in the set of untouched inputs U or the set of distorted inputs D. This yields a partition of the
input sequence fJ1

{1, . . . , J} = U ∪̇ D.

Untouched inputs will not be changed by the distortion process i.e.

τ(fj) := fj ∀j ∈ U

and typically provide the majority of the inputs (the original author suggests an expected value
of 85% untouched inputs [Devlin & Chang+ 19]).

Inputs fj selected in D are modified according a probabilistic noise function pnoise in three
different ways:

(i) with probability ρmask the input is replaced by the symbol τ(fj) := 〈MASK〉

(ii) with probability ρkeep the input is unchanged τ(fj) := fj

(iii) with probability ρrandom the input is replaced with a (uniform) randomly selected word from
the corresponding vocabulary τ(fj) := v ∼ V

For an example of the distortion process, see Figure 4.5.
In the training criterion only positions selected for distortion j ∈ D are considered

Fbert(θenc, θsrc-proj) =
∑

fJ1 ∈Tsrc

∑
j∈D

log pbert(fj | j, τ(fJ1 ); θenc, θsrc-proj), (4.9)
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Figure 4.6: Encoder as BERT.

yielding a very important distinction between ‘UNTOUCHED’positions j ∈ U and ‘DISTORTED’
positions j ∈ D with an unchanged input fj = τ(fj). The model is optimized to reconstruct the
original token fj from the distorted input sequence τ(fJ1 ). This training criterion Fbert can be
interpreted as a form of cloze loss, named after a linguistic language completion test in which
participants are asked to fill in the blanks created in a text by word deletion [Taylor 53].

Since untouched inputs are usually a significant majority |U| >> |D|, this means that

• the majority of the input sequence is correct and provides a meaningful context

• the model only gets feedback on a minority of its outputs, hence training is expected to be
less efficient

• most positions considered in the loss do require a non-trivial correction of the input, which
needs to rely on the context of the current word, but hardly the current word itself.

The final architecture as well as its place in a full transformer architecture are depicted in Fig-
ure 4.6. In particular, this approach trains all parameters of the encoder and mimics its bidirec-
tional context.

Note that the distortion process is probabilistic, so if the same input fJ1 is presented multiple
times to the system (e.g. during different epochs in training or due to duplicates in the training
data) the sequences τ(fJ1 ) most likely differ over time. This means that, unlike language modeling,
there is no probability for a certain sequence fJ1 . Probabilities are only estimated for an input se-
quence together with a certain distortion, and depending on whether important words are masked
or kept in the input fJ1 , the reconstruction probability pbert(fJ1 |τ(fJ1 )) may vary drastically.
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Target Data Pre-Training Using a Language Model Loss with Pseudo-Encoder

The biggest difference between a transformer language model and a translation model decoder
is the existence of an encoder together with the cross-attention layers. When pre-training the
decoder with monolingual target data, no source-side information is present, hence no encoder
states hJ1 are available. So far in decoder pre-training, we ignored the cross-attention layer and
with it the encoder. This could be problematic as the cross-attention is the only component
that provides source context, which is essential for any translation system. Hence, pre-training
the decoder ignorant of the encoder might lead to a local optimum in which language model
information is dominant and translation information is ignored. Furthermore, the lack of an
attention mechanism creates a mismatch between the pre-training and the main training. During
the main training most parameters of the decoder can be loaded from the pre-trained language
model and the outputs of these layers can be considered reasonably expressive. However, the
cross-attention parameters are initialized randomly, so at the beginning of the main training they
purely add noise to the decoder, which raises the danger that the translation model learns simply
to ignore the cross-attention output in its early epochs. In the past, different strategies considered
several options to simulate an adequate encoder state [Sennrich & Haddow+ 16b, He & Xia+ 16].

We propose to use a pseudo-encoder with BERT-style masking to generate a series of hidden
states which are used in the cross-attention layers. The pseudo-encoder operates on the target
sentence, thus it provides information that is relevant to the decoder. However, if the full target
sequence is handed to the pseudo-encoder, the decoder task of language modeling will become
trivial. To avoid this, we use a BERT-style masking on the pseudo-encoder input together with a
selective loss on the target positions. The pseudo-encoder operates on a distorted input sequence
τ(eI1) which replaces the source sentence. Each input token is either placed in the set of distorted
positions D or untouched positions U, as described above. We obtain the pseudo-encoder output
similar to Equation 3.1 as

ĥI1 := Encoder
(
τ(eI1)

)
.

All outputs ĥI1 of the pseudo-encoder are accessible in the cross-attention. However, only the set of
distorted positions D is considered in the cross-entropy loss to stop the model from overproducing
copies of the input. This yields the training criterion for pre-training

Fpseudo-enc(θ) =
∑

eI1∈Ttrg

∑
i∈D

log pbert(ei | i, ei−1
0 , τ(eI1); θ).

In this pre-training scheme, the decoder accesses the full target sequence up to the position
i− 1 internally and obtains information about future words through the pseudo-encoder and the
cross-attention layer.

The full pre-training architecture is depicted in Figure 4.7. Note that the entire transformer can
be pre-trained this way and no additional parameters have to be added. Only the masking and
the loss function differ from a standard transformer. Hence, after pre-training the transformer
this way, it is possible to reuse all parameters directly in a translation model. However, if another
pre-training is applied to explicitly train the encoder on source data, we disregard the parameters
from the pseudo-encoder and instead initialize the translation model encoder with the specialized
encoder.

4.2.2 Multi-Task Learning

All approaches discussed so far can be applied in pre-training as well as in multi-task learning.
In pre-training approaches, the training for the supportive language modeling task is completed
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ê3

e3

Masking

Distort
Symbol:

Yes

e1 e2 e3

Figure 4.7: Schematic view of a transformer architecture interpreted as decoder language model
with pseudo-encoder. Dashed lines indicate components that are not part of a trans-
former architecture. In this example D = {1, 3} and U = {2}. Token e2 is not
predicted during training and will not be part of the loss as it is not distorted.
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first and the resulting parameters are used as an initialization point for the main training of the
translation model. If the optimization algorithm of the main training moves sufficiently far in the
parameter space, the impact of the initialization point decreases. This means that the parameters
of the final model might not be suitable for the pre-training task, a phenomenon typically called
catastrophic forgetting. In multi-task translation, the language modeling (or BERT) objective is
optimized in parallel with the translation model objective. Since each optimization step has to
balance both objective functions, the multi-task trained model should not suffer from catastrophic
forgetting.

All four pre-training approaches presented are suitable for multi-task training with straightfor-
ward multi-task training criteria

• Encoder language model:

F (θ) =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 ; θ) +
∑

fJ1 ∈Tsrc

log psrc(fJ1 |θenc, θsrc-proj) (4.10)

• Decoder language model:

F (θ) =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 ; θ) +
∑

eI1∈Ttrg

log ptrg(eI1|θdec-LM) (4.11)

• Encoder BERT model:

F (θ) =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 ; θ) +
∑

fJ1 ∈Tsrc

∑
j∈D

log pbert(fj | j, τ(fJ1 ); θenc, θsrc-proj) (4.12)

• Decoder language model with pseudo-encoder:

F (θ) =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 ; θ) +
∑

eI1∈Ttrg

∑
i∈D

log pbert(ei | i, ei−1
0 , τ(eI1); θ). (4.13)

In all cases the decision rule of the translation model is unaffected.

4.2.3 Related Work
Pre-training and multi-task learning are well-established methods in the training of artificial

neural networks [Pratt & Mostow+ 91, Caruana 93]. Even before neural networks achieved state-
of-the-art performance in machine translation, there were investigations to introduce these meth-
ods to natural language tasks [Collobert & Weston 08, Collobert & Weston+ 11]. In particular,
the rise of expressive word embeddings provided a powerful, general-purpose component to include
across models for tasks with low training data [Mikolov & Chen+ 13, Pennington & Socher+ 14].
The introduction of contextualized word embeddings from language models [Peters & Neumann+

18] led to a rise in investigations regarding the adaption of pre-training models to natural lan-
guage processing tasks [Gardner & Grus+ 18, Qiu & Sun+ 20]. In 2019 the Bidirectional Encoder
Representations from Transformers for Language Understanding (BERT) provided a new way to
train contextualized word embeddings based on a transformer encoder [Devlin & Chang+ 19].
This sparked a wave of papers both adapting pre-training or transfer learning based on the BERT
architecture [Dou & Yu+ 19, Peters & Ruder+ 19, Zhang & Kishore+ 20] as well as variations of
the model [Zhang & Han+ 19, Yang & Dai+ 19, Clark & Luong+ 20, Lan & Chen+ 20, Liu &
Gu+ 20].

However, BERT and other word embeddings are commonly applied to natural language under-
standing tasks where labeled data is scarce. This is oftentimes not the case for machine translation
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and raises the question of whether pre-training is a viable strategy in machine translation, and
this is the focus of our work. Using context-free word embeddings does not improve machine
translation models if reasonable amounts of bilingual training data are available [Qi & Sachan+

18], and the embedding layer of a neural machine translation system already produces strong and
meaningful word embeddings [Hill & Cho+ 15]. Hence, we focus on pre-training more complex
and extended parts of the architecture. The idea of pre-training parts of the encoder and decoder
as language models brought improvements over the use of back-translation for the LSTM-based
architectures and laid the foundation for this work [Ramachandran & Liu+ 17]. Parallel to our
investigation, Lample et al. applied very similar strategies to pre-train a transformer transla-
tion model as language or BERT model [Conneau & Lample 19], and we discuss their results in
Section 4.4. Several works investigate approaches to pre-train a transformer architecture with
encoder and decoder for various downstream tasks [Lewis & Liu+ 20, Raffel & Shazeer+ 20, Liu
& Gu+ 20]. A very popular branch of multi-task learning in machine translation is the use of mul-
tilingual systems [Ha & Niehues+ 16]. Multilingual machine translation systems aim to translate
between several language pairs. Learning the translation for each language pair can be viewed
as a sub-task of a multi-task learning framework. Since these tasks can all be solved with the
same architecture and loss function, state-of-the-art approaches simply mix the training data for
all language pairs and provide a special symbol that indicates the language direction [Johnson
& Schuster+ 17, Aharoni & Johnson+ 19]. Multilingual systems train all languages in parallel;
however, in the domain of low-resource translation, pre-training (often called transfer learning) is
frequently applied to boost weak systems with parallel data from related language pairs [Zoph &
Yuret+ 16, Kocmi & Bojar 18, Kim & Gao+ 19, Haddow & Bawden+ 22].

4.3 Back-Translation
For the training of machine translation models, bilingual training data is naturally the most

important resource. For many language pairs, monolingual target data Ttrg is widely available
and it is commonly used via back-translation [Sennrich & Haddow+ 16b]. Back-translation is
the well-established state-of-the-art using monolingual target data and is employed in countless
submissions to shared translation tasks [Sennrich & Haddow+ 16a, Schamper & Rosendahl+
18, Stahlberg & de Gispert+ 18, Zhou & Zhou+ 21, Jon & Popel+ 22].

The idea of back-translation is to create a bilingual corpus from monolingual target data by
adding a machine-generated or synthetic source sentence to each monolingual target sentence. In
the first step, a back-translation model ptrg→src is trained using the same architecture and training
data as the original translation model; however, the sides of the training corpus T are flipped

Tbt-model :=
{

(eI1, f I1 ) | (f I1 , eI1) ∈ T
}
.

After training the back-translation model ptrg→src, the monolingual target data is translated

f̂ Ĵ1 := arg max
J,fJ1

{ptrg→src(fJ1 |eI1)}

and combined into a synthetic training corpus

Tbt :=
{

(f̂ Ĵ1 , eI1) | eI1 ∈ Ttrg
}
.

The training of the final (forward) translation model p is then performed using the joint training
data T ∪Tbt. Back-translation uses the fact that translation is a symmetric task, i.e. switching the
input and the output of the task does not fundamentally change it. Because of this, the approach
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is translation-specific and cannot be applied as a general semi-supervised method in other tasks
such as automatic speech recognition or text summarization.

Back-translation generates a corpus consisting of synthetic source sentences and human-gener-
ated target sentences. This approach is motivated by the intuition that the decoder of a translation
model contains an implicit language model that benefits from a stronger training signal. Back-
translation can be interpreted as a multi-task training approach. Multi-task training the decoder
as a translation and language model allows the use of monolingual and bilingual training data
in the optimization process of the translation model (see Section 4.2). A problem when feeding
monolingual target data to the encoder is the lack of a source-side input. The lack of an encoder
output provides a challenge from a technical point of view since the model is not defined if there
is no encoder. In the methods presented in this work, we approach this problem by removing the
cross-attention layer, essentially setting the encoder outputs to zero. This means that neither the
encoder nor the cross-attention is pre-trained and the pre-training optimizes the decoder to only
focus on target-side information. We extended this approach and added a pseudo-encoder which
reads a distorted version of the source to simulate encoder outputs. In 2015 Sennrich et al. inves-
tigated different methods of simulating a meaningful encoder state for monolingual target data
[Sennrich & Haddow+ 16b]. The best performance was achieved by back-translation, i.e. when
the monolingual target sentence eI1 was provided with a synthetic source sentence f̂J1 . Overall,
we can formulate back-translation as multi-task training where the encoder state (Equation 3.1)
is modified

hJ1 := Encoder

arg max
J,fJ1

{
ptrg→src(fJ1 |eI1)

} .
This multi-task interpretation can be made explicit by marking the synthetic and original data
in training [Caswell & Chelba+ 19].

4.3.1 Related Work
Back-translation, i.e. the use of synthetic training data with the target sentences written by

humans and the source sentences generated by a machine translation system, was introduced in
2008 [Schwenk 08] and later adapted to neural machine translation in 2015 [Sennrich & Haddow+

16b]. It quickly became part of most state-of-the-art systems and remains the strongest and most
commonly used way to incorporate monolingual data into machine translation systems [Barrault
& Bojar+ 19, Barrault & Biesialska+ 20, Akhbardeh & Arkhangorodsky+ 21].

While the approach in principle is independent of the model architecture, back-translation is
typically applied in neural machine translation systems. Phrase-based translation systems, on
the other hand, frequently rely on language models to incorporate the monolingual training data
[Koehn & Hoang+ 07, Wuebker & Huck+ 12, Bojar & Buck+ 14], with few works investigating
the effect of synthetic sources as an alternative [Bojar & Tamchyna 11].

Conceptually, back-translation is a straightforward approach and many improvements have
been suggested over the years. The dual learning approach relies on the symmetry of forward
and backward translation, i.e. that the tasks of source→target and target→source translation
only differ in the data used. In this approach, a forward and a backward translation system
are trained on the respective datasets and a segment of back-translation data is used to update
the forward translation system. This system in turn can generate forward translation sentence
pairs by translating source sentences, which can be used as training data for the back-translation
system. The training loss of these dual models is augmented by a source and target language
model that reward well-formed sentences [He & Xia+ 16].

A simpler variation of back-translation is the use of copied data pairs. Instead of translating
a target sentence into the source language to obtain a new training pair, the target sentence is
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simply copied. This creates a trivial target-target data pair that can be used to train the machine
translation systems in a low-resource scenario [Currey & Miceli Barone+ 17].

A common criticism of back-translation approaches is the lack of linguistic diversity in the
resulting data. Machine translation systems tend to generate target sentences with less mor-
phological variety compared to human translators. Different decoding approaches can lead to
improved back-translation data with more diverse translations [Edunov & Ott+ 18, Imamura &
Fujita+ 18, Graça & Kim+ 19].

The difference in linguistic variety leads to an interpretation that considers the training on
back-translated data as a separate task in a multi-task learning setup. Similar to a multilingual
system, each sentence pair in training is marked by a special tagging symbol to distinguish original
bilingual data from back-translated [Caswell & Chelba+ 19].

4.4 Experimental Results
In the following section, we present the results of the experimental evaluation of the methods

discussed here. We start by describing the general setup, including the data conditions and the
hyperparameters for all experiments in this thesis.

4.4.1 Experimental Setup

We evaluate the presented methods on several openly available datasets of different languages
and data sizes. The smallest training corpus is the English→Italian data of the shared task on
multilingual machine translation4 of the International Workshop on Spoken Language Translation
(IWSLT) 2017 [Cettolo & Federico+ 17]. The training corpus consists of English TED talks5

together with their human translation to Italian [Cettolo & Girardi+ 12]. This yields a corpus of
4.4M Italian words. Since the corpus originates from English text, there is no in-domain Italian
target data. Hence, we use monolingual news crawl data for both English and Italian6. We report
results on the development set dev2010 and use tst2010 and tst2017 as test sets.

For Romanian→English we follow the low-resource shared task on news translation7 of the
Conference on Machine Translation (WMT) 2016 [Bojar & Chatterjee+ 16]. The data is collected
from a government-sponsored news website8 and from speeches in the European parliament. As
development set we use updated newsdev2016 and as test set newstest20116. Monolingual data
is provided for all WMT shared tasks on news translation in the form of News Crawl corpora.
These monolingual data collections originate from news articles in the respective languages and
thus match the domain of the corresponding test sets.

Furthermore, we report results on two high-resource tasks, namely the German→English and
Chinese→English shared translation tasks9 of the WMT 2018.

The German→English task uses datasets collected from websites, parliamentary speeches and
press releases as well as news comments. With 117M running target words, it is significantly bigger
than the first two tasks. We use the monolingual training data obtained from the News Crawl
2017-2018 corpora for both source and target. Selecting newstest2015 as the development set,
we report final results on the three test sets newstest2014, newstest2017 and newstest2018.

Chinese→English is the biggest task we consider, with 389M target words. The majority of the
training data stems from parliamentary documents of the United Nations with a small selection

4https://workshop2017.iwslt.org/index.php
5https://www.ted.com/
6https://data.statmt.org/news-crawl/it/
7https://www.statmt.org/wmt16/translation-task.html
8The ‘Southeast European Times’, which stopped publications in 2015
9https://www.statmt.org/wmt18/translation-task.html
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of news and commentaries. Similar to the other WMT tasks, we use the News Crawl corpus as
source for monolingual training data, selecting all available Chinese corpora on the source side and
the English News Crawl 2017-2018 datasets as monolingual target data. The bilingual data is
filtered and 17M sentence pairs are extracted using uniblock [Gao & Wang+ 19]. During training,
we use newsdev2017 as the development set and we report final results on newstest2017 and
newstest2018.

Table 4.2: Overview over the amount of bilingual and monolingual training data.

task data type number of words
source target

En→It bilingual 70.7k 103.6k
monolingual 2.5G 1.2G

Ro→En bilingual 16.2M 15.9M
monolingual 54.8M 1.4G

De→En bilingual 111.1M 117.7M
monolingual 2.4G 1.0G

Zh→En bilingual 99.9M 389.0M
monolingual 117.2M 1.0G

An overview over the amount of bilingual and monolingual training data for the four tasks is
given in Table 4.2. For a detailed overview of the training, development and test data for the four
tasks, we refer the reader to Appendix A.1.

All experiments are performed with a transformer machine translation model as described in
Section 3.2.3. Our models are implemented in the RETURNN toolkit [Doetsch & Zeyer+ 17],
which is based on TensorFlow [Abadi & Agarwal+ 15]. If not specified, the hyperparameters
of the model are chosen according to the ‘base’ setup from the original publication [Vaswani &
Shazeer+ 17]. In particular, we use L = 6 layers in both the encoder and the decoder with
N = 8 heads in each attention layer. Most layers use a hidden size of dmodel = 512 except for
the inner state of the feed-forward block with dff = 2048. We use the pre-norm approach of layer
normalization as described in Section 3.2.3. The number of training epochs, dropout and the
vocabulary size are chosen according to the task. The size of the vocabulary has a strong impact
on the model size and consequently the amount of GPU memory used. Depending on the amount
of memory remaining, we choose the biggest possible batch size for each task and employ gradient
accumulation to stabilize the training. The task-specific values are listed in Table 4.3.

We run each experiment on a single GPU using the Adam optimizer [Kingma & Ba 15] with
default parameters. Additionally, we scale the learning rate by a factor of 0.7 to 0.9 if the cross-
entropy loss on the development set does not improve for several consecutive checkpoints. No
warm-up training steps are used and we select the best model based on the development set
Bleu score.

Language models are built and trained using best practices laid out by Irie and Zeyer [Irie &
Zeyer+ 19] with some small variations. Due to modeling and GPU memory constraints, all models
use 6 layers. Furthermore, we use the vocabulary obtained from a translation model, which in
some setups is shared across the source and target language. We consider two different language
model setups: (a) as a standalone model and (b) as pre-training model for a machine translation
system. Standalone language models follow Irie and Zeyer [Irie & Zeyer+ 19] using a standard
SGD algorithm with learning rate scheduling and a post-norm approach for layer normalization
in the sub-layers. In this setup we use dmodel = 1024 and dff = 4096. Language models that are
part of a pre-training setup need to be compatible with the final translation model. Hence, we
use dmodel = 512 and dff = 2048, a post-norm approach for layer normalization and apply the
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Table 4.3: Task-specific parameters of the transformer translation model.

task BPE effective batch dropout
#ops joint? size (tokens)

En→It 8k no 18k 0.3
Ro→En 20k yes 14k 0.2
De→En 50k no 28k 0.1
Zh→En 50k no 18k 0.1

Table 4.4: Perplexity of the target-side language models across all tasks. Language models are
trained using either the target side of the monolingual data only or the combination of
this with monolingual target data.

language pair lm trained on Ppl (BPE)
dev test

En→It biling-trg 53.4 49.3
+ mono 34.4 33.9

Ro→En biling-trg 115.9 113.6
+ mono 29.2 29.1

De→En biling-trg 84.0 91.7
+ mono 39.7 51.6

Zh→En biling-trg 81.3 88.1
+ mono 44.4 36.1

Adam optimizer. Note that both variations of language model have the same amount of layers
and we observe very similar performance with respect to perplexity.

All text data is pre-processed using the tokenizer and punctuation normalizer from the Moses
toolkit [Koehn & Hoang+ 07]. The resulting text is split into sub-words via a byte-pair encod-
ing [Sennrich & Haddow+ 16c], and for the Romanian text we remove all diacritics.

All systems are evaluated using case-sensitive, tokenized, word-level BLEU scores10 from the
SacreBLEU toolkit [Post 18]. Furthermore, we report Ter scores for all experiments, calculated
by the TERCom toolkit11.

4.4.2 Language Model Fusion
In this section, we report our empirical findings on language model fusion. First, we investigate

whether monolingual data in general and language models in particular are able to provide mean-
ingful information to the translation process. Next, we study the impact of adding a language
model and performing different re-normalization strategies during the search. In the final step,
we consider ensembles of language and translation models that are trained jointly.

To analyze the impact of monolingual target data, we consider two types of language models.
The first type is trained on all target data available, in particular a big corpus of monolingual
data and the target side of the bilingual data. The second type emulates the internal language
model of a translation model decoder and is trained only on the target side of the bilingual data.
In Table 4.4 we report the perplexities for both language model types and observe that adding
monolingual data to the language model training roughly halves the perplexity on the development
set. Only for English→Italian do we we observe a smaller, yet still significant, reduction to 65%.
This seems counterintuitive since English→Italian is the smallest of all four tasks, providing the
10SacreBLEU Signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.0
11http://www.cs.umd.edu/˜snover/tercom/
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lowest amount of bilingual target data while maintaining a comparable amount of monolingual
data for the language model. However, English→Italian is the only task where the domain of the
monolingual data (news) does not match the domain of the development and test set. As WMT
tasks, Romanian→English, German→English and Chinese→English provide a test set from the
news domain, while the IWSLT task English→Italian is evaluated on transcribed TED talks.
Overall, we observe a great improvement in language model performance when monolingual data
is added. We conclude that monolingual data provides information on the target language which
a neural network model cannot easily extract from the target data seen in training. Since a
language model and a translation model decoder are almost identical in architecture, loss and
training procedure, we conclude that monolingual data is a resource that can help to improve
state-of-the-art translation models. In the following, we consider how this can be achieved by
introducing an explicit language model via log-linear model combination.

Table 4.5: Impact of reducing the amount of decoder layers from 6 to 2 across all language pairs.
All results are reported on the development set.

language #layers dev
pair enc dec Bleu [%] Ter[%]

En→It 6 6 28.1 54.0
2 26.9 55.0

Ro→En 6 6 35.7 45.3
2 33.0 48.1

De→En 6 6 32.7 48.6
2 32.0 48.7

Zh→En 6 6 22.2 62.4
2 21.6 62.3

Model size: The size of many machine translation models is optimized such that the compu-
tational hardware is used to its fullest extent. The two key restrictions are the total runtime of
the training and the amount of memory of the provided hardware, typically a GPU. The number
of network layers and nodes, the vocabulary size and the batch size are chosen in such a way that
the memory of the GPU is fully used during model training. However, for all experiments in this
section the GPU is used to run both a translation model and a language model. Thus during
training, both models need to fit in the GPU memory, together with all hidden states needed for
the computation of the backward pass. With the hardware available to the author it is impossible
to train two models of common size simultaneously on the same GPU. Hence, throughout this
section we reduce the model size of the translation model by four decoder layers compared to the
‘base’ transformer size. We only employ two decoder layers and all language models consist of
six layers. The effect of this can be seen in Table 4.5. We observe that the smaller models lose
0.5-2.7 Bleu [%] compared to the base architecture with six decoder layers.

Training Time Reducing the model size alone is not sufficient to fit a fusion model on the
GPU during training. To shrink the memory consumption further, we drastically reduce the batch
size from around 5k (depending on the task) tokens to 350. However, the translation performance
of the transformer architecture can become unstable if small batch sizes are used [Popel & Bojar
18], hence, we apply gradient accumulation and scale the effective batch size up to 9k tokens.
Reducing the technical batch size affects the parallelization of the training and thus reduces the
training speed. We report the training speed of the adjusted fusion models in Table 4.6. Instead
of 12 minutes per epoch for a baseline model, a symbol-level fusion model requires around 35
minutes per epoch. This increase is caused by the need to compute the language model and
the reduced technical batch size. For sequence-level normalization, training time increases by a
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Table 4.6: Impact of language model fusion on the training time. For each model, the training
parameters are set to make good use of the available GPU hardware. Training time is
given per epoch.

TM #layers LM batch size train time/epoch
enc dec technical effective hh:min factor

baseline 6 6 no 4700 18k 00:12 1.0
2 4700 18k 00:09 0.7

local re-normalization 6 2 yes 350 9k 00:35 2.8
global re-normalization 350 9k 07:58 38.4

Table 4.7: Comparison of language model perplexities across all tasks. We compare a language
model trained on the target side of the bilingual data with a language model that
additionally uses monolingual target data. All results are presented on the development
set.

Task data trg LM TM
# words Ppl (BPE) Bleu [%] Ter[%]

En→It bilingual 4M 53.4 26.9 55.0
monolingual 46M 34.4 - -

Ro→En bilingual 16M 115.9 33.0 48.1
monolingual 1G 29.2 - -

De→En bilingual 118M 84.0 32.0 48.7
monolingual 1G 39.7 - -

Zh→En bilingual 389M 81.3 21.6 62.3
monolingual 1G 44.4 - -

factor of almost 40. Since even the full training on our smallest task, English→Italian, takes 1-2
days of training time, this means that language model fusion experiments cannot be trained from
scratch. Instead, we start from the fully converged baseline model for all language model fusion
experiments.

Language Model Fusion in Search

In this section, we report our findings on symbol-level and sequence-level normalization for
language model fusion as described in Section 4.1. As a first step, we combine the language
and translation model only during the search, meaning that we use the baseline cross-entropy
training criterion defined in Equation 3.6 and the decision rules given by Equation 4.2, respectively
Equation 4.4. The starting point for all four translation tasks is presented in Table 4.7, showing
the data conditions as well as the individual translation and language model performances.

Symbol-level normalization: To decode with the symbol-level fusion model we use the
Bayes’ decision rule as described in Equation 4.2 and, in contrast to sequence-level normalization,
the denominator needs to be computed during the search. As discussed previously, the full
denominator can be computed and no approximation is needed. First, we investigate the scaling of
the translation and language model. From the results in Table 4.8 we observe that the performance
of the fusion model deteriorates if the translation model scale α and the language model scale
β have a ratio α

β ≤ 1. In other words, if the language model obtains a higher scale than the
translation model the performance drops below 20.3 Bleu [%] , in many cases even below 6.0
Bleu [%] . If the language model is weighted by a scale of β = 10−4, i.e. it is almost completely
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Table 4.8: English→Italian: Scales of the translation model (α) and the language model (β) for
symbol-level normalization. Models are trained independently and are combined only
during the search. The baseline translation system obtains 26.9 Bleu [%] if no language
model is used during the search and the language model has a perplexity of 34.4.
Highlighted are the best-performing combination (26.9) and the combination used for
further experiments (26.7). Bleu scores are reported on the development set.

α
β 10−4 10−3 10−2 10−1 0.5 1 5 10

10−3 25.1 5.6 0.0 0.0 0.0 0.0 0.1 0.1
10−2 25.4 25.2 5.9 0.0 0.0 0.0 0.1 0.1
10−1 25.5 25.6 25.0 6.2 0.0 0.1 0.0 0.1
0.5 26.0 26.1 26.2 25.5 20.3 4.2 0.1 0.1
1.0 26.9 26.8 26.8 26.7 24.5 18.1 0.3 0.1
5.0 26.0 26.1 26.0 26.1 25.9 25.2 15.7 3.4
10.0 26.0 26.1 26.1 26.1 25.8 25.9 23.0 15.5

ignored during the search, the translation model is still affected by α. Setting α < 1 flattens
the posterior distribution while α > 1 sharpens it. Both approaches have a negative impact on
translation performance, indicating that the sharpness of the distribution is well trained. The
best results are obtained if the language model impact is reduced to a minimum β = 10−4 and the
scale of the translation model is set to the baseline value α = 1. As expected, this yields the same
performance as the baseline system with no external language model, reaching 26.9 Bleu [%] . In
order to keep the impact of the language model meaningful, we argue that α = 1 and β = 10−1 is
a better starting point for further experiments. This setup still yields 26.7 Bleu [%] , i.e. a minor
deterioration of 0.2 Bleu [%] , while we still expect the language model to influence the fusion
model.

Table 4.9: Romanian→English: Scales of the translation model (α) and the language model (β) for
sequence-level normalization. Models are trained independently and are combined only
during the search. The baseline translation system obtains 33.0 Bleu [%] if no language
model is used during the search. Highlighted is the best-performing combination. Bleu
scores are reported on the development set.

α
β 10−4 10−3 10−2 10−1 0.5 1 5 10

10−3 32.5 15.8 0.3 0.1 0.1 0.2 0.2 0.1
10−2 31.7 32.5 15.8 0.2 0.1 0.1 0.2 0.1
10−1 31.7 31.8 32.5 16.1 1.0 0.6 0.2 0.3
0.5 32.0 32.0 32.2 33.1 25.7 7.1 0.5 0.4
1.0 33.0 33.0 33.0 33.2 30.8 21.9 1.1 0.5
5.0 31.9 31.9 31.9 32.0 32.3 31.8 18.5 5.3
10.0 31.8 31.8 31.8 31.8 31.9 32.0 27.9 18.5

To verify the scaling decision and confirm the previous observations, we consider the same
experiment on the Romanian→English task. We observe the same trend in Table 4.9. Starting
with a baseline performance of 33.0 Bleu [%] the performance of the fusion model drops by at
least 6.0 Bleu [%] if the scale of the language model exceeds the scale of the translation model, i.e.
β > α. If β is more than 10× bigger than α the performance ranges between 0.1 and 7.1 Bleu [%] .
Widening or sharpening of the translation model via α 6= 1 leads to smaller, but significant,
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performance drops of around 1.0 Bleu [%] . Finally, α = 1 and β = 0.1 is confirmed as a solid
parameter choice, even yielding the best Bleu performance.

Table 4.10: Language model scale for sequence-level normalization, All results are reported on the
development set and the best results of each column are highlighted in bold.

γ En→It Ro→En
Bleu [%] Ter[%] Bleu [%] Ter[%]

- 26.9 54.9 33.0 48.1
10−4 26.9 54.9 33.0 48.1
10−3 26.8 54.9 33.0 48.1
10−2 26.9 55.0 33.0 48.2
10−1 27.2 55.2 33.6 48.3
0.5 23.9 62.3 30.4 55.5
1 13.4 96.8 1.0 191.8
10 0.0 132.7 0.1 198.6

Sequence-level normalization: In the next step we investigate fusion models that are nor-
malized on the sequence level. As described in Equation 4.4, we omit the calculation of the
denominator in the decision rule and simplify the language and translation model scale into a
single weight γ = β

α . Hence, bigger values of γ mean that the language model is more influential
during the search. The effects of different language model scales on English→Italian and Ro-
manian→English are reported in Table 4.10. We observe that for γ ≤ 10−2 the impact of the
language model is negligible since the fusion system performs almost identically to the baseline.
A value of γ = 10−1 = 0.1 seems to be a sweet spot as we observe a small improvement of 0.3
Bleu [%] on the English→Italian task as well as 0.6 Bleu [%] for Romanian→English. However,
in both cases we see a small degradation in the Ter score. If the impact of the language model
grows further, we observe a rapid decline in translation quality. This is plausible; since the lan-
guage model obtains no information about the source sentence, it should not be the leading factor
for the translation decisions of the fusion model. We use γ = 0.1 for all further experiments on
sequence-level normalized fusion models because it yields the best Bleu scores in our experiments
and makes the language model as influential as possible without a major loss in Ter. Notably, a
value of 0.1 = γ = β

α corresponds to α = 1 and β = 0.1, the optimal model scales we found for
symbol-level normalization.

Table 4.11: Effect of language model fusion in search across two low-resource tasks. All results
are reported on the development set.

external En→It Ro→En
LM Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline no 26.9 55.0 33.0 48.1
symbol-level fusion yes 26.7 55.2 33.2 48.4
sequence-level fusion yes 27.2 55.2 33.6 48.3

We apply the selected scales across all four language pairs and report the results in Table 4.11
for the two low-resource languages and in Table 4.12 for the high-resource tasks. Generally, Bleu
is improved while we obtain a worse Ter score for all four experiments. This is a very common
pattern when the length of the hypothesis changes since the two metrics incorporate the reference
length differently. We verify whether the inclusion of a language model in search does affect the
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Table 4.12: Effect of language model fusion in search across two medium- to high-resource tasks.
All results are reported on the development set.

external De→En Zh→En
LM Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline no 32.0 48.7 21.6 62.3
symbol-level fusion yes 32.8 48.7 21.9 62.9
sequence-level fusion yes 33.1 49.0 22.2 63.3

Table 4.13: Length comparison between the reference and the hypothesis. A value smaller than
1.00 indicates a hypothesis that is too short while a value bigger than 1.00 denotes
that the hypothesis is longer than the reference.

length ratio
En→It Ro→En De→En Zh→En

reference 1.00 1.00 1.00 1.00
baseline 1.02 0.97 0.97 0.94
symbol-level fusion 1.03 1.00 0.98 0.96
sequence-level fusion 1.03 1.00 0.99 0.97

length of the generated hypothesis in Table 4.13. It is clearly visible that language model fusion
increases the hypothesis length by 1-3 percentage points and that sequence-level normalization
tends to generate the longest sequences. It is important to note that the language model does
not improve length modeling, as we can see from the English→Italian task. Despite the baseline
system already generating a hypothesis of appropriate length, the length increases for language
model fusion systems.

Overall, the strongest performance is obtained by sequence-level normalization; however, the
improvements vary quite heavily across languages. The smallest improvement is observed on
English→Italian (0.3 Bleu [%]) and the biggest on German→English (1.1 Bleu [%]). We conclude
that language model fusion can help to improve the translation performance with respect to Bleu
depending on the task. Furthermore, a clear increase in hypothesis length is visible, which affects
the two automatic metrics differently.

The addition of a language model happens via log-linear model combination. This means that
the fused model has significantly more parameters and could benefit from an ensemble learning
effect. In the next step, we want to investigate whether the Bleu improvement for fusion models is

Table 4.14: Effect of the training data of the language model on the final fusion model. Language
models are either trained only on the target side of the bilingual data (biling) or on
all target data available (mono), i.e. monolingual target data and the target side of
the bilingual data. Perplexity is reported on BPE level and all results are obtained
on the development set.

external LM En→It Ro→En
used? data LM PPL Bleu [%] Ter[%] LM PPL Bleu [%] Ter[%]

baseline no - - 26.9 55.0 - 33.0 48.1
symbol-level fusion yes mono 34.4 26.7 55.2 29.2 33.2 48.4

biling 53.4 26.8 55.2 115.9 32.8 48.7
sequence-level fusion yes mono 34.4 27.2 55.2 29.2 33.6 48.3

biling 53.4 26.8 55.5 115.9 32.7 49.1
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Table 4.15: German→English: Effect of the training data of the language model on the final fusion
model. Language models are either trained only on the target side of the bilingual
data (biling) or on all target data available (mono), i.e. monolingual target data and
the target side of the bilingual data. Perplexity is reported on BPE level and all
results are obtained on the development set.

external LM De→En
used? data LM PPL Bleu [%] Ter[%]

baseline no - - 32.0 48.7
symbol-level fusion yes mono 39.7 32.8 48.7

biling 84.0 32.3 49.3
sequence-level fusion yes mono 39.7 33.1 49.0

biling 84.0 32.4 49.9

Table 4.16: Domain analysis on global-normalized fusion models. Data originates from popular
scientific talks (science), news articles (news) and parliamentary speeches (parl.). The
test set printed in bold is the official test set of the corresponding task.

task domain of data LMbiling LMmono TM TM× LMmono
bilingual monolingual test Ppl Ppl Bleu Bleu

En→It science news science 53.4 34.4 26.9 27.2
news 94.6 22.6 20.5 21.7

De→En parl., other news parl. 24.0 25.9 33.1 33.5
news 84.0 39.7 32.0 33.1

an effect of the additional monolingual training data or whether the log-linear model combination
itself is helpful. In Table 4.14 we compare the impact of two language models during the search:
one is trained only on the target side of the bilingual data while the other also uses external
monolingual data. First, we observe that the language models that include additional data obtain
better perplexity values, thus we expect them to be more beneficial in a fusion model. Secondly,
we see that language models which make use of the full data available outperform their data-
restricted counterparts. Since the performance differences are very small in both English→Italian
and Romanian→English, we perform the same experiment on the German→English task, which
showed the biggest language model impact (see Table 4.12). Both observations are consistent
with the German→English task (see Table 4.15).

Domain of data An important aspect of machine learning is the domain of the data involved.
Bilingual data usually can only be obtained from special sources, which provide a sentence-by-
sentence translation of a reasonable amount of textual data. In contrast to this, every English
text written is a source of monolingual English data that can be collected. Due to this, both
the number as well as the variety of text domains are commonly limited for bilingual data. In
this work, we test our methods on shared translation tasks provided by the IWSLT and WMT,
where the test data stems from the science and news domains respectively. Depending on the
language pair involved, this matches the domain of either the bilingual or the monolingual data.
In Table 4.16 we give an overview of the datasets and domains involved. Furthermore, we compare
the perplexity of a language model that was trained on the target side of the bilingual data with
a language model that also uses the monolingual data. We can assume that the model with
restricted training data approximates the language modeling capabilities of a translation model
since they are similar in architecture and equal in target-side information. For both English→Ital-
ian and German→English we first consider a test set that shares the domain with the bilingual
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training data. In these cases the perplexity of both language models is comparatively close,
although in the case of English→Italian there is a gap of roughly 20 Ppl. Keep in mind that
this task consists of only 230k bilingual sentences, meaning that there are roughly 270 times more
Italian words in the monolingual data than in the bilingual. For both languages, we observe only
a small improvement of roughly +0.4 Bleu [%] for the fusion model that contains the language
model trained on the monolingual news data. However, if we consider a test set from the news
domain, which matches the monolingual data, the gap in language model perplexities increases
drastically. This improvement carries over to the performance of the fusion model, where we report
an improvement of roughly 1.1 Bleu [%] across both language pairs. Notably, these findings are
consistent across both language pairs with very different bilingual data sizes. We conclude that
the domain of all datasets involved in the training and evaluation of the models is a crucial factor
that can shift the effects of language model integration from barely noticeable to quite significant.
In the following, we will continue to report results on the standard development and test sets of
the respective tasks to maintain comparability with the wider research community. We address
the impacts of data domains again in Section 4.4.5.

So far we have found that monolingual text data contains information that can in principle
be helpful even to high-resource tasks such as Chinese→English, meaning that even a bilingual
corpus of 17M sentence pairs is not sufficient to fully learn the structure of the target language.
Furthermore, we observe that language model fusion in search does improve Bleu scores consis-
tently but the effect varies heavily across tasks. Besides the amount of bilingual training data,
the domain of all datasets involved in training and evaluation is a leading factor in determining
whether language model fusion will help a certain task.

Language Model Fusion in Training

So far we considered the fusion of a translation and a language model at decoding time. Next, we
investigate models where the translation model is trained given the existing language model. Since
the training of the fusion model is very slow (see Table 4.6), training the machine translation model
from scratch using a joint model loss is not an option. Hence, we use the fully trained language
and machine translation models from the previous section and fine-tune the fusion model. Note
that only the parameters of the translation model are optimized during the fine-tuning process.

Table 4.17: Applying LMs trained on different datasets for symbol-level normalized fusion models.
All results are reported on the development set.

LM used in En→It Ro→En De→En
training (pt-LM) search (ps-LM) Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 26.9 55.0 33.0 48.1 32.0 48.7
biling biling 26.9 55.2 33.0 48.4 32.4 49.1

mono 27.0 55.1 33.4 47.8 32.8 48.3
mono biling 26.9 55.0 33.0 48.3 32.4 49.0

mono 27.0 55.0 33.5 47.9 32.8 48.7

Symbol-level normalization: First we train fusion models with symbol-level normalization
according to the training criterion described in Equation 4.1, where normalization of the fusion
model is applied for every target position i. We use the optimal parameters for the translation
model scale α = 1 and the language model scale β = 0.1 that we obtained from the local fusion
experiments in search (see Table 4.8 and Table 4.9). Search is performed using the decision rule
defined in Equation 4.2. Note that we distinguish between the language model used in training
pt-LM and that used in search ps-LM. We consider a language model trained either on the target side
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of the bilingual data pbiling or on all target data available pmono, specifically the target side of the
bilingual data as well as the monolingual data. From the results reported in Table 4.17 we observe
that the overall impact of language model fusion is very limited. Models trained on English→Ital-
ian are not affected by the inclusion of a language model. We see small improvements of around
0.5 Bleu [%] and 0.3 Ter[%] for Romanian→English if the full data language model pmono is used.
The results on German→English confirm that the language model used in search ps-LM is more
important than the one used in training pt-LM. Here we report the biggest improvement of 0.8
Bleu [%] when pmono is used for language model fusion independently of the language model used
in training. Note that the improvement does not carry over to Ter. Overall, the inclusion of the
data-restricted language model in search pbiling = ps-LM does not lead to significant improvements.

Table 4.18: Comparison of denominator approximation strategies during training for sequence-
level normalization in fusion models. All results are reported on the development
set.

re-norm. decoder En→It Ro→En De→En
approx. Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%]

none - 26.9 55.0 33.0 48.1 32.0 48.7
sequence-level 12-best 27.2 55.2 33.6 48.3 33.1 49.0

trellis 27.2 55.2 33.6 48.2 33.1 49.0

Sequence-level normalization: Equation 4.5 defines the training criterion used for fusion
models with sequence-level normalization. During the search we apply the decision rule as defined
in Equation 4.4 where the denominator is dropped. We consider two approximations of the
denominator, as portrayed in Section 4.1, either via an n-best list or a trellis with limited context
assumption on the target side. We choose a translation model scale α = 1 and a language model
scale β = 0.1 during training, corresponding to the best results in search (Table 4.10). We set
the beam size to n = 12 and generate a 12-best list, meaning that the twelve hypotheses with the
best translation model score are used in the denominator approximation; however, we ensure that
the reference is always included. For the trellis approximation, we use a merging history of k = 1
for our initial experiments. From the results in Table 4.18 we observe that both approximation
schemes for the denominator result in almost identical results.

Table 4.19: Comparing the effect of using a language model in a fusion model with sequence-level
normalization. All results are reported on the development set.

LM used in En→It Ro→En De→En
search train Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 26.9 55.0 33.0 48.1 32.0 48.7
biling none 26.8 55.5 32.7 49.1 32.4 49.9

biling 26.8 55.5 33.0 48.4 32.4 50.0
mono 26.8 55.5 32.6 49.2 32.4 50.0

mono none 27.2 55.2 33.6 48.3 33.1 49.0
biling 27.2 55.3 33.2 48.6 33.1 49.0
mono 27.2 55.2 33.6 48.3 33.1 49.0

Next, we consider the effect of applying different language models pt-LM, ps-LM during training
and search. From the results in Table 4.19 we conclude that the selection of the language model
pt-LM used in training does not affect the model performance.

To investigate this, we consider the development of the Bleu score during the training of a
fusion model with sequence-level normalization. From Figure 4.8 we observe that the Bleu score
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Figure 4.8: Bleu score of sequence-level normalized fusion models trained with different denom-
inator approximations.
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slowly but relatively consistently drops throughout the training. This effect is consistent across
the different denominator approximations using either an n-best list or a trellis. Furthermore, the
context length k of the trellis has only a minor impact on the training behavior. Note that the
fusion model does not diverge with respect to the development Bleu score but instead seems to
converge to a stable score roughly 1-1.5 Bleu [%] below the starting point.

A reduction in Bleu score over the course of the training is a serious problem since it shows
that the model performs worse on the intended task the more it is optimized. This raises the
question of whether the optimization is failing or whether there is a mismatch between the training
criterion and the final objective. We consider the training criterion defined in Equation 4.5

Fglobal =
∑
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log
∏I
i=1 pTM(ei|ei−1
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and plot it in Figure 4.9 together with the logarithm of its numerator Q and the negative log-
arithm of its denominator Z. First, we observe that the overall loss is reduced over the course
of the training, both on the training and the development data, meaning that the optimization
is working as intended. However, looking into the two parts of the loss function, we observe
that the improvements originate solely from a reduction of Z while there is even a small increase
in Q. This means that the probability mass assigned to the reference translation decreases slightly
throughout the training. At the same time, probability mass is shifted away from the sequences
in the denominator, which in the case of the n-best list approximation, are often closely related
to the reference. It seems that both the correct translation as well as promising alternatives
are discouraged by the sequence-level re-normalization, resulting in an overall worse translation
performance. We conclude that the optimization of the fusion model with sequence-level normal-
ization works but there is either a mismatch between the training criterion and the Bleu metric
or the approximation of the denominator is still too weak.

Automatic Speech Recognition

Sequence-level normalization for fusion models shows no improvements and problematic training
behavior in the case of machine translation. However, these methods have been are successfully
applied to the task of automatic speech recognition (ASR) by a research team involving the
author of this work [Wynands & Michel+ 22]. Results on the task of LibriSpeech are reported
in Table 4.20. All results are taken from the ICASSP publication [Wynands & Michel+ 22] and
the data as well as the setup used are described there. The work is an extension of [Michel &
Schlüter+ 20], which showed that language model integration in training can be helpful for ASR
systems.

On the task of automatic speech recognition we observe an improvement in WER on the
LibriSpeech task. The trellis and the n-best list approximation of the denominator perform
equally well, indicating that a bigger search space for the denominator approximation is not
needed.
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Figure 4.9: Sequence-level normalization training for fusion models where the denominator is com-
puted with the trellis approximation. We show (a) the full loss Fglobal is split into two
components: (b) the enumerator Q and (c) the denominator Z (see Equation 4.14).
We observe that the loss reduction in training is obtained entirely through a drop in
the denominator; the enumerator of the loss increases slightly over the course of the
training. Results are reported on the Romanian→English task.
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Table 4.20: Results of sequence-level fusion models on the LibriSpeech task of automatic speech
recognition. All results are taken from [Wynands & Michel+ 22].

re-norm decoder dev WER[%] test WER[%]
approx. clean other clean other

none - 2.4 6.7 2.7 7.0
sequence-level n-best 2.1 5.8 2.3 6.5

trellis 2.1 5.8 2.3 6.5

4.4.3 Pre-Training and Multi-Task Learning

Another way to use monolingual data is via pre-training and multi-task learning. First, we con-
sider the case of pre-training as described in Section 4.2 before switching to multi-task learning
(see Section 4.2.2). Pre-training approaches add an additional training step prior to the transla-
tion training, which causes additional computational overhead. However, the speed of the main
training is not reduced, hence there is no need for model or batch size reduction, as described in
the fusion experiments (see Section 4.4.2).

Experimental Setup: Monolingual Source Data

Most approaches that employ monolingual data to increase machine translation performance use
only target data. However, the approaches in this section can make use of either source or target
data, depending on which component of the network is pre-trained. For all tasks in this section,
we use the news crawl data12 released for the WMT conference [Barrault & Bojar+ 19]. This
gives us a rich corpus for most languages with 1 billion words or more. The only two exceptions
are Chinese, for which the data does not provide a consistent word splitting, and Romanian, for
which relatively few monolingual sentences are available. The detailed data statistics are reported
in Appendix A.1.

Pre-Training

Pre-training describes one or more additional training runs that provide a suitable initialization
point from which the main training starts. Consequently, all translation models in this section
are trained with the baseline training criterion from Equation 3.6 and use the baseline decision
rule as formulated in Equation 3.11b. The details of the training objectives for the pre-training
are described in Section 4.2.1.

All language models in this section are six layers deep and match the perplexity of the lan-
guage models for fusion models (see Section 4.4.2). In order to facilitate compatibility between
the hidden states of the encoder and the decoder, the final system uses a shared source-target
vocabulary with the same number of BPE merging operations as the baseline. Pre-training is
performed using the Adam optimizer starting with a learning rate of λ = 0.0001 and newbob
learning rate schedule, scaling it by a factor of 0.9 if the loss on the development set fails to im-
prove for 4 consecutive checkpoints. The checkpoint with the best perplexity on the development
set is selected as the starting point for the main training. For the main training the momentum
terms of the Adam optimizer are reset and the learning rate of the baseline training is used.

For all pre-train experiments that apply input masking, we use the same masking scheme and
default parameters of the BERT model [Devlin & Chang+ 19], namely we distort 15% of the input

12https://data.statmt.org/news-crawl/
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and each distortion is applied with the probability

ρmask = 80%
ρkeep = 10%

ρrandom = 10%

where the decision is stochastically independent for each token pair. Unlike in the original BERT
paper, we do not have document-level data and omit the next sentence prediction (NSP) objective.
We believe that this does not hurt the overall performance since several studies showed that the
NSP objective is not helpful for most downstream tasks [Liu & Ott+ 19, Joshi & Chen+ 20].

Table 4.21: Effect of using monolingual source data for different strategies to pre-train the encoder
on two low-resource tasks. All results are reported on the development set.

additional src additional En→It Ro→En
data loss Bleu [%] Ter[%] Bleu [%] Ter[%]

no none 28.1 54.0 35.7 45.3
yes lm 29.4 52.6 36.7 44.6

cloze 29.4 52.2 36.8 44.3

Table 4.22: Effect of using monolingual source data for different strategies to pre-train the encoder
on two high-resource tasks. All results are reported on the development set.

additional data additional De→En Zh→En
src loss Bleu [%] Ter[%] Bleu [%] Ter[%]

no none 32.7 48.6 22.2 62.4
yes lm 33.1 48.1 22.3 62.2

cloze 33.1 48.0 22.5 61.6

Monolingual source data: First we consider pre-training approaches that rely solely on
source data in order to create better source sentence representations within the encoder. The
training criterion for the encoder pre-training tasks is either the cross-entropy for language mod-
eling (Equation 4.7) or a cloze loss as used in the BERT model (Equation 4.9). The results are
described in Table 4.21. We observe that English→Italian and Romanian→English benefit heavily
from either pre-training approach. For English→Italian we see encoder pre-training improves the
performance by 1.3 Bleu [%] and an equal amount of Ter[%] while Romanian→English improves
by 1 point across both metrics. However, these improvements do not carry over to high-resource
tasks. On German→English we report a small improvement of around +0.6 Bleu [%] and Ter[%] ,
while there is no improvement on Chinese→English. Comparing the impact of the language model
and the cloze loss, we find extremely similar performance, with a minor lead by the cloze loss on
each task. Since there is not a single dataset or metric in which the language model loss yields a
better result, we consider the cloze loss for all further experiments that use encoder pre-training.

We conclude that source data is a valuable resource that can benefit low-resource machine
translation systems. This is an important finding since traditionally only monolingual target data
has been incorporated in a machine translation model. Notably, the more bilingual data available
for a task, the less benefit is obtained from additional source data.

Monolingual target data: Similar to the encoder pre-training, we perform pre-training of
the decoder using monolingual target data. We either pre-train the decoder as a language model,
ignoring its cross-attention layer, or, to simulate the existence of a source sentence, we use a
pseudo-encoder as described (see Section 4.2.1 for details). In the second case, we initialize the
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Table 4.23: Effect of using monolingual target data for different pre-training strategies on two
low-resource tasks. Depending on the approach, different parts of the model are pre-
trained. All results are reported on the development set.

additional trg pre-trained En→It Ro→En
data component Bleu [%] Ter[%] Bleu [%] Ter[%]

no none 28.1 54.0 35.7 45.3
yes dec 28.9 53.2 35.9 45.3

enc+dec 28.9 53.0 37.1 44.5

Table 4.24: Effect of using monolingual target data for different pre-training strategies on two
high-resource tasks. Depending on the approach, different parts of the model are
pre-trained. All results are reported on the development set.

additional trg pre-trained De→En Zh→En
data component Bleu [%] Ter[%] Bleu [%] Ter[%]

no - 32.7 48.6 22.2 62.4
yes dec 33.0 48.5 22.4 62.4

enc+dec 32.7 48.6 21.9 63.0

full machine translation model with the pre-trained parameters, including the encoder. As we
can see from Table 4.23, both pre-training approaches yield improvements, but their performance
varies across the tasks. For English→Italian pre-training, with target data yields an improvement
of 0.8 Bleu [%] and 0.8-1.0 Ter[%] . On the Romanian→English task, we observe no significant
improvement in Bleu and Ter when pre-training only the decoder. However, the full model
pre-training via a pseudo-encoder improves the system by 1.4 Bleu [%] and 0.8 Ter[%] . For the
larger tasks shown in Table 4.24, we observe no consistent improvement, with all results in a
range of 0.3 Bleu around the baseline. We conclude that pre-training with target-side data is an
effective technique for low-resource tasks but loses value as more bilingual data becomes available
for the main training. This finding is consistent with the behavior for source data pre-training.

Analysis of improvements: To verify whether the improvements on English→Italian and
Romanian→English for any of the proposed pre-training strategies are an effect of the additional
data or the additional loss, we perform pre-training using only the bilingual training data. For
these experiments we pre-train the models involved using either only the source or only the target
side of the bilingual data. This yields a comparatively small monolingual corpus. From the results
in Table 4.25, we observe that roughly half of the pre-training improvement stems from the use of
external data if the additional loss is applied directly to the encoder. This is a surprising result
that indicates that the training signal in the encoder is not strong enough during training. If the
pre-training loss is applied to the decoder, the benefit of monolingual data is less notable. On
the English→Italian task we observe around 0.1-0.3 improvement across Ter and Bleu, which
is commonly not considered significant. For Romanian→English we report an increase by 0.4-0.5
Bleu [%] using the target side of the bilingual data and 1.2-1.4 Bleu [%] for the full data. We
conclude that the encoder benefits from a stronger training signal as well as the additional data,
while the decoder mainly improves based on the new target data.
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Table 4.25: Pre-training strategies compared on two different data conditions.

pre-trained pre-train extra data En→It Ro→En
component loss src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 28.1 54.0 35.7 45.3
enc lmsrc 28.8 53.0 36.2 45.0

yes 29.4 52.6 36.7 44.6
cloze 28.9 52.8 35.8 45.6

yes 29.4 52.5 36.8 44.3
dec lmtrg 28.2 53.7 36.1 45.4

yes 28.9 53.2 35.9 45.3
enc+dec 28.4 53.7 36.2 44.8

yes 28.9 53.0 37.1 44.5

Table 4.26: Findings on the effect of different pre-training strategies using monolingual source or
target data. Depending on the type of data, different parts of the model are pre-
trained using either a cloze or language model loss. All results are reported on the
test set.

mono data pre-trained additional En→It Ro→En
src trg component loss tst2010 newstest2016

Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 29.6 52.0 34.1 47.4
yes enc cloze 31.0 50.6 35.2 46.5

yes enc + dec lmtrg 31.1 50.8 35.4 46.5
yes yes enc + dec lmsrc, lmtrg 31.3 50.3 35.3 46.3

Finally, we report the results of the combination of the best-performing encoder and decoder
pre-train methods on the unseen test sets of all four tasks in Tables 4.26 and Table 4.27. The
results highlight the central findings of this section:

1. Monolingual data in general and pre-training in particular are beneficial.

2. Source data and the pre-training of the encoder are helpful across all tasks, but the impact is
inverse to the amount of bilingual data. This is an effect of both stronger training feedback
as well as additional data.

3. Pre-training the decoder is very helpful for low-resource tasks and does not affect high-
resource tasks. Any improvements on the decoder side are due to its exposure to additional
data.

The gains from monolingual source data in the encoder are particularly interesting for the research
community since most research on monolingual data focuses on the use of target data.

Multi-Task Learning

For multi-task training, we optimize the translation system on two different tasks during the
same training run. As in the case of pre-training, we use monolingual data to apply a language
model or cloze loss as described in Equations 4.11–4.13 to the translation model. For pre-training,
a sub-model is trained in a separate step and the resulting parameters are transferred to the
initialization of the translation model. In contrast to this, in multi-task training the model is

62



4.4 Experimental Results

Table 4.27: Findings on the effect of different pre-training strategies using monolingual source or
target data. Depending on the type of data, different parts of the model are pre-
trained using either a cloze or language model loss. All results are reported on the
test set.

mono data pre-trained additional De→En Zh→En
component loss newstest2017 newstest2017

src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 33.5 48.2 23.0 61.9
yes enc cloze 34.2 47.4 23.5 61.0

yes enc + dec lmtrg 33.8 48.0 22.7 62.3
yes yes enc + dec lmsrc, lmtrg 34.1 47.5 23.3 61.1

optimized to perform both tasks simultaneously. This prevents the model from suffering from
catastrophic forgetting, which describes a process where the pre-trained model parameters are
shifted in such a way that they no longer constitute a solution for the pre-trained task.

Table 4.28: Multi-task learning strategies.

mono data affected additional En→It Ro→En
src trg component loss Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 28.1 54.0 35.7 45.3
yes enc lmsrc 28.3 53.5 35.5 45.7
yes cloze 28.2 53.7 35.6 45.8

yes dec lmtrg 29.0 52.8 36.3 45.1
yes yes enc+dec cloze,lmtrg 28.1 53.9 36.0 45.2

Table 4.29: Multi-task learning strategies.

mono data affected additional De→En Zh→En
src trg component loss Bleu [%] Ter[%] Bleu [%] Ter[%]

none none 32.7 48.6 22.2 62.4
yes enc lmsrc 32.2 49.2 22.1 62.7
yes cloze 32.0 49.5 22.0 63.3

yes dec lmtrg 33.1 48.4 22.6 61.7
yes yes enc+dec cloze,lmtrg 32.2 49.3 22.3 63.0

The results of multi-task training are shown in Tables 4.28 and 4.29 for the low- and high-
resource tasks respectively. We observe that an additional loss on the encoder does not improve
the translation performance; while we see insignificant improvements for English→Italian, there
are performance losses of comparable size for both Romanian→English and Chinese→English.
The German→English system even worsens by 0.7 Bleu [%] and 1.1 Ter[%] . Overall, the use of
source data with an additional loss has either no or a negative impact on the system. Target-
side data provides a consistent improvement of 0.4–0.9 Bleu [%] across all languages, with both
low-resource settings gaining bigger improvements than German→English and Chinese→English.

We conclude that multi-task learning is not helpful to train the encoder using source data.
However, the use of target data in encoder loss can be beneficial, especially if bilingual training
data is scarce.
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4.4.4 Back-Translation

Back-translation is the most common way to use monolingual data in machine translation sys-
tems. In this work, we only consider the standard back-translation introduced to neural machine
translation by [Sennrich & Haddow+ 16b] and described in Section 4.3.

Back-translation is a computationally costly process that involves the training of an additional
translation system as well as the generation of synthetic source data and its processing during
the training of the final system. While the training of an additional machine translation model
can be considered a constant computational cost, the question of how much target data should
be translated remains important. More synthetic data costs initial translation time and increases
the training time for a full epoch on the final system. Furthermore, the amount of synthetic and
original training data needs to be balanced to avoid overfitting to the synthetic data.

Table 4.30: Back-translation with different data ratios. The amount of original bilingual data is
the same for all experiments and the amount of synthetic data is selected according
to the data ratio. All results are reported on the development set.

data ratio En→It Ro→En
human:synthetic Bleu [%] Ter[%] Bleu [%] Ter[%]

none (baseline) 28.1 54.0 35.7 45.3
1:0.5 28.7 53.3 36.5 44.8
1:1 28.8 53.5 37.0 44.2
1:1.5 29.2 53.2 37.4 44.3
1:2 29.6 52.9 37.3 44.4
1:5 29.8 52.4 37.4 44.0
1:10 29.9 52.5 37.9 43.9

We test different amounts of training data for the two low-resource tasks English→Italian and
Romanian→English and report the results in Table 4.30. For all experiments, we select a certain
amount of synthetic data and then oversample the original bilingual data in such a way that both
data conditions are evenly represented. For example, the original-to-synthetic data ratio of 1:2
for the English→Italian task in Table 4.30 represents a scenario where we use all 230k bilingual
sentence pairs and add an additional 460k sentence pairs of monolingual data. Oversampling the
original data by a factor of two results in a total of 4× 230k = 920k sentence pairs. We observe
that more synthetic data generally helps more, but beyond a ratio of 1:2 we obtain diminishing
returns. Overall, both systems improve significantly, with +1.8 Bleu [%] for the English→Italian
setup and +2.2 Bleu [%] in the case of Romanian→English.

Table 4.31: Impact of back-translation on two high-resource tasks. All results are reported on the
development set.

system De→En Zh→En
Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline 32.7 48.6 22.2 62.4
+ back-translation 35.1 45.8 23.0 61.3

Since back-translation is not the focus of this thesis, we conduct the corresponding experiments
on the two high-resource language pairs with the greatest amount of synthetic data feasible. In
the case of German→English this is a ratio of 1:5 and for Chinese→English we use a ratio of 1:1,
totaling 46M, respectively 34M, sentence pairs.
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Table 4.32: English→Italian: Overview over all methods using monolingual data.

monolingual data usage mono data dev tst2010
src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

none (baseline) - - 28.1 54.0 29.6 52.0
back-translation - 0.1G 29.9 52.5 31.4 50.5
new loss pre-training (enc,dec) 2.5G 1.2G 29.6 52.5 31.3 50.3

multi-task (dec) - 1.2G 29.0 52.8 30.5 50.8
lm fusion sequence normalization - 1.2G 28.0 54.6 30.2 52.1

symbol normalization - 1.2G 27.7 54.8 29.9 52.2

These improvements are consistent with the reports of other groups on the impact of back-
translation [Sennrich & Haddow+ 16b].

4.4.5 Comparison of the Presented Methods

So far we have investigated three major approaches individually, namely language model fusion,
pre-training and back-translation. These approaches incorporate monolingual data into a machine
translation model in different ways. Language model fusion uses monolingual data to train an
independent language model. Pre-training and multi-task learning rely on a similar objective
function but share the parameters of the language model with the translation model. Similarly,
back-translation considers the decoder as a language model where the encoder state is emulated
by a synthetic source sentence. Throughout this chapter we analyzed and tuned each of the
presented methods individually. Next, we compare the results and consider the question of which
method makes the most efficient use of monolingual data. In the following we compare the best-
performing methods across all three approaches. We show the result for each language individually
in Tables 4.32-4.35, reporting the performance on the development and test set as well the amount
of data used for each method.

In particular, all systems reported use 6 layers within both the encoder and 6 the decoder. We
use a data ratio of 1:10 for English→Italian and Romanian→English, and for the high-resource
tasks of German→English and Chinese→English we use ratios of 1:5 and 1:1 respectively. The
pre-training approach that worked best across all tasks relies on a cloze loss on top of the encoder
to make use of source data in combination with a language model loss on the decoder which obtains
pseudo-source information from a pseudo-encoder. For multi-task training, source information is
not helpful and we use solely a language model loss on the decoder to optimize the model on
the target monolingual data. In this work, we show that the training of fusion models does not
lead to the desired convergence behavior (see Section 4.4.2). The best performance is obtained
by log-linear model combination in search with a translation model scale of α = 1 and language
model scale of β = 0.1. The model combination is computationally feasible in search with full-size
translation models, hence we can use the baseline model directly with six encoder and decoder
layers.

Table 4.32 shows the results on the English→Italian task. Back-translation yields the best
performance with an improvement of more than +1.5 Bleu [%] and Ter[%] on the development
and the test set. Using monolingual data to pre-train the encoder and the decoder yields very
competitive results; however, the approach uses twelve times more target data as well as an
additional monolingual source dataset. Using the language model loss on the decoder with a
multi-task learning approach yields weaker results and language model fusion shows the weakest
performance, not improving upon the baseline, with a small lead for sequence-level normalized
models. Notably, the pre- and multi-task training employ the same monolingual training data as
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Table 4.33: Romanian→English: Overview over all methods using monolingual data.

monolingual data usage mono data dev newstest2016
src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

none (baseline) - - 35.7 45.3 34.1 47.4
back-translation - 0.2G 37.9 43.9 36.8 45.2
new loss pre-training (enc, dec) 0.1G 1.4G 37.1 44.5 35.4 46.5

multi-task (dec) - 1.4G 36.0 45.2 34.6 47.2
lm fusion sequence normalization - 1.4G 35.8 45.8 33.8 48.5

symbol normalization - 1.4G 35.4 46.0 33.8 48.0

Table 4.34: German→English: Overview over all methods using monolingual data.

monolingual data usage mono data dev newstest2017
src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

none (baseline) - - 32.7 48.6 33.6 48.0
back-translation - 0.6G 35.1 45.8 36.6 44.8
new loss pre-training (enc,dec) 2.4G 1.0G 33.1 48.1 34.1 47.5

multi-task (dec) - 1.0G 33.1 48.4 34.1 47.9
lm fusion sequence normalization - 1.0G 33.4 49.1 34.1 48.8

symbol normalization - 1.0G 33.2 49.0 34.3 48.2

the target-side language model.
The experiments on Romanian→English presented in Table 4.33 are generally consistent with

these observations. However, back-translation obtains a notable improvement over pre-training,
which could be a result of the small amount of monolingual Romanian data.

German→English and Chinese→English are both high-resource tasks providing significantly
more bilingual data. In particular, pre-training yields only small improvements, performing about
0.5 Bleu [%] and Ter[%] over the baseline for German→English and on par with the baseline for
Chinese→English. Pre-training, multi-task learning and language model fusion show very similar
results, all ranging between 34.1 and 34.3 Bleu [%] on the test set of the German→English task.
Similarly, the results on the Chinese→English translation task are between 23.2 and 23.6 Bleu [%] ,
all improving upon the baseline by a very small margin. Back-translation is the only method
to systematically beat the baseline, with +3.0 Bleu [%] and +1.2 Bleu [%] on the test sets of
German→English and Chinese→English respectively.

It should be noted that due to technical limitations with respect to resource usage and model
training time, the back-translation experiments use the least amount of monolingual data among
all methods. Since the target data used for back-translation is a subset of the monolingual data
used in all other approaches, the results on back-translation are a lower bound to the performance
of a system trained on all possible back-translated data. Furthermore, we observe that adding
more synthetic data on the English→Italian and Romanian→English tasks yields diminishing
returns. The improvements through back-translation start to flatten on both tasks once the
number of synthetic sentences doubles the human translations (see Table 4.30). Hence, we believe
that the experiments remain comparable and that the conclusions of the comparison are valid.

We conclude that monolingual data is extremely helpful in the training of machine translation
models. On low-resource tasks pre-training is a very effective approach, which can also make
use of monolingual source data. Overall, back-translation remains the most effective way to use
monolingual data, with respect to both translation performance and data efficiency. It yields the
best results across the four tasks while using only 7%–50% of the monolingual data.
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Table 4.35: Chinese→English: Overview over all methods using monolingual data.

monolingual data usage mono data dev newstest2017
src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

none (baseline) - - 22.2 62.4 23.0 61.9
back-translation - 0.4G 23.0 61.3 24.2 60.9
new loss pre-training (enc,dec) 54.8M 1.4G 22.1 62.2 23.3 61.1

multi-task (dec) - 1.4G 22.6 61.7 23.7 61.1
lm fusion sequence normalization - 1.4G 22.6 64.0 23.2 63.1

symbol normalization - 1.4G 22.3 63.5 23.6 62.1

Table 4.36: Domain analysis on global-normalized fusion models. Language models are trained
using either only the target side of the bilingual data (LMbiling) or monolingual and
bilingual target data (LMmono). The test set printed in bold is the official test set of
the corresponding task.

task domain of data LM Ppl
bilingual monolingual test LMbiling LMmono

En→It science news science 53.4 33.4
news 94.6 22.6

De→En parliament, other news parliament 24.0 25.9
news 84.0 39.7

4.4.6 Analysis: Effect of Domain

Whenever different datasets are combined to train a model the origin of the data and with it
the underlying domain can play an important role. In the case of monolingual data, this raises
two related questions:

(a) Are the improvements from the use of monolingual data solely a domain effect?

(b) How much impact does the domain of the datasets have?

To answer both questions we first consider the domains of all datasets involved as depicted in
Table 4.36. Most shared tasks on machine translation rely on monolingual data obtained from
news websites. The bilingual training data as well as the test sets, however, originate from a wider
range of data sources. From Table 4.36 we observe that a language model LMbiling trained on
the target side of the bilingual data performs decently on the English→Italian task and very well
on German→English if the domain of the test set matches the domain of the training data. In
comparison, a language model LMmono that is trained additionally on the monolingual news data
performs especially well on the news test sets, reducing the perplexity to 1

2 or 1
4 of the original

value. On the test set that matches the domain of the training data (either science or parliament),
the monolingual data helps a lot in the case of the English→Italian, where little bilingual data
exists.

Overall, we observe that the domain of the data has a huge impact on how well the target
side of a test set can be explained given the training data. We test the baseline and all three
methods that make use of monolingual data on the test sets from Table 4.36. One of the test
sets matches the domain of the bilingual training data while the other matches the domain of the
monolingual target data. The results depicted in Table 4.37 show that the domain of the data has
a significant impact. On English→Italian all systems that use monolingual data improve over the
baseline on both test sets. The biggest difference is observed when using back-translation, where
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Table 4.37: Domain effect of all methods. English→Italian test sets are tst2010 and
newstest2009 to match the data of the bilingual and monolingual training data
respectively. Analogously, europarldev2006 and newstest2017 are used in the
German→English task.

language method mono data domain of test set matches domain of
src trg bilingual data monolingual data

Bleu [%] Ter[%] Bleu [%] Ter[%]

En→It baseline - - 29.6 52.0 21.6 61.5
back-translation - 0.1G 31.4 50.5 26.5 56.7
lm fusion - 1.2G 30.2 52.1 22.7 61.0
pre-training 2.5G 1.2G 31.3 50.3 24.2 58.6

De→En baseline - - 33.3 51.6 33.6 48.0
back-translation - 0.6G 33.5 51.7 36.6 44.8
lm fusion - 1.0G 33.3 53.2 34.1 48.8
pre-training 2.4G 1.0G 33.2 51.9 34.1 47.5

the impact increases from +1.8 Bleu [%] to +4.9 Bleu [%] when the test matches the domain of
the monolingual data. All methods show bigger improvements over the baseline if the domain of
the monolingual data matches the domain of the test set.

For German→English we observe that no improvement is achieved by adding monolingual data
when the domain of the test set matches the domain of the bilingual training data. However, if
the test set matches the domain of the training data, all methods yield improvements between
+0.5 and +3.0 Bleu [%] over the baseline.

We conclude that the impact of monolingual data varies quite heavily depending on the domain
of the datasets involved as well as the amount of bilingual training data. For systems with low
amounts of bilingual data the addition of monolingual data improves clearly beyond domain
adaptation. However, if enough bilingual data is available, preferably from the test set domain,
the system does not benefit from monolingual data. This indicates that for high-resource systems
monolingual data provides only domain-adaptation effects.

4.4.7 Analysis: Combining Methods
Throughout this work, we show several promising methods that use monolingual data to im-

prove machine translation systems. Overall, back-translation yields the most consistent and
strongest performance; however, each method has its specific benefits, for example, pre-training
is the only approach that integrates monolingual source data. This raises the question of whether
it is beneficial to combine the different approaches. From this we hope to answer:

(a) Can we obtain better overall performance?

(b) Do the various approaches extract the same information from the additional data?

Since back-translation shows the strongest performance across all tasks, we combine it with either
pre-training or language model fusion.

We report the results on English→Italian in full detail in Table 4.38. Note that the data used
for back-translation is a subset of the data used in pre-training or language model training, hence
no additional target-side data is reported when back-translation is applied. We observe that pre-
training improves an already strong system with back-translation by 0.4 Bleu [%] and Ter[%] on
the development set and 0.1 Bleu [%] and 0.4 Ter[%] on the test set. Extending the joint approach
even further by adding an external language model shows no consistent improvement.
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Table 4.38: English→Italian: Combining different methods that make use of monolingual data
with back-translation.

back- method mono data dev tst2010
translation src trg Bleu [%] Ter[%] Bleu [%] Ter[%]

no baseline - - 28.1 54.0 29.6 52.0
lm fusion - 1.2G 28.0 54.6 30.2 52.1
pre-training 2.5G 1.2G 29.6 52.5 31.3 50.3

yes baseline - 0.1G 29.9 52.5 31.4 50.5
lm fusion - 1.2G 29.6 53.3 31.0 51.5
pre-training 2.5G 1.2G 30.3 52.1 31.5 50.1
+ lm-fusion 2.5G 1.2G 29.8 53.1 31.6 50.8

Table 4.39: Effect of combining different methods that make use of monolingual data with back-
translation on three translation tasks.

back- method additional Ro→En De→En Zh→En
trans- mono data newstest2016 newstest2017 newstest2017
lation src trg Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%]

no baseline 34.1 47.4 33.6 48.0 23.0 61.9
lm fusion yes 33.8 48.5 34.1 48.8 23.2 63.1
pre-training yes yes 35.3 46.3 34.1 47.5 23.3 61.1

yes baseline yes 36.8 45.2 36.6 44.8 24.2 60.9
lm fusion yes 37.8 44.4 37.9 44.8 24.0 62.6
pre-training yes yes 37.4 44.3 37.3 44.4 24.2 60.5

+ lm fusion yes yes 37.7 44.5 37.9 44.9 24.0 62.4

For the three remaining language pairs we report results in Table 4.39. For Romanian→English
and German→English, pre-training and language model fusion improve strong back-translation
systems by 0.6-1.3 Bleu [%] . This is an important observation since back-translation is considered
to be the state-of-the-art approach when using monolingual data. Language model fusion and
pre-training show similar Bleu results across all tasks; however, language model fusion tends to
generate higher Ter scores.

Going back to the original question, we conclude (a) that even strong systems with back-
translation data are improved by the newly introduced methods, with pre-training and language
model fusion each performing best on different tasks. Furthermore, we can infer (b) that back-
translation extracts different information from the monolingual data than both language model
fusion and pre-training. Combining all three methods does not provide meaningful improvements,
indicating that there is an overlap in the information obtained from pre-training and language
model fusion.

Overall, when applied alongside back-translation, pre-training yields more stable results than
language model fusion, hence we recommend using pre-training and back-translation when aiming
for best-performance translation systems.

4.4.8 Comparison to Other Work
Finally, we compare the presented methods to other works from the literature. Commonly,

monolingual data is only added as a last step after performing all other optimization approaches,
such as a model ensemble, bigger model size or teacher-student learning. However, these methods
can already provide a significant boost over a baseline model, making it hard to obtain an even
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comparison. Furthermore, there is no guideline by shared tasks such as the IWSLT or WMT
on how to select monolingual data from the provided corpora, e.g. by specifying the amount of
data or a selection criterion. This is problematic because for many language pairs, there is more
monolingual data available than can practically be used by most approaches. This means that it
is very hard to find strictly comparable results in the literature. When possible, we report both
baseline models as well as fully optimized models from the literature.

Table 4.40: Results of the English→Italian IWSLT task. Systems with multilingual data use more
bilingual training data but no additional En→It data. The IWSLT 2017 task allows
the use of En↔ {De,Nl,Ro} data.

extra tst2010 tst2017
data Bleu [%] Ter[%] Bleu [%] Ter[%]

transformer [Lakew & Lotito+ 17a] multiling 28.5
Kyoto IWSLT [Dabre & Cromierès+ 17] multiling 29.1 30.8 50.5
FBK IWSLT [Lakew & Lotito+ 17b] 29.9

+ Multilingual multiling 29.6 50.7
KIT IWSLT [Pham & Sperber+ 17] multiling 32.0 48.4
baseline (this work) 29.6 52.0 31.9 48.1
lm fusion trg 30.2 52.1 32.5 47.9
back-translation trg 31.4 50.5 34.4 46.1
pre-train src+trg 31.3 50.3 33.9 46.6

+ back-translation src+trg 31.5 50.1 34.8 45.9
+ lm fusion src+trg 31.6 50.8 34.4 46.4

The results on the English→Italian task are shown in Table 4.40. For this task additional
multilingual data from the same domain as the training and test set is provided by the IWSLT
and commonly used. We show that the use of out-of-domain monolingual data can achieve even
better results.

Table 4.41: Results of Romanian→English WMT 2016 task and comparison to previous works.

extra newstest2016
data Bleu [%] Ter[%]

RNN attention [Sennrich & Haddow+ 16a] 29.2
+ back-translation trg 33.3

transformer [Kasai & Cross+ 20] 34.5
transformer [Conneau & Lample 19] 28.4

+ back-translation trg 34.4
+ pre-training (lm loss) trg 31.5
+ pre-training (cloze) trg 35.3

+ back-translation + multilingual trg 38.5
this work (baseline) 34.1 47.4

+ back-translation trg 36.8 45.2
+ lm fusion trg 33.8 48.5

+ back-translation trg 37.8 44.4
+ pre-training src+trg 35.3 46.3

+ back-translation src+trg 37.4 44.3
+ lm-fusion src+trg 37.7 44.5

On the Romanian→English task we specifically point out the work on pre-training performed
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with a language model or cloze loss [Conneau & Lample 19]. This method was developed and
published in parallel to and independently of our work. The underlying methodology is very sim-
ilar, applying a language model or cloze loss to use monolingual data in a separate pre-training
step. The resulting parameters provide an initialization for the machine translation model. How-
ever, the two works differ in the architecture selected. In this work, we use a transformer with
an encoder and decoder, which, as of this writing, is the state of the art for machine translation.
Based on this architecture we adapt the pre-training to initialize the parameters of the model.
Conneau and Lample use a self-attentive or transformer language model, basically merging en-
coder, decoder and cross-attention into one component [Conneau & Lample 19]. Our work agrees
with the reported results regarding the use of pre-training, reaching an identical performance of
35.3 Bleu [%] . However, we do not confirm their finding that pre-training improves the baseline
by 6.9 Bleu [%] and even outperforms back-translation. In both cases we obtain much stronger
performance than the rival system, leading us to the conclusion that pre-training has a positive
impact, which is, however, smaller than reported. Similar to Conneau and Lample, we observe
strong improvements when combining pre-training with back-translation. Please note that their
strongest system reported is multilingual, meaning that an exact comparison is infeasible here.

Table 4.42: Results of German→English WMT task and comparison to previous works.

extra dev newstest2017
data Bleu [%] Ter[%] Bleu [%] Ter[%]

sampling-based back-translation [Kim 22] trg 36.5 49.7
+ pre-training trg 36.7 49.3

zero-order direct HMM [Bahar 22] 33.7 54.9
zero-order direct HMM [Wang 23] 32.3 49.5 33.8 49.5
first-order direct HMM [Wang 23] 32.5 49.2 33.8 49.4
transformer [Tang & Müller+ 18] 33.7
RWTH 2018 [Schamper & Rosendahl+ 18] bil+trg 37.5 49.1 39.9 47.6
Cambridge 2018 [Stahlberg & de Gispert+ 18] bil+trg 36.5 38.4
this work (baseline) 32.7 48.6 33.6 48.0

+ back-translation trg 35.1 45.8 36.6 44.8
+ lm-fusion trg 33.4 49.1 34.1 48.8

+ back-translation trg 36.2 45.9 37.9 44.8
+ pre-training src+trg 33.1 48.1 34.1 47.5

+ back-translation src+trg 35.5 45.5 37.3 44.4
+ lm fusion src+trg 35.6 46.6 37.9 44.9

The results for German→English are shown in Table 4.42 and for Chinese→English in Ta-
ble 4.43. We specifically point out the work of Kim which investigates improved methods of
generating back-translation data since it also focuses on the use of monolingual data [Kim 22].
Instead of a deterministic search, the back-translation system uses the model distribution to
sample during search and provide synthetic source sentences with increased linguistic variety.
We observe that the methods presented here yield better results, however, they access greater
amounts of monolingual data. Please note that the work by Kim overlaps with this thesis in some
chapters and that both authors investigated the impact of pre-training jointly.

Most works from the literature use monolingual data only via back-translation and in combi-
nation with many refinements, such as model ensembles, fine-tuning and greatly increased model
sizes. Nonetheless, we report competitive results for both tasks, with the exception of models
that use additional bilingual data [Schamper & Rosendahl+ 18, Stahlberg & de Gispert+ 18] or
bigger models with ensembling [Wang & Gong+ 18, Wang & Li+ 18].
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Table 4.43: Chinese→English.

extra newstest2017 newstest2018
data Bleu [%] Ter[%] Bleu [%] Ter[%]

RNN [Sennrich & Haddow+ 16a] trg 22.9
+ ensemble trg 25.7

NiuTrans [Wang & Li+ 18] trg 25.1
+ ensemble, bigger model, re-ranking trg 28.5

transformer ‘big’ [Kasai & Peng+ 21] 24.2
transformer [Wang & Gong+ 18] 24.3

+ back-translation, teacher, ensemble trg 27.6
zero-order direct HMM [Wang 23] 23.2 59.5 23.8 58.1
first-order direct HMM [Wang 23] 23.3 59.3 23.7 58.2
zero-order direct HMM [Bahar 22] 23.1 61.7 23.6 65.7
this work (baseline) 23.0 61.9 23.3 61.9

+ lm-fusion trg 23.2 63.1 23.8 63.1
+ back-translation trg 24.0 62.6 24.5 63.1

+ pre-training src+trg 23.3 61.1 23.8 61.2
+ back-translation src+trg 24.2 60.5 24.7 60.7

+ lm fusion src+trg 24.0 62.4 24.9 62.5

4.4.9 Conclusion
For many languages, monolingual data can be easily obtained and it commonly dwarfs the

amount of bilingual data available. In this chapter, we investigated the questions of whether and
how monolingual data can be used to improve a neural machine translation system and concluded
that the use of monolingual data provides strong benefits across all tasks.

First, we showed that additional monolingual helps greatly to explain an unseen test set through
a language model (Table 4.4). This indicates that even for high-resource tasks, there is not enough
bilingual data available to fully learn the target language within the internal language model of
the decoder. This is a prerequisite for the viability of any approach that integrates monolingual
data.

Second, we proposed two new approaches incorporating monolingual data into a state-of-the-art
machine translation system and compared them to the established method of back-translation,
i.e. the creation of synthetic data from a human-generated target sentence. All three methods
showed improvements on several tasks, proving that monolingual data improves machine transla-
tion systems (Tables 4.32-4.35).

The two approaches proposed in this work make use of monolingual data either via language
model fusion or through pre-training. Language model fusion is a log-linear model combination
between a language and a translation model that requires explicit normalization to produce a
probability distribution. In this work, we considered both sequence- and symbol-level normaliza-
tion and applied the method during search and training. We observed the best performance using
a strong language model trained on monolingual target data in the log-linear model combination
together with the machine translation model and obtained improvements of around 0.5 Bleu [%]

(Table 4.11). Overall, sequence-level normalization showed a slightly stronger performance com-
pared to symbol-level normalized systems. Furthermore, we verified that any improvement gained
from the language model integration indeed stems from the use of additional data and is not an
effect of model combination or an increased number of parameters (Table 4.14).

Integrating the language model into the training of the machine translation model does not
provide additional improvements (Table 4.18) and showed problematic convergence behavior in

72



4.5 Individual Contributions

the desired metrics (Figure 4.8). This could be caused by either a mismatch between the loss
of the training and the final metrics of the translation task or an ill-fitting approximation of the
loss, namely its denominator.

Pre-training integrates monolingual data without the need for an external model. Instead,
parts of the machine translation model are optimized as sub-models to represent the monolingual
data and the resulting parameters are transferred back to the machine translation model as an
initialization point for the training. We proposed different methods to pre-train the parame-
ters of the encoder, decoder or full translation system using either source or target monolingual
data. Using source data to pre-train the encoder we reported improvements of 0.3-1.3 Bleu [%]

(Table 4.21 and 4.22). This is an important finding since, to the best of our knowledge, no estab-
lished method makes efficient use of monolingual source data, and we showed that the encoder
profits both from an explicit loss as well as from additional data (Table 4.25). Using the same
loss as in pre-training for multi-task training of a machine translation system did not improve
the performance (Table 4.32). Overall, pre-training yields strong results and the best results are
obtained if the full system is pre-trained using source and target data to define a loss on the en-
coder and decoder respectively. We reported improvements of up to 1.3-1.8 Bleu [%] for the two
low-resource tasks (Table 4.26) and only small but consistent improvements of 0.3-0.6 Bleu [%]

on the two high-resource tasks (Table 4.27). This is consistent with similar works, published in
parallel, on the same subject [Conneau & Lample 19].

Back-translation is the state-of-the-art approach to include monolingual data. In this work, we
used the existing method [Sennrich & Haddow+ 16b] without changes or extensions, by creating
a parallel corpus from monolingual target data through the automatic generation of a translation.
We verified the results of this approach as we observed an improvement of 1.2-3.0 Bleu [%] across
all tasks (Table 4.30-4.31). Back-translation requires the training of an additional machine trans-
lation model as well as the translation of millions of sentences. However, it is overall the most
data-efficient method, yielding the best results in all four language pairs, while using only 7-58%
of the monolingual data (Table 4.32-4.35).

We showed that all methods are susceptible to domain effects of the underlying data. If enough
bilingual training data matches the domain of the test set, no method improves when monolingual
data is included. However, if the test domain is not included in the training data, even high-
resource tasks observed an improvement of 3.0 Bleu [%] . All investigated methods were affected
by the data domain.

Finally, we combined all methods presented in this work and observed improvements of 0.9-1.3
Bleu [%] over a system with back-translation on two of the four tasks (Table 4.39).

4.5 Individual Contributions
In this section, we list the individual contributions of the author in contrast to the work of

colleagues in joint research projects related to this dissertation. In particular, in accordance with
§5.6 of the doctoral guidelines of the RWTH Aachen University, we note which publications of
the author overlap with the presented work.

All experiments in this thesis were performed by the author unless explicitly stated at the
experiment or result (e.g. when citing external works). The author was majorly involved in the
development of all approaches, their central ideas and their implementation details. However, all
approaches were created and investigated in close cooperation with other researchers:

• language model fusion: The core idea originates from Wilfried Michel for the topic of
automatic speech translation [Michel & Schlüter+ 20], and applying it to the task of machine
translation was planned and developed by Wilfried Michel and the author in equal parts.
Implementation of the methods was performed by Nils-Philipp Wynand during his bachelor’s
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thesis, which was closely supervised by Wilfried Michel and the author [Wynands 21]. The
theory, approaches and methodology were proposed by the supervisors and implementation
details were frequently discussed by all three. The methods and their implementation were
applied to automatic speech translation and published [Wynands & Michel+ 22].

• pre-training: The central idea and methodology were proposed by the author. The imple-
mentation was performed by Arne Nix during his master’s thesis supervised by the author
and Yunsu Kim together with Shahram Khadivi [Nix 19]. Core ideas, methodology and
implementation were discussed between all four involved. Parts of this work are also part
of the thesis of Yunsu Kim [Kim 22]. A very similar method was developed and published
in parallel [Conneau & Lample 19] without any connection to this work or its author.

• back-translation: The concept of back-translation was proposed by Sennrich et al. [Sen-
nrich & Haddow+ 16a]. In this work, the approach is implemented to verify existing results
and to provide the current state-of-the-art result on the use of monolingual data. All im-
plementations are performed by the author; however, no scientifically new methods were
applied throughout this thesis.

The combination of the different approaches was implemented and performed by the author of
this thesis.
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Neural machine translation began to achieve promising results when powerful sequence-to-
sequence models were able to capture the full input and output sequence. The first neural
sequence models employed two independent recurrent layers in an encoder-decoder framework
that does not require limited history assumptions on either the source or the target sentence
[Sutskever & Vinyals+ 14]. However, the breakthrough that made neural machine translation the
undisputed state-of-the-art came with the introduction of the attention mechanism [Bahdanau
& Cho+ 15]. The attention mechanism allows the modeling of a differentiable, target-to-source
soft alignment that can be trained jointly with the rest of the translation model. The power of
the attention mechanism is highlighted by the fact that two of the most distinguishing features
of the state-of-the-art transformer architecture are (i) an increased number of encoder-decoder-
attention components and (ii) the replacement of all recursive layers by an additional attention
mechanism [Vaswani & Shazeer+ 17]. To distinguish these forms of attention we refer to them as
cross-attention and self-attention respectively.

Since attention is such an important feature of state-of-the-art machine translation systems,
we focus on it throughout this chapter. In the following, we recapitulate the definition of the
attention layer, discuss its limitations and suggest several extensions.

5.1 Cross-Attention
In this chapter, we focus on cross-attention, i.e. the attention that connects the encoder and the

decoder, as introduced by Bahdanau et al. and modified in the transformer architecture [Bahdanau
& Cho+ 15, Vaswani & Shazeer+ 17]. Attention is often categorized as the soft lookup of a query
on a series of key-value pairs. Formally the input consists of a sequence of query vectors

q1, . . . , qi, . . . , qI ∈ Rdq

together with a sequence of key-value pairs

(k1, v1), . . . , (kJ , vJ) ∈ Rdk × Rdv .

The intuition is that for each query qi we want to find the most similar key kj and output its
corresponding value vector vj . We perform a soft lookup by calculating a similarity measure α̂
between the query qi and all key vectors kJ1 . For the output of the soft lookup, each value vector vj
should be considered proportional to the similarity α̂(qi, kj) of its key vector kj to the current
query. In the case of machine translation, cross-attention is a sub-layer of the decoder depicted
in Figure 5.1, and we use the intermediate states sI0 of the decoder as queries and the outputs of
the encoder hJ1 as key-value pairs, i.e.

qi := si and kj := vj := hj .
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Figure 5.1: Transformer architecture with the cross-attention layer highlighted in red.

In the following, we introduce the cross-attention layer using the machine-translation-specific
notations and conventions.

To perform the soft lookup, a similarity α̂ between the current query si and all keys is calculated

α̂i,j := α̂(hj , si) := 1√
datt

(Wkhj)TWqsi ∈ R ∀1 ≤ j ≤ J (5.1)

which we refer to as attention energy. The matrices Wk,Wq are trainable parameters of the
network and they project key and query vectors to the same dimension datt. The attention
energies are normalized over all the key-value pairs, namely the number of encoder positions J ,
by a softmax operation

α(j|i) := exp (α̂i,j)∑
j′ exp

(
α̂i,j′

) (5.2)

and the resulting probability distribution α(j|i), commonly called the attention weights, is used
to compute the context vector at position i

ci :=
∑
j

α(j|i)Wvhj (5.3)
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Figure 5.2: Multi-head cross-attention with query si and key-value sequence hJ1 .

as a weighted average of the values. Since the similarity α̂ of query and key is computed via a prod-
uct, this variant of attention is often called multiplicative attention. This allows for computation-
and memory-efficient calculation of the attention via matrix multiplication. To simplify notation,
the vectors in the query, key and value sequences are individually concatenated, yielding the
matrices

Q := (Wqs1, . . . ,WqsI)
K := (Wkh1, . . . ,WkhJ)
V := (Wvh1, . . . ,WvhJ)

allowing us to express the calculation of the attention weights as

(c1, . . . , cI) = V T · softmax
(
KTQ√
datt

)
.

Since matrix operations are highly optimized on modern GPUs, the sequence of context vectors
can be computed extremely efficiently [Vaswani & Shazeer+ 17].

In the transformer architecture numerous cross-attention operations are performed. In par-
ticular, every decoder layer ` ∈ {1, . . . , Ldec} performs a predefined amount of M independent
attention operations. Each of these m ∈ {1, . . . ,M} operations is called an attention head with
its own weight matrices W (`,m)

q ,W
(`,m)
k ,W

(`,m)
v , allowing them to focus on different parts of the

source sentence. While each attention head operates on the encoder outputs hJ1 as key-value pairs,
the query vector s(`)

i is layer-specific, hence

α̂
(`,m)
i,j := α̂(`,m)(hj , s(`)

i )

α(`,m)(j|i) :=
exp

(
α̂

(`,m)
i,j

)
∑
j exp

(
α̂

(`,m)
i,j

)
c

(`,m)
i :=

∑
j

α(`,m)(j|i) W (`,m)
v hj .
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Multi-head attention is visualized in Figure 5.2. For simplicity of notation, we drop the depen-
dency on the head and decoder layer for the remainder of this work and each modification is
applied to all cross-attention heads and layers.

5.2 Extending the Dependencies
In order to improve the attention mechanism, we extend the information accessible within the

layer. The baseline attention weights for the position pair (j, i) are calculated from the sequence
of all encoder states hJ1 and the current decoder state si at position i

α(j|i) = α(j|hJ1 , si).

These attention weights are obtained via normalization from the attention weights

α̂i,j = α̂(hj , si).

Note that the energies only depend on a single encoder output hj of the source position j. We
argue that the dependencies of α̂ provide a more meaningful description of the overall dependencies
of the attention layer since the full encoder output hJ1 is used in the attention weight α(j|i) in a
rather limited fashion. For example, the order of the encoder outputs is completely irrelevant to
the attention weight calculation α(j|i) at position j. The only information used from the other
encoder positions j′ 6= j is their exponential sum, meaning that even the number of encoder
outputs J is only incorporated implicitly. Any modification to the attention energies that does
not alter this sum will result in the same attention weight α(j|i) for the encoder position j.
Hence, if we discuss the dependencies of the attention layer, we will consider the dependencies of
its energies α̂.

In the following, we will consider different extensions to the attention mechanism, each adding
further dependencies.

5.2.1 Word Embeddings within Encoder and Decoder

The attention mechanism is frequently seen as a replacement of the target-to-source alignment
model in count-based machine translation systems [Bahdanau & Cho+ 15, Alkhouli & Bretschner+

18, Garg & Peitz+ 19]. An alignment is a mapping that assigns a source word to each target word,
following the intuition that the existence of each target word can be explained by a corresponding
source word. However, unlike traditional alignment models, the words under consideration are not
a direct input to the attention layer. Instead of the embedding f̃j of the word fj , the attention
layer utilizes its contextual encoder representation hj . Intuitively, hj represents the word fj ;
however, the actual flow of information from the embedded words fJ1 to a certain encoder state
hj is unknown. Unlike recurrent architectures, the path from all input words f1, . . . , fJ through
the transformer encoder to a specific hj is the same length. This can be seen as a strength of
self-attention layers as it facilitates long-dependency learning [Vaswani & Shazeer+ 17]; however,
the connection between word fj and encoder state hj is obscured. Similarly, the current decoder
state si has no immediate association with the last target word ei−1.

A straightforward solution providing the attention layer with information about the corre-
sponding source or target word is the concatenation of the corresponding word embedding f̃j ,
respectively ẽi−1. This yields new key and query vectors

h
(new)
j :=

(
hj
f̃j

)
, s

(new)
i :=

(
si
ẽi−1

)
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which supply new inputs to the cross-attention layer with strong ties to a certain word. We
provide either the original embeddings f̃J1 or a layer-normalized version LayerNorm(f̃J1 ). Overall,
the approach is similar to a residual or skip connection from the word embedding fj around the
encoder.

Instead of applying a concatenation, the new information can also be included via addition

h
(add)
j := hj + f̃j s

(add)
i := si + ẽi−1

where s(add)
i is used as query vector to the sequence of key and value vectors h(add)

1 , . . . , h
(add)
J .

To calculate the output of the attention layer, the first operation applied to the input vectors is
a linear transformation (see Equations 5.1 and 5.3). In the case of the query vector s(add)

i the
multiplication with the weight matrix Wq yields

Wqs
(add)
i = Wqsi +Wq ẽi−1

= (Wq Wq) ·
(
si
ẽi−1

)
= W (new)

q s
(new)
i .

We conclude that providing additional information to the query by addition is a special case of
concatenating the same information. This observation holds in general when combining hidden
states of a model, provided that the next operation is a linear transformation, as is the case for
attention and linear layers. Since these are the core layers of the transformer, we only consider
the concatenation of new information for all upcoming experiments.

In total, we obtain the following new dependencies for this modification of the attention mech-
anism

α̂i,j = α̂(hj , f̃j , si, ẽi−1).

Note that, strictly speaking, we are not adding new information to the attention mechanism,
since the source and target word embeddings are implicitly included in the encoder outputs hJ1 ,
respectively the decoder state si. However, this information is not explicitly present in the baseline
attention. Next, we consider extensions that provide the attention layer with information that
cannot be derived from the existing inputs.

5.2.2 Higher-Order Assumption in Attention Layers

Attention layers proved to be an extremely effective component of machine translation mod-
els. Functionally they replace the explicit alignment model used in traditional count-based sys-
tems [Bahdanau & Cho+ 15]. Notably, attention layers are a feed-forward structure [Vaswani &
Shazeer+ 17] and replacing the recurrent architecture [Bahdanau & Cho+ 15] with self-attention
allows for the parallel computation of all encoder steps. This speed-up compared to recurrent
architectures is a significant part of the success of the transformer architecture [Chen & Firat+

18]. However, the calculation of the cross-attention energies

α̂i,j = α̂(hj , si)

relies solely on the encoder output and the current decoder state. Crucially, this means that no
information about previous attention decisions of the model is available in the attention layer.
This stands in contrast to various count-based alignment models which use first-order dependen-
cies [Vogel & Ney+ 96, Och & Ney 03]. The information about previous attention decisions could
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be helpful to model locality, i.e. the assumption that the next source word to translate tends to
be positionally close to the last translated word. Of course, such a property is highly dependent
on the language pair under consideration. But even among completely different languages, for
which translation can require a lot of reordering, the translation of sub-words is expected to be
locally monotonous. For example, when translating a source word, which is split into separate
sub-words by BPE, we assume that the system keeps focusing on consecutive sub-words until the
current word is fully translated.

Another important issue concerns the modeling of coverage and over-translation. Intuitively,
each part of the source sentence should be translated, and once this is done it should not be
translated again. This requirement can be captured by alignment models that require a source
word to be aligned to a target word (coverage) but not arbitrarily many (over-translation). The
exact boundaries of word alignment are unclear since not every source word is translated literally
to exactly one target word. A figure of speech in the source language might be translated to a
phrase in the target sentence that does not allow for a meaningful word-to-word alignment. With
that in mind, the general intuition remains strong that each word in the target sentence should be
explained by a word or a sequence of words in the source sentence. This explanation can provide
a meaningful tool to ensure coverage and prevent over-translation. However, to model coverage,
the translation system needs to keep track of what parts of the source sentence have already
been translated. It is unclear whether that is possible in the current cross-attention layer since
it only obtains information about the previous target words ei−1

1 and has no access to previous
attention decisions α at all. Thus the attention energies α̂i,j at decoder step i cannot focus on
encoder positions that were ignored in previous decoding steps, making any modeling of coverage
problematic.

Throughout this chapter, we suggest various changes to create a higher-order cross-attention
layer by including information about previous attention steps. Focusing mainly on first-order
dependencies, we consider variations with a higher-order dependency.

We are faced with the questions of how to encode the desired information and where to place
it in the attention layer. First, we consider a series of changes based on an extended query vector

s
(new)
i,j :=

(
si
γi,j

)
(5.4)

and investigate different options for the value of γi,j . Note that we allow for a query vector s(new)
i,j

that varies across different source positions j. We use γi if γi,j = γi,j′ for all 1 ≤ j, j′ ≤ J . Like
all decoder states, γi,j = γ

(`,m)
i,j is head- and layer-specific and we simplify the notation wherever

possible. In the following, we present different approaches to modeling γi,j .

Extending the Query with the Previous Context Vector

The context vector ci is the output of the attention layer at position i, and in principle it
compresses all information about hidden states within the layer. Hence, the previous context
vector ci−1 can be considered an adequate representation of the previous attention step and a
suitable choice for γi,j . We experiment with using either the previous, head-specific context
vector

γ
(`,m)
i = c

(`,m)
i−1
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or the previous full context vector c(`)
i−1, which is obtained from the concatenation of all head-

specific context vectors

γ
(`)
i =Watt · c(`)

i−1

:=Watt ·


c

(`,1)
i−1
...

c
(`,M)
i−1


with linear transformation Watt. For the first decoder step no previous context vector is available
and we initialize γ(`)

0 := 0 for all layers.
In total, we obtain attention energies

α̂i,j = α̂(hj , si, ci−1) (5.5)

with first-order dependency.

Extending the Query with the Previous Attention Weight

The context vector ci−1 aggregates all the information of the attention layer. It is directly
calculated from and contains information about the attention weights and thus the alignment
from the previous decoder step. However, this information is rather indirect, since the attention
weights are only present as the scalar weights in the calculation of the weighted sum

ci−1 =
J∑
j=1

α(j|i− 1)Wvhj .

Providing all attention weights from the previous decoder step γi,j := (α(1 | i− 1), . . . , α(J | i− 1))
directly is problematic in practice since their number depends on the source length J and is not a
constant value. The architecture of the attention mechanism does not allow keys to be of variable
length since they are multiplied by a fixed-size matrix Wk. Instead of providing all attention
weights of the previous decoder step at once, we consider each encoder output hj independently
and only concatenate the corresponding attention weight α(j|i− 1)

γi,j := α(j|i− 1).

This leads to a key-specific query s(new)
i,j , i.e. a query that is different for each encoder position j.

The dependencies of the resulting first-order attention model

α̂i,j = α̂(hj , si, α(j|i− 1)) (5.6)

for the attention energies and

α(j |hJ1 , si, α(1|i− 1), . . . , α(J |i− 1))

for the attention weights. Since the context vector is directly calculated from the attention weights
and the decoder outputs

ci−1 = c
(
hJ1 , α(1|i− 1), . . . , α(J |i− 1)

)
the formal dependencies of the attention energies derived from Equations 5.5 and 5.6 are identical.
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Extending the Query with Accumulated Attention Weights

So far we have provided additional information to the attention mechanism from the previous
decoder step i−1. While such a first-order assumption can be helpful, modeling concepts such as
coverage remains challenging. In order to keep track of translated words, we supply the attention
layer with the accumulated attention weights from all previous time steps

γi,j =
i−1∑
î=1

α(j |̂i). (5.7)

Intuitively, this measures to what degree the current source position j is already translated in the
previous i − 1 decoder steps. The attention energies are normalized over the number of source
positions J and generally not over the target I, thus source positions can obtain an accumulated
attention value γi,j bigger than one.

Extending the Query with Fertility

The sum of the accumulated attention weights (Equation 5.7) indicates for each source position
j to what degree the encoder output hj is used to generate the partial target sentence ei−1

1 .
However, this assumes that each source position contributes roughly equally to the translation.
In contrast to this Brown et al. assigned each source word fj a fertility ϕj ∈ N, i.e. a scalar value
that describes to how many words it translates [Brown & Cocke+ 90]. This idea is extended to
neural networks [Tu & Lu+ 16], where the fertility ϕj is predicted via a fully connected layer
applied to the encoder output hj

ϕj := ϕmax · σ
(
vThj

)
with hyperparameter ϕmax ∈ N and trainable parameters v. The sigmoid function σ maps the
output of the fully connected layer to the range of [0, 1], and scalar multiplication with ϕmax
projects this to the interval [0, ϕmax]. The fertility is used to scale down the accumulated attention
weights

γi,j = 1
ϕj

i−1∑
î=1

α(j |̂i).

This means that γi,j < 1 implies an under-translated source position j and γi,j > 1 indicates that
the source position j has already received more attention energy than predicted by the fertility
and should not be considered for i′ > i. Because the fertility ϕj = ϕ(hj) is a property of a source
word fj , we calculate it once per encoder output and share it across all layers and attention heads
of the decoder ϕ(`,m)

j = ϕj .
We want to point out some important differences between the original fertility model [Brown &

Cocke+ 90] and the proposed variant suitable for neural machine translation. Originally fertility
was a natural number assigned to each source word fj . In contrast to this, all state-of-the-art
neural machine translations operate on a sub-word level and consequently the encoder outputs
hj and fertility values ϕj correspond to source sub-words. It remains an open question to what
degree the concept of fertility is applicable and whether each chunk of a split-up word needs to
be explicitly translated to certain parts of the target sentence. Notably, the fertility values in a
neural network do not need to be natural numbers, allowing for real values instead. This could
be used to overcome the problems of a word with an original fertility of one being split into three
sub-words. Since none of the sub-words describes the original word completely, a naturally valued
fertility model would either need to drop information or risk over-translating. Fractional fertilities
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e0 e1 e2

f0 f1 f2

Self-Attention Self-Attention Self-Attention
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Figure 5.3: Transformer with first-order cross-attention. New dependencies (highlighted in red)
introduce recurrency to the decoder.

allow weighing each sub-word according to its importance to the original word and in consistency
with the original fertility. Since we compute the fertility from the encoder outputs hj instead of
the word embeddings f̃j , the current context of a sub-word is taken into account.

In total, we obtain attention energies

α̂i,j = α̂

hj , si, i−1∑
î=0

α(j |̂i)


with the dependencies extended to include all previous attention decisions.

Theory

Integrating information from the previous attention steps results in a first-order attention model.
From a modeling perspective this is desirable as additional inputs can lead to more expressive
models. However, from a technical perspective the extended dependencies provide a challenge
since they turn the attention mechanism into a recurrent layer, as depicted in Figure 5.3. Recur-
rent architectures are well-investigated for the task of machine translation [Sutskever & Vinyals+

14, Bahdanau & Cho+ 15] and achieved good results in the past. The transformer, on the other
hand, is a purely feed-forward architecture allowing for more parallelized training. For example,
in Figure 5.3 all self-attention sub-layers within the first decoder layer can be computed in parallel
once the embedding layer is completed. In contrast to this, the cross-attention layer of decoder
layer ` at decoder time step i cannot be calculated before the previous cross-attention at time step
i − 1 is computed. This recurrence slows down the training of the translation architecture and
we investigate the impact on experimental results in Section 5.4.2. The slowdown of the training
is problematic because the amount of training time is a restricting factor for machine translation
systems. Furthermore, some research suggests that the main benefit of the transformer is its
efficiency with respect to training time [Chen & Firat+ 18, Zeyer & Bahar+ 19].

In this chapter, we have proposed three extensions to the attention mechanism that incorporate
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additional information by expanding the query vector with a representation γi,j

s
(new)
i =

(
si
γi,j

)
.

In the following, we investigate how this modification impacts the full attention calculation.
Starting with the attention energies as defined in Equation 5.1, we assume a γi = γi,j independent
of the encoder position j and obtain

α̂
(new)
i,j = 1√

datt
(Wkhj)TWq

(
si
γi

)

= 1√
datt

(Wkhj)TW (1)
q si︸ ︷︷ ︸

α̂i,j

+ 1√
datt

(Wkhj)TW (2)
q γi︸ ︷︷ ︸

α̂
(γ)
i,j

where the weight matrix is split in two sub-matrices Wq =
(
W

(1)
q ,W

(2)
q

)
. This means that the

resulting attention energy α̂(new)
i,j can be expressed as the sum of two attention energies stemming

from the two different queries si and γi. Notably, the first of these yields the baseline attention
energies α̂i,j . Considering the final attention weights as calculated by Equation 5.2

α(new)(j|i) =
exp

(
α̂

(new)
i,j

)
∑
j exp

(
α̂

(new)
i,j

)
=

exp (α̂i,j) · exp
(
α̂

(γ)
i,j

)
∑
j exp (α̂i,j) · exp

(
α̂

(γ)
i,j

)
we observe that extending the query vector by concatenation essentially provides a second atten-
tion mechanism that is normalized jointly with the existing version. Thus every attention decision
is a compromise of two independent systems, one modeling the current target-to-source alignment
and one the alignment history. Next, we propose a method that explicitly models the balance
between the baseline attention and the new information.

Extended Key-Value List

The attention layer receives a series of keys and values as input. Each key kj = hj is compared
to the active query si and the corresponding value vector hj influences the output of the attention
ci proportionally to its similarity α̂i,j . So far we added additional information to the query
vector, effectively allowing a re-scaling of the importance of all source positions depending on
past attention decisions. An alternative way to provide information about the past attention
steps is via a separate key-value pair. This yields new hidden states of the attention layer, and
to avoid confusion with the hidden states of the baseline model, we denote e.g. the new context
vector c(new)

i . We extend the existing key and value sequence by the last context vector c(new)
i−1

Ki := Vi :=
(
h1, h2, . . . , hJ ,Wctxc

(new)
i−1

)
which is transformed via matrix multiplication with Wctx to match the dimensions of the other
keys and values. Since the context vector depends on the decoder time step i, the modified
sequences of key and value vectors are also dependent on the decoder time step i.
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This modification allows for a new position to attend to. Thus the attention energies as defined
in Equation 5.1 are unchanged for the existing J positions

α̂
(new)
i,j = α̂i,j j ≤ J (5.8)

α̂
(new)
i,J+1 = 1√

datt

(
WkWctxc

(new)
i−1

)T
Wqsi

and after normalization of α̂(new) over all J + 1 positions, we obtain the new context vector

c
(new)
i =

 J∑
j=1

α(new)(j|i)Wvhj

+ α(new)(J + 1|i)WvWctxc
(new)
i−1

= πci + α(new)(J + 1|i)WvWctxc
(new)
i−1

with π ≤ 1. This means that the new context vector c(new)
i is a scaled-down version of the baseline

context version ci combined with a linear projection of the previous context vector c(new)
i−1 .

From Equation 5.8 we observe that the dependencies of the attention energies α̂ depend on the
position j

α̂i,j = α̂(hj , si) j ≤ J
α̂i,J+1 = α̂(ci−1, si).

with overall the dependencies for the attention weights

α(j|hJ1 , si, ci−1).

5.2.3 Training and Search
All presented variants of the attention mechanism rely on the training criterion of the baseline

system presented in Equation 3.6

F =
∑

(fJ1 ,eI1)∈T

log p(eI1|fJ1 )

as well as the length-normalized decision rule shown in Equation 3.11a

êÎ1 = arg max
I,eI1

{
I

√
p(eI1|fJ1 )

}

during the search.

5.3 Related Work
Cross-attention was introduced into neural machine translation systems as a parametrized align-

ment model that connects the encoder and the decoder [Bahdanau & Cho+ 15]. It quickly became
a core component of state-of-the-art machine translation systems, and by 2016 the majority of
the best-performing systems in the WMT task on news translation applied attention layers [Bo-
jar & Chatterjee+ 16]. Self-attention and multi-head attention provided an important change in
the way attention layers are used [Vaswani & Shazeer+ 17]. Self-attention layers operate on a
single sequence; in other words, the query, key and value sequence are identical. They replaced
recurrent layers as the primary sequence layers within the encoder and the decoder. Multi-head
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attention performs attention several times in parallel on the same input sequences but with in-
dividual weight matrices. The resulting context vectors are concatenated and passed through a
linear layer to form the final output of the layer. For an in-depth description, we refer the reader
to Section 5.1. The combination of cross-, self- and multi-head attention in the transformer ar-
chitecture proved to be extremely effective and the architecture was applied to problems such as
speech recognition [Zeyer & Bahar+ 19], image processing [Parmar & Vaswani+ 18] and general
(pre-)training for many natural language processing tasks [Devlin & Chang+ 19].

Since the attention layer plays such a critical role in state-of-the-art systems, many modifications
and extensions have been investigated. Many works focus on the improvement of attention via
additional information. This information can be obtained from external models like an alignment
model [Alkhouli & Ney 17] or by providing additional hidden states of the model to the attention
layer. In this work, we investigate the second variant and we focus here on the description of
such approaches. Feng et al. experiment with an extension similar to this work in the context of
cross-attention in recurrent translation architectures. Adding the previous context vector or the
accumulated attention weights leads to more than 2.0 Bleu [%] improvement in the translation
performance as well as better alignments [Feng & Liu+ 16]. Fertility and coverage vectors in
a similar architecture provide mixed results, with an average improvement of 2 Bleu on two
language pairs and no change on two other language pairs [Mi & Sankaran+ 16]. Instead of
modeling fertility to measure how often a word is translated, Cohn et al. consider the inverse,
measuring how much of a word is left to translate [Cohn & Hoang+ 16]. In the same work,
the authors also provide an explicit external alignment obtaining significant improvements on
one out of four language pairs. In contrast to this, other investigations show no significant or
consistent improvement when using higher-order dependencies in cross-attention layers [Peter 20].
In this work, we continue the ongoing debate on whether higher-order cross-attention layers are
beneficial. Notably, all these investigations were performed using a recurrent translation system
with a single cross-attention layer. This is in contrast to state-of-the-art models, which employ
a multi-head cross-attention layer in each decoder layer, typically resulting in at least 48 cross-
attention layers. Since multiple investigations have shown that different attention heads within
and across layers perform different tasks [Voita & Talbot+ 19, Michel & Levy+ 19, Zhang & Yu+

20], these discrepancies in architectures might have a significant impact on how the attention
modifications affect the overall translation system. Furthermore, all described works employ
an additive attention mechanism, while state-of-the-art systems rely on multiplicative attention,
which can show different behavior [Britz & Goldie+ 17].

In the transformer architecture, i.e. an architecture with multi-head, multi-layer cross-attention,
many extensions to the attention layers have been suggested. Adding additional information in the
form of an external alignment does not benefit the global translation performance but improves the
translation of words from a pre-defined dictionary [Alkhouli & Bretschner+ 18]. Most works focus
on the self-attention layer, e.g. by providing explicit positional information to the key and value of
the self-attention layer. This improves the performance on language modeling tasks [Dai & Yang+

19] as well as on the English→German translation task [Shaw & Uszkoreit+ 18], mostly due to
better length generalization [Rosendahl & Tran+ 19]. In these approaches the distance between
the query position and the key position is forwarded to the self-attention layer. It is not clear how
to generalize these approaches to cross-attention since this relative positional information relies
on an implicit sequence alignment which does not generalize if the key and query sequences vary
in length and order. Replacing the probability distribution of the self-attention weights by a fixed
Gaussian distribution around the current position does not change the translation performance
on seven out of eight language pairs [You & Sun+ 20]. This means that reducing the dependency
of attention weights down to just the current query position does not harm the self-attention
layer. However, applying hard-coded Gaussian attention to the cross-attention yields a decrease
of 5-10 Bleu [%] across all language pairs. We conclude that cross-attention is more reliant on
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Table 5.1: Adding word embeddings to the encoder output hj or the decoder state si. All results
reported on the development set.

En→It Ro→En
Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline 28.1 54.0 35.7 45.3
source embedding 27.0 55.2 35.7 45.5

+ layer norm 26.7 55.0 35.6 45.5
target embedding 28.0 53.8 35.9 45.2

+ layer norm 28.0 53.9 35.9 45.2

the specific source and target sentence, meaning that additional information might provide better
translation results. Adding task-specific information to the cross-attention layer has been shown
to be helpful. For example, biasing the cross-attention to a monotone alignment provides an
improvement in the case of automatic speech recognition [Zhao & Ni+ 20].

Many works on the transformer attention layers investigate strategies to make them more ef-
ficient [Tay & Dehghani+ 22]. Most of these approaches consider the self-attention layer and
reduce the computation time or memory footprint e.g. by limiting the attention to a selection of
the keys [Kitaev & Kaiser+ 20], employing fixed attention patterns [Qiu & Ma+ 20] or simpli-
fying the attention energy computation [Katharopoulos & Vyas+ 20]. However, these strategies
cannot be directly applied to cross-attention, and generalized versions do not show the same
behavior [Rosendahl & Herold+ 21].

5.4 Experimental Evaluation

5.4.1 Experimental Setup

The setup for all experiments is identical to the one described in Section 4.4.1. All sys-
tems are six-layer transformer architectures trained on English→Italian, Romanian→English
German→English or Chinese→English. However, for the experiments described in this chap-
ter no monolingual data is used.

5.4.2 Results

Word Embeddings

In Section 5.2.1 we describe how the key, value and query vector of the cross-attention layer
can be extended by concatenating a word embedding vector. In Table 5.1 we show results for the
English→Italian and Romanian→English tasks. First, we observe that concatenating neither the
source nor the target word embedding improves the translation performance. In the case of Eng-
lish→Italian we even report a significant loss in performance when providing a source embedding
directly to the cross-attention layer. Secondly, we see that the difference between providing the
raw embedding vector and its layer-normalized version is negligible. Since layer normalization
does not seem to have a positive effect, we do not use when adding word embeddings it in all
further experiments.

Providing word embeddings directly to the attention layer does not improve the performance
on either low-resource task. From Table 5.2 we conclude that this is a general trend across all
four language pairs. The only major performance difference is a degradation of 1.1 Bleu [%] and
1.2 Ter[%] when concatenating the source embeddings to encoder output in the English→Italian
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Table 5.2: Effect of concatenating word embeddings to the encoder output hj or the decoder
state si for all four language pairs. All experiments concatenate raw word embedding,
without layer normalization, and all results are reported on the development set.

En→It Ro→En De→En Zh→En
Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline 28.1 54.0 35.7 45.3 32.7 48.6 22.2 62.4
conc. embd. src 27.0 55.2 35.7 45.5 32.5 48.5 22.1 62.6

trg 28.0 53.8 35.9 45.2 32.5 48.9 22.3 62.3
both 26.0 55.9 35.6 45.6 32.5 49.1 22.2 62.2

Table 5.3: Training speed of different attention variations. Training time is given in average
hours:minutes per epoch.

En→It Ro→En
train time #params train time #params

h:min factor h:min factor
baseline 0:12 1.0 52.1M 0:14 1.0 54.0M
query target embedding 0:14 1.1 53.6M 0:15 1.1 55.5M

previous context 1:54 8.7 52.3M 1:37 6.9 54.1M
accumulated weights 1:28 7.0 52.1M 1:27 6.2 54.0M

key-value previous context 1:49 8.7 55.2M 1:38 6.9 57.1M

setup. Providing a system with both a source and a target embedding leads to degradation over
the baseline on three of the four tasks.

We conclude that the encoder outputs hJ1 and decoder states sI0 are sufficiently good repre-
sentations of the respective sentences. It is an open debate as to whether the encoder output
hj represents the j-th token of the source sentence since the self-attention layers of the encoder
have no inherent bias to keep the sequence order. The presented experiments suggest that the
encoder output hj indeed does correspond to the j-th source token, since both performance and
attention quality do not significantly change when providing the j-th word embedding f̃j . If the
word embedding information at position j were contradictory to the output state information hj ,
we would assume a visible change in the system behavior.

First-Order Attention Layer

In this section, we present our experimental findings on the higher-order alignment models
presented in Section 5.2.2.

Training time The first-order extensions of the cross-attention mechanism require the last at-
tention step i− 1 to be finished before the current step i can be computed. This means that the
resulting layer is recurrent rather than feed-forward, as in the vanilla transformer, and cannot be
computed for the full target sequence in parallel. This is a major slow-down during training. The
training speed for different attention modifications is reported in Table 5.3 and we observe that
training takes roughly 7-8 times as long as the baseline training. Note that the increase in training
time does not originate from the number of model parameters. The smallest model described in
Table 5.3 consists of 52.1M network parameters while the biggest model is only 10% bigger, using
57.1M parameters. This is in clear contrast to the training time differences reported. We observe
some variation between these time measurements, which may be caused by external influences
such as resource interference with other users in the computing cluster, e.g. high network load.
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However, the overall trend is very clear and the lack of decoder parallelization increases training
time by a factor of roughly 7×.

While the increased training time is more of an annoyance than a problem for the English→Ital-
ian and Romanian→English setups, it means that training a model with higher-order attention
on the high-resource tasks German→English and Chinese→English is not feasible. For the case of
the German→English task, a baseline system already takes roughly 10-14 days of training time.
Hence, a model employing the proposed attention modifications would require more than 70 days
of training time or significant GPU parallelization, which is not feasible in the scope of this work.
Due to this, we report all results concerning higher-order attention layers only on English→Italian
and Romanian→English.

Table 5.4: Translation performance of models with higher-order cross-attention layers. Additional
information γi is concatenated to the existing query vector as described in Equation 5.4.
Results are reported on the development set of the respective tasks.

γi,j En→It Ro→En
Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline - 28.1 54.0 35.7 45.3
previous context vector head specific c

(`,m)
i−1 28.3 53.8 36.3 45.2

full c
(full)
i−1 28.4 53.9 35.8 45.4

previous weight αi−1,j 28.3 53.9 36.0 45.3
accumulated attention weights ∑i−1

k=1 ak,j 28.1 53.9 36.0 45.1
+ fertility 1

ϕj

∑i−1
k=1 ak,j 28.2 53.8 36.2 45.1

In Table 5.4 we show the impact of higher-order attention layers on the English→Italian and Ro-
manian→English tasks. Providing the head-specific context vector c(`,m)

i−1 of the previous decoding
step improves the English→Italian system by 0.2 Bleu [%] and Ter[%] and the Romanian→English
system by 0.6 Bleu [%] and 0.1 Ter[%] . Overall, this is a very marginal improvement. Similarly,
providing additional information in the form of previous attention weights αi−1 does not yield a
significant benefit across tasks and metrics. The addition of the accumulated attention weights
with fertility yields one of the strongest results, with an average improvement of only 0.3 Bleu [%]

and 0.15 Ter[%] . Overall, the higher-order attention layer does not significantly change the per-
formance on the English→Italian task with respect to Bleu or Ter. On the Romanian→English
task, we mostly observe small but consistent improvements of 0.3-0.6 Bleu [%] , although these are
not reflected in the Ter metric. We conclude that a zero-order or feed-forward attention system
is strong enough to model the target-to-source alignment in transformer architectures. This is
a clear difference from recurrent translation models, where providing fertility information to the
cross-attention layer could boost the translation performance by up to 2.0 Bleu [%] [Feng & Liu+

16].

Extended key-value list Next we consider the extended key-value list approach that incorpo-
rates past attention decisions by concatenating the previous context vector ci−1 to the end of the
key-value list. As can be seen from Table 5.5, the new key-value pair has no significant impact
on the translation performance. We observe small improvements of up to 0.1-0.4 Bleu [%] and up
to 0.4 Ter[%] , both of which can be considered noise.

All observations so far are made on the development set. This dataset is involved in the
training process of the translation models in two ways: (1) the learning rate is reduced if the
loss function of the model does not improve for several consecutive checkpoints, and (2) the final
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Table 5.5: Effect of adding the previous context vector ci−1 as a new entry pair to the key-value
list. Results are reported on the development set of the respective tasks.

En→It Ro→En
Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline 28.1 54.0 35.7 45.3
prev. context as key-value head specific 28.2 53.8 36.1 45.2

full 28.2 53.6 36.0 45.3

Table 5.6: Final performance of three attention modifications on the test set of the respective
tasks. ‘TIME ’ indicates that the model could not be trained in a reasonable amount
of time.

En→It Ro→En De→En
tst2010 newstest2016 newstest2017

Bleu [%] Ter[%] Bleu [%] Ter[%] Bleu [%] Ter[%]

baseline 29.6 52.0 34.1 47.4 33.6 48.0
modify query target embedding 29.8 51.9 34.2 47.3 33.3 48.3

fertility 30.0 51.6 34.4 47.1 TIME TIME
extend key-value list 29.9 51.9 34.4 47.2 TIME TIME

training checkpoint is selected based on the Bleu performance on the development set. As a
result of this, the model could overfit to the development data. In Table 5.6 we report the results
of the best-performing methods on the test set of three translation tasks. Concatenating the
target embedding to the query is the only attention modification that can be run on all three
translation tasks. Similar to the development set performance, it does not show improvements
across tasks. On the English→Italian task, we observe an improvement of 0.4 Bleu [%] and
Ter[%] when extending the query with accumulated attention weight and fertility. The same
method improves the performance on the Romanian→English task by 0.3 Bleu [%] and Ter[%] .
Overall, these are very small improvements in the Bleu and Ter scores that can be considered
to be noise. We conclude that none of the presented modifications to the attention mechanism
significantly improves the translation performance.

5.4.3 Comparison to other Work
In this section, we compare our best models to work described in the literature. We use the

same benchmark tasks as before, namely the IWSLT 2017 English→Italian, the WMT 2016 Ro-
manian→English and the WMT 2018 German→English task.

The English→Italian task was originally multilingual, providing 20 corpora for all language
pairs from the five languages English, German, Dutch, Italian, Romanian, thus many submissions
on the task use additional multilingual data. However, all systems reported are comparable in the
sense that they use the same English→Italian data. From Table 5.7 we observe that our baseline
is already quite strong. On tst2010 both higher-order attention modifications perform on par
with our baseline system, and on tst2017 they obtain an improvement of 0.6 Bleu [%] over the
baseline and the best competing system. This improvement is not reflected in the Ter score of
the model using fertility in the attention layer, but concatenating the previous context vector as
a key-value pair yields an improvement of 0.8 Bleu [%] and 0.6 Ter[%] .

The results for the Romanian→English task are presented in Table 5.8. Our baseline performs
comparably to the strongest baseline from [Kasai & Cross+ 20], missing only 0.3 Bleu [%] . As
observed before, none of the systems with modified attention significantly outperforms a state-of-
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Table 5.7: Results of the English→Italian IWSLT task. Systems with multilingual data use more
bilingual training data but no additional En→It data. The IWSLT 2017 task allows
En↔ {De,Nl,Ro} data.

multilingual tst2010 tst2017
data Bleu [%] Ter[%] Bleu [%] Ter[%]

[Lakew & Lotito+ 17a] yes 28.5
Kyoto IWSLT [Dabre & Cromierès+ 17] yes 29.1 30.8 50.5
FBK IWSLT [Lakew & Lotito+ 17b] no 29.9

+ Multilingual yes 29.6 50.7
KIT IWSLT [Pham & Sperber+ 17] yes 32.0 48.4
this work (baseline) no 29.6 52.0 31.9 48.1

+ trg embedding 29.8 51.9 32.0 47.9
+ fertility 30.0 51.6 32.5 47.9
+ prev. context as key-value 29.9 51.9 32.6 47.5

Table 5.8: Romanian→English: Final results on attention extensions in comparison to the results
from other works.

model newstest2016
Bleu [%] Ter[%]

RNN attention [Sennrich & Haddow+ 16a] 29.2
transformer [Kasai & Cross+ 20] 34.5
this work (baseline) 34.2 47.4

+ trg embedding 34.2 47.3
+ fertility 34.4 47.1
+ prev. context as key-value 34.4 47.2

the-art baseline.
On the German→English tasks we are restricted to maintaining the parallelization during

training of the transformer architecture. Hence, we only report the experiments where the target
embedding is concatenated to the query. From the results in Table 5.9 we confirm that modifying
the attention queries by providing target embeddings does not help to strengthen the system.
Furthermore, we observe that other works report no improvements when using a first-order neu-
ral alignment model within an HMM approach modeled with a transformer architecture [Wang
23]. This further indicates that additional alignment information over the decoder steps i is not
beneficial.

5.5 Summary and Conclusion
In this chapter, we investigated and extended the cross-attention layer in transformer machine

translation models. We considered the attention weights as an implicit, target-to-source, soft
alignment. In contrast to explicit, count-based alignment models [Vogel & Ney+ 96, Och & Ney
03], the cross-attention layer operates as a zero-order model. We investigated several extensions to
the cross-attention layer of the transformer which provide information from the previous decoder
steps i′ < i to the attention weight calculation. The investigation focused on two questions:

(a) Are higher-order attention models beneficial?

(b) How to represent and incorporate additional information into the attention mechanism?
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Table 5.9: German→English: Final results on attention extensions in comparison to the results
from other works.

dev (newstest2015) newstest2017
Bleu [%] Ter[%] Bleu [%] Ter[%]

zero-order direct HMM [Wang 23] 32.3 49.5 33.8 49.5
first-order direct HMM [Wang 23] 32.5 49.2 33.8 49.4
zero-order direct HMM [Bahar 22] 33.7
transformer [Tang & Müller+ 18] 33.7
convolution [Tang & Müller+ 18] 30.4
baseline 32.7 48.6 33.6 48.0

+ trg embeddings 32.5 49.1 33.1 48.7

These two questions are directly connected. Since the baseline cross-attention layer is a zero-order
model, each answer to question (a) directly requires an answer to question (b).

Building upon existing works [Feng & Liu+ 16, Tu & Lu+ 16], we extended the attention
layer by providing token embeddings, attention weights, context vectors or accumulated energies
directly to the attention layer. To incorporate this new information we interpreted the attention
layer as a soft lookup of a query on a sequence of key-value pairs. We modified each of these
components and investigated where the additional information is processed best by the model.

Throughout our experiments, we observed a small improvement of 0.2-0.6 Bleu [%] across lan-
guages when extending the query with higher-order dependencies (Table 5.4). While having an
overall positive trendd this improvement is minor and we consider it to be noise. We observed
no performance distinction between first- and higher-order cross-attention layers; however, in our
experiments the higher-order representations are severely compressed along the decoder time axis.

We proposed an approach to extend the key-value sequence of the cross-attention layer to
incorporate previous attention states as first-order dependencies. The resulting model performs
0.3 Bleu [%] and around 0.1 Ter[%] better than the baseline model (Table 5.6).

Throughout this chapter, we have considered different representations of past attention decisions
and different ways to incorporate them into the cross-attention layer. Whether these can be
beneficial is part of an ongoing scientific discussion, where some groups have reported strong
improvements in translation quality [Feng & Liu+ 16, Tu & Lu+ 16] while others report no
improvements [Peter 20]. We contributed to the debate by proposing new approaches with first-
order dependencies and adapting existing extensions to the transformer architecture. This is
an important distinction from previous works, which focused on recurrent machine translation
systems with one single-headed, additive cross-attention layer. Testing the described extensions
in a state-of-the-art architecture, we concluded that higher-order dependencies do not benefit the
cross-attention layer in a transformer model.

Overall, this brings us to the conclusion that the cross-attention layer in transformer models
obtains enough context information and that it does not require a first-order extension.

5.6 Individual Contributions
In this section, we list the individual contributions of the author in contrast to the work of

colleagues in joint research projects related to this dissertation. In particular, in accordance with
§5.6 of the doctoral guidelines of the RWTH Aachen University, we note which publications of
the author overlap with the presented work.

The implementation of the attention modifications was done by Frithjof Petrick during his
bachelor thesis [Petrick 20], which was closely supervised by the author and Christian Herold.
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5.6 Individual Contributions

The original ideas were developed by the author and Christian Herold in direct discussions and are
based on similar work on recurrent networks [Feng & Liu+ 16, Peter 20]. Refinements of the ideas
and modeling decisions are a product of all three contributors (Jan Rosendahl, Christian Herold,
Frithjof Petrick) throughout weekly meetings and discussions. The results are also published at
an ACL 2021 workshop [Rosendahl & Herold+ 21]. All experiments in this thesis are performed
by the author unless explicitly stated at the experiments (e.g. when comparing to work from the
literature).
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6. Scientific Achievements

In this work, we investigate two important components of a machine translation system: the
training data and the cross-attention layer. Namely, we increase the amount of data available by
incorporating monolingual data (Chapter 4) and extend the encoder-decoder cross-attention to
incorporate higher-order dependencies (Chapter 5). The goals for each approach is outlined in
Chapter 2 and we discuss the findings for both approaches individually.

Monolingual Data in Machine Translation
• We introduce a fusion model, which is a log-linear combination of a neural translation and

language model. This is an adaption of count-based translation systems, which often im-
proves the translation performance when a language model is used. We compare a symbol-
and sequence-level normalization approach and introduce a new algorithm to train the trans-
lation model as part of the full fusion model. We observe improvements when integrating
a language model into the decision rule (Tables 4.11-4.12), which depend heavily on the
domain of the training, testing and monolingual data (Table 4.16).

• To calculate the training criterion of a sequence-level normalized fusion model we present
and investigate different approximation strategies based on beam search and context-reduced
models. Training of the translation model as part of a sequence-level normalized fusion
model does not provide performance improvements (Table 4.18) and shows problematic
convergence behavior in the desired metrics (Figure 4.8). This could be caused by either a
mismatch between the training criterion and the evaluation metrics Bleu and Ter or an
insufficient approximation of the training criterion, which requires an approximation of the
sum over all target sentences.
While these approaches fail to work for machine translation, the idea and implementation
are used in automatic speech recognition [Wynands & Michel+ 22].

• We introduce a pre-training method that uses monolingual data to select a better initial-
ization point for the main training on bilingual data. Using a language model or cloze loss
allows the pre-training of different parts of the machine translation system. We observe
strong performance improvements on low-resource tasks (Table 4.26) and smaller impacts
on high-resource tasks (Table 4.27).

• We extend the pre-training approach to a multi-task training that optimizes several loss
functions in parallel. We show that this results in worse performance than pre-training
(Table 4.32).

• Pre-training introduces a new way of using monolingual source data and we observe great
performance improvements for low-resource tasks (Table 4.21). We show that these im-
provements can be attributed equally to the impact of the source data and a direct loss on
the encoder.
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• We verify the performance of back-translation, the strongest and most common approach
to including monolingual target data. Our findings are consistent with the literature and
we use the back-translation systems as a strong baseline.

• We compare all three methods that use monolingual data on four different translation tasks.
We observe that monolingual data is an important resource since all methods improve the
performance of the machine translation system. Overall, back-translation yields the best
results for each of the four tasks (Tables 4.32-4.35).

• We analyze the effect of domains and conclude that all approaches are susceptible to domain
changes. Including monolingual data is an especially powerful tool if no bilingual training
data from the targeted domain is available (Table 4.37).

• We combine our strongest methods and report improvements over a system with back-
translation on two of the four tasks (Table 4.39).

Encoder-Decoder Cross-Attention
• We change the cross-attention layer by extending the dependencies. In particular, we use

zero-, first- and higher-order dependencies to model the attention similar to an alignment.

• Building upon existing work [Feng & Liu+ 16, Tu & Lu+ 16], we extend the attention
layer by providing previous attention weights, context vectors or accumulated energies to
the cross-attention layer, each being a different representation of the previous attention
decisions. We observe no significant improvements over the performance of the baseline
model (Table 5.4).

• Introducing previous attention decisions as an artificial input token to focus on, we extend
the key-value list of the cross-attention layer to include the output of the previous attention
decoder step. This allows an explicit attention weight to be put on the first-order depen-
dency. However, the approach shows no improvement compared to the baseline system
(Table 5.4).

• Introducing a first-order dependency in the cross-attention layer converts the transformer
into a recurrent architecture. We observe that the computational costs in training increase
by a factor of seven (Table 5.3). While search is not affected, this means that these ap-
proaches are not suitable for large models on high-resource tasks.

• We contribute to the ongoing scientific debate on whether a first-order cross-attention is
beneficial, with some groups reporting positive changes [Feng & Liu+ 16, Tu & Lu+ 16] and
other work showing no impact [Peter 20]. By proposing new approaches with first-order
dependencies and adapting existing extensions to the transformer architecture, we conclude
that higher-order dependencies do not benefit the cross-attention layer in a state-of-the-art
translation model.
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A. Appendix

A.1 Corpora

A.1.1 IWSLT English→Italian

Table A.1 shows the resource provided by the English→Italian language pair of the IWSLT task
on multilingual translation [Cettolo & Federico+ 17]. We use only the English→Italian parallel
data for all experiments in this work. The data originates from TED talks1, i.e. scientific talks
for a wider audience held in English. We use dev2010 as the development set and tst2010 and
tst2017 test sets. To investigate the effects on different domains we use newstest2009 from the
WMT and obtained from the OPUS [Tiedemann 12] website2.

Table A.1: English→Italian: statistics of the training, evaluation and test data sets (IWSLT
shared task).

English Italian
train Sentences 232k

Running Words 4.7M 4.4M
Vocabulary 70.7k 103.6k

monolingual Sentences 92.5M 46.0M
Running Words 2.5G 1.2G

dev (dev2010) Sentences 929
Running Words 20.2k 18.1k

OOVs 235 (1.2%) 320 (1.8%)
tst2010 Sentences 1.6k

Running Words 31.2k 28.9k
OOVs 212 (0.7%) 293 (1.0%)

newstest2009 Sentences 3.0k
Running Words 77.4k 76.7k

OOVs 3.151 (4.1%) 3.361 (4.4%)

A.1.2 WMT 2016 Romanian→English

We run experiments on the Romanian→English task from WMT 2016 [Bojar & Chatterjee+ 16]
and show the corpus overview in Table A.2. The bilingual training corpus consists of Europarl
v8 and SETIMES2. English monolingual data is obtained from the NewsCrawl 2016-2018 and
Romanian monolingual data from NewsCrawl 2015. We use the standard updated newsdev2016

1https://www.ted.com/
2https://opus.nlpl.eu/WMT-News.php
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as the development set and newstest2016 as the test set. All data was obtained via the WMT
website3.

Table A.2: Romanian→English: statistics of the training, evaluation and test data sets (WMT
2016 shared task).

Romanian English
train Sentences 612k

Running Words 16.2M 15.9M
Vocabulary 155.1k 104.6k

monolingual Sentences 2.3M 63.2M
Running Words 54.8M 1.4G

dev (updated newsdev2016) Sentences 2.0k
Running Words 51.7k 49.9k

OOVs 2.6k (5.1%) 1.7k (3.4%)
newstest2016 Sentences 2.0k

Running Words 49.2k 47.9k
OOVs 2.2k (4.5%) 1.4k (2.8%)

A.1.3 WMT 2017 German→English

Table A.3: German→English: statistics of the training, evaluation and test data sets (WMT 2017
shared task).

German English
train: Sentences 4.6M

Running Words 111.1M 117.7M
Vocabulary 2.1M 1.0M

monolingual Sentences 142.2M 45.0M
Running Words 2.4G 1.0G

dev (newstest2105): Sentences 2.2k
Running Words 44.1k 46.8k

OOVs 1124 (2.6%) 563 (1.2%)
newstest2014: Sentences 3.0k

Running Words 63.0k 67.6k
OOVs 1641 (2.6%) 824 (1.2%)

newstest2017: Sentences 3.0k
Running Words 61.0k 64.8k

OOVs 1593 (2.6%) 708 (1.0%)
newstest2018: Sentences 3.0k

Running Words 64.0k 67.5k
OOVs 1641 (2.6%) 836 (1.2%)

For German→English we use the data specified by the WMT 2018 shared task on news trans-
lation [Bojar & Federmann+ 18] and give an overview in Table A.3. The training data consists
of the Europarl v7, Commoncrawl, News Commentary v13 and Rapid corpora. Monolingual data
in English and German is obtained from the News Crawl 2017 and News Crawl 2018 corpora

3https://www.statmt.org/wmt16/translation-task.html
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in the respective languages. We use newstest2015 as a development set and report results on
various newstest20XX. All data was downloaded from the WMT website4.

A.1.4 WMT 2017 Chinese→English

Table A.4: Chinese→English: statistics of the training, evaluation and test data sets (WMT 2018
shared task).

Chinese English
train Sentences 17.0M

Running Words 99.9M 389.0M
Vocabulary 25.2M 0.9M

monolingual Sentences 14.0M 45.0M
Running Words 117.2M 1.0G

dev (newsdev2017) Sentences 2.0k
Running Words 13.8k 58.5k

OOVs 5.7k (41.5 %) 480 (0.8 %)
newstest2017 Sentences 2.0k

Running Words 14.0k 54.0k
OOVs 5.6k (39.7%) 504k (0.9 %)

newstest2018 Sentences 4.0k
Running Words 27.7k 101.7k

OOVs 11.1k (40.2%) 923 (0.8 %)

We perform experiments on the Chinese→English shared task on news translation of the WMT
2018 [Bojar & Federmann+ 18]. The parallel training data consists of News Commentary v13,
UN Parallel Corpus V1.0 and CWMT Corpus. The data is filtered to 17M lines using a unicode-
based filtering technique [Gao & Wang+ 19] to be directly comparable to [Bahar 22, Wang 23].
We obtain English monolingual data from the News Crawl2017 and News Crawl2018 and Chinese
data from News Crawl2010-2021. All data was downloaded from the WMT website5.

4https://www.statmt.org/wmt18/translation-task.html
5https://www.statmt.org/wmt18/translation-task.html
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S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, X. Zheng: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. Software available from tensorflow.org.

[Aharoni & Johnson+ 19] R. Aharoni, M. Johnson, O. Firat: Massively Multilingual Neural
Machine Translation. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 3874–3884, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[Akhbardeh & Arkhangorodsky+ 21] F. Akhbardeh, A. Arkhangorodsky, M. Biesialska, O. Bojar,
R. Chatterjee, V. Chaudhary, M.R. Costa-jussa, C. España-Bonet, A. Fan, C. Federmann,
M. Freitag, Y. Graham, R. Grundkiewicz, B. Haddow, L. Harter, K. Heafield, C. Homan,
M. Huck, K. Amponsah-Kaakyire, J. Kasai, D. Khashabi, K. Knight, T. Kocmi, P. Koehn,
N. Lourie, C. Monz, M. Morishita, M. Nagata, A. Nagesh, T. Nakazawa, M. Negri, S. Pal,
A.A. Tapo, M. Turchi, V. Vydrin, M. Zampieri: Findings of the 2021 Conference on Machine
Translation (WMT21). In Proceedings of the Sixth Conference on Machine Translation, pp.
1–88, Online, Nov. 2021. Association for Computational Linguistics.

[Al-Rfou & Choe+ 19] R. Al-Rfou, D. Choe, N. Constant, M. Guo, L. Jones: Character-Level
Language Modeling with Deeper Self-Attention. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, Vol. 33, No. 01, pp. 3159–3166, Jul. 2019.

[Alkhouli & Bretschner+ 16] T. Alkhouli, G. Bretschner, J.T. Peter, M. Hethnawi, A. Guta,
H. Ney: Alignment-Based Neural Machine Translation. In Proceedings of the First Conference
on Machine Translation: Volume 1, Research Papers, pp. 54–65, Berlin, Germany, Aug. 2016.
Association for Computational Linguistics.

[Alkhouli & Bretschner+ 18] T. Alkhouli, G. Bretschner, H. Ney: On The Alignment Problem
In Multi-Head Attention-Based Neural Machine Translation. In Proceedings of the Third Con-
ference on Machine Translation: Research Papers, pp. 177–185, Brussels, Belgium, Oct. 2018.
Association for Computational Linguistics.

[Alkhouli & Ney 17] T. Alkhouli, H. Ney: Biasing Attention-Based Recurrent Neural Networks
Using External Alignment Information. In Proceedings of the Second Conference on Machine

107



BIBLIOGRAPHY

Translation, pp. 108–117, Copenhagen, Denmark, Sept. 2017. Association for Computational
Linguistics.

[Andor & Alberti+ 16] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, M. Collins: Globally Normalized Transition-Based Neural Networks. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer
Linguistics, August 2016.

[Artetxe & Labaka+ 18] M. Artetxe, G. Labaka, E. Agirre, K. Cho: Unsupervised Neural Ma-
chine Translation. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, April 2018.

[Artetxe & Labaka+ 19] M. Artetxe, G. Labaka, E. Agirre: An Effective Approach to Unsuper-
vised Machine Translation. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 194–203, Florence, Italy, July 2019. Association for Computa-
tional Linguistics.

[Ba & Kiros+ 16] J.L. Ba, J.R. Kiros, G.E. Hinton: Layer normalization, Juli 2016.

[Bahar 22] P. Bahar: Neural Sequence-to-Sequence Modeling for Language and Speech Transla-
tion. Ph.D. thesis, RWTH Aachen University, Computer Science Department, RWTH Aachen
University, Aachen, Germany, Nov. 2022.

[Bahar & Alkhouli+ 17] P. Bahar, T. Alkhouli, J.T. Peter, C.J.S. Brix, H. Ney: Empirical In-
vestigation of Optimization Algorithms in Neural Machine Translation. In Conference of the
European Association for Machine Translation, pp. 13–26, Prague, Czech Republic, June 2017.

[Bahar & Rosendahl+ 17] P. Bahar, J. Rosendahl, N. Rossenbach, H. Ney: The RWTH Aachen
Machine Translation Systems for IWSLT 2017. In International Workshop on Spoken Language
Translation, pp. 29–34, Tokyo, Japan, Dec. 2017.

[Bahdanau & Cho+ 15] D. Bahdanau, K. Cho, Y. Bengio: Neural Machine Translation by Jointly
Learning to Align and Translate. In Y. Bengio, Y. LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, Conference Track Proceedings,
May 2015.
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M.L. Forcada, A. Kamran, F. Kirefu, P. Koehn, S. Ortiz Rojas, L. Pla Sempere, G. Ramı́rez-
Sánchez, E. Sarŕıas, M. Strelec, B. Thompson, W. Waites, D. Wiggins, J. Zaragoza: ParaCrawl:
Web-Scale Acquisition of Parallel Corpora. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 4555–4567, Online, July 2020. Association for
Computational Linguistics.

[Barrault & Biesialska+ 20] L. Barrault, M. Biesialska, O. Bojar, M.R. Costa-jussà, C. Feder-
mann, Y. Graham, R. Grundkiewicz, B. Haddow, M. Huck, E. Joanis, T. Kocmi, P. Koehn,
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[Gülçehre & Firat+ 15] Ç. Gülçehre, O. Firat, K. Xu, K. Cho, L. Barrault, H. Lin, F. Bougares,
H. Schwenk, Y. Bengio: On Using Monolingual Corpora in Neural Machine Translation. CoRR,
Vol. abs/1503.03535, 2015.
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M. Shmatova: Findings of the 2022 Conference on Machine Translation (WMT22). In Pro-
ceedings of the Seventh Conference on Machine Translation, pp. 1–45, Abu Dhabi, December
2022. Association for Computational Linguistics.

115



BIBLIOGRAPHY

[Kocmi & Bojar 18] T. Kocmi, O. Bojar: Trivial Transfer Learning for Low-Resource Neural
Machine Translation. In O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham,
B. Haddow, M. Huck, A. Jimeno-Yepes, P. Koehn, C. Monz, M. Negri, A. Névéol, M.L. Neves,
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Sequence Training of Attention Models Using Approximative Recombination. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, ICASSP 2022, Virtual and
Singapore, 23-27 May 2022, pp. 8002–8006. IEEE, 2022.

[Xiong & Yang+ 20] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan,
L. Wang, T. Liu: On Layer Normalization in the Transformer Architecture. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, Vol. 119 of Proceedings of Machine Learning Research, pp. 10524–10533. PMLR, July
2020.

[Yang & Dai+ 19] Z. Yang, Z. Dai, Y. Yang, J.G. Carbonell, R. Salakhutdinov, Q.V. Le: XL-
Net: Generalized Autoregressive Pretraining for Language Understanding. In H.M. Wallach,
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