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Abstract
Large language models that use retrieval aug-
mented generation have the potential to unlock
valuable knowledge for researchers, policymak-
ers, and the public by making long and techni-
cal climate-related documents more accessible.
While this approach can help alleviate factual
hallucinations by relying on retrieved passages
as additional context, its effectiveness depends
on whether the model’s output remains faithful
to these passages. To address this, we explore
the automatic assessment of faithfulness of dif-
ferent models in this setting. We then focus
on ClimateGPT, a large language model spe-
cialised in climate science, to examine which
factors in its instruction fine-tuning impact the
model’s faithfulness. By excluding unfaithful
subsets of the model’s training data, we develop
ClimateGPT Faithful+, which achieves an im-
provement in faithfulness from 30% to 57%
in supported atomic claims according to our
automatic metric.

1 Introduction

As the urgency of climate action intensifies (Calvin
et al., 2023), researchers, policymakers, and the
public require efficient access to reliable climate
information. Large language models (LLMs) have
emerged as powerful tools for processing and sum-
marizing vast amounts of climate-related litera-
ture. However, these models often suffer from
factual hallucinations, where generated responses
contain incorrect or misleading information. One
promising approach to mitigating this issue is Re-
trieval Augmented Generation (RAG), which en-
ables models to ground their responses in retrieved
passages from trusted sources. Several climate-
related RAG-based systems have been developed,
including ChatClimate (Vaghefi et al., 2023), Cli-
mateGPT (Thulke et al., 2024), and ClimateQ&A
(Calzada et al., 2024). Despite these advancements,
challenges remain in ensuring that generated out-
puts remain faithful to the retrieved content.

Prompt
What is the purpose of the Global Stocktake?

Context
[0] Recalling Article 14 of the Paris Agreement,
the objective of the Global Stocktake is to assess
the collective progress towards achieving [...]
[1] · Paragraph 34 of 19/CMA.1 decides that the
outputs of this component of the global stocktake
should: a) Identify opportunities for and [...]
[2] The SBSTA and the SBI invited submissions
on views on the approach to the consideration of
outputs component of the first global [...]

ClimateGPT 7B
The Global Stocktake is a key component of the
Paris Agreement, scheduled to begin in 2023. It
involves a comprehensive assessment of global
progress in addressing climate change, considering
scientific evidence, economic implications, and
societal impacts. The Stocktake aims to inform
the updates to countries’ climate commitments,
known as “nationally determined contributions”
(NDCs), to ensure they are in line with the
agreement’s objectives and targets. [...]

ClimateGPT 7B Faithful+
The Global Stocktake’s purpose, as outlined in Ar-
ticle 14 of the Paris Agreement, is to assess the
collective progress made towards achieving the
Agreement’s purpose and long-term goals, which
encompass mitigation, adaptation, and means of
implementation. This assessment is conducted con-
sidering equity and the best available science. The
Global Stocktake process spans two years, begin-
ning with information collection and preparation
and culminating in a consideration of [...]

Figure 1: Shortened example from the original Cli-
mateGPT and the Faithful+ variant on one example
from the Climate Policy Radar task. Text marked in
red is not faithful, i.e. it is not supported by the given
context. The full example is shown in Figure 3.



Faithfulness, in this context, refers to the extent
to which a model’s response accurately reflects
the information contained in the retrieved passages
without introducing extraneous or misleading de-
tails. Importantly, factuality does not imply faith-
fulness. A response may be factually correct with
respect to general world knowledge but still un-
faithful if the information is not supported by the
retrieved passages as shown in Figure 1. A lack
of faithfulness undermines trust in these models,
particularly in the climate domain, where misinfor-
mation has significant real-world consequences.

Moreover, we argue that faithfulness is even
more important than general factuality in this set-
ting, as large language models may inevitably hallu-
cinate when faced with long-tail or rare knowledge.
By requiring that all factual information in a re-
sponse originates from the provided context, we
can mitigate the risk of such hallucinations and
ensure that model outputs are transparent, verifi-
able, and aligned with the available evidence. Thus,
evaluating and improving faithfulness is a crucial
step in enhancing the reliability of climate-focused
LLMs.

In this work, we investigate methods for auto-
matically assessing the faithfulness of RAG-based
models in climate-related applications. We then
focus on ClimateGPT (Thulke et al., 2024), a
specialised open-weight LLM trained on climate-
related texts to examine how different instruction
fine-tuning (IFT) datasets influence faithfulness.
By excluding parts of the training data with low
faithfulness, we propose a new model ClimateGPT
Faithful+ that on our main benchmark increases the
percentage of supported claims from 30% to 57%.

2 Faithfulness and Factuality

Our definition of faithfulness and factuality follows
the work of Dziri et al. (2022) and Huang et al.
(2025). Given a question q, a set of N retrieved
passages K = (k1, k2, . . . , kN ) from a knowledge
base KB, and a response r, we define faithfulness
of r with respect to K as r should be supported by
the information in K, i.e., r should not contain any
information that contradicts the information in K
or is not present in K. Factuality, on the other hand,
refers to the correctness of the information in r with
respect to general world knowledge. In our context,
we assume that the relevant world knowledge is
contained in KB. Thus, we consider a response r
to be factual if it is faithful to KB.

2.1 Evaluation

To assess both the faithfulness and factuality of
long-form responses, we build upon existing auto-
mated evaluation approaches, particularly RAGAs
(Es et al., 2024) for faithfulness and FActScore
(Min et al., 2023) and VeriScore (Song et al., 2024)
for factuality. These methods share a common
three-step pipeline: (1) claim decomposition, (2)
evidence retrieval, and (3) claim verification. The
main differences in evaluating for faithfulness ver-
sus factuality lie in the evidence retrieval step, as
we describe below.

Claim Decomposition As long-form responses
are typically composed of multiple claims, we first
decompose the response into smaller and indepen-
dent claims to simplify the subsequent steps. Given
a response r, we decompose it into a set of claims
C = c1, . . . , cI . The definition of a claim and the
granularity of the decomposition differs between
different variants and use-cases. In this work, we
use the claim decomposition method from RAGAs
(Es et al., 2024) which prompts a large language
model to decompose the full response into smaller
claims in one step.

Evidence Retrieval The key distinction be-
tween evaluating faithfulness and factuality lies
in this step. For faithfulness evaluation, we directly
use the retrieved passages K = k1, k2, . . . , kN
from the RAG process as evidence. In contrast,
for factuality evaluation, relevant evidence for each
claim ci is retrieved from a knowledge base KB. In
this work, we use the retrieval mechanism that is
also used for RAG.

Claim Verification Finally, for each claim, we
verify whether it is supported by the retrieved evi-
dence. Therefore, we use an LLM to classify each
claim ci given the retrieved evidence (multiple re-
trieved evidence passages are concatenated into a
single evidence). Similar to other work (Song et al.,
2024), we do not differentiate between refuting
and unrelated evidence. The overall faithfulness
and factuality scores of r are then aggregated from
these individual claim verifications by reporting the
percentage of supported claims.

Implementation Details The exact prompts we
used for each step are reported in Appendix B. GPT-
4o (version gpt-4o-2024-08-06) is used as the
large language model.



#Tokens #Parameters Avg. Claim Support wrt.
Model in Trillion in Billion RAG #Claims Ref. [%] KB [%]

LLama 3.1 Instruct 15 8 - 22.7 - 59
✓ 17.3 67 72

LLama 2 Chat 2 7 - 23.3 - 60
✓ 21.2 48 65

ClimateGPT 2 7 - 21.6 - 59
✓ 21.1 30 61

ClimateGPT Faithful+ (ours) 2 7 - 20.2 - 57
✓ 19.2 57 69

Table 1: Results for claim support wrt. the reference, as a metric of faithfulness, and wrt. the knowledge base (KB)
as a metric for factuality for different large language models with and without RAG.

3 ClimateGPT IFT Evaluation Task

We use the same evaluation dataset and RAG setup
as Thulke et al. (2024) to evaluate the faithfulness
and factuality of the generated responses. The test
set is a held-out portion of the IFT data curated
to train ClimateGPT. It was created in cooperation
with domain experts and contains different open-
ended tasks like QA, text generation, classification,
chat, and brainstorming as well as closed-ended
tasks like summarisation, extraction or rewrite. Our
evaluation focuses on the subset of open-ended
prompts of the held-out data (334 out of the 400
samples).

3.1 Information Retrieval

We use the dataset and retrieval pipeline as de-
scribed by Thulke et al. (2024) for retrieving
relevant contexts in our faithfulness evaluation.
The dataset consists of climate-related documents
from various sources, including IPCC reports and
climate science related papers (see Appendix C
for detailed statistics). For retrieval, we employ
the bge-large-en-v1.5 embedding model (Xiao
et al., 2024) and a hierarchical retrieval strategy
where we first retrieve the most relevant pages
based on the query, selecting the top 5 ranked pages.
Then, within these, we retrieve the top 5 most rele-
vant 115-token snippets.

3.2 Large Language Models

We experiment with several language models in
addition to ClimateGPT. As baselines, we include
the 7B parameter variants of Llama 2 Chat (which
shares the same foundation model as ClimateGPT)
and Llama 3.1 Instruct. Further, we report results

on the 70B parameters variants as well as on GPT-
4o in Table 4 in the appendix. For all baseline mod-
els, we use a standardized RAG prompt that explic-
itly instructs the model to base its response solely
on the provided references1. Both the user ques-
tion and retrieved references are included within
the user message to ensure a consistent evaluation
setup. For ClimateGPT, we leverage its dedicated
context role, which was introduced during train-
ing to optimize reference usage. We also use the
model’s default system prompt to align with its
intended deployment configuration.

3.3 Results

We report the results with our faithfulness and fac-
tuality metrics for the small models in Table 1.
Results of all models are reported in Appendix A.
Overall, we observe that the more recent Llama
3.1 has significantly higher faithfulness than the
predecessor Llama 2. For ClimateGPT, we observe
that the faithfulness, as measured by claim sup-
port, is very low. Further, in contrast to the other
models, using RAG with ClimateGPT does only
slightly improve the claim support wrt. to the KB,
i.e. the factuality. This is a strong indicator that the
model does not make effective use of the provided
paragraphs.

Factuality, i.e. claim support in the knowledge
base might be underestimated. By looking at
claims that are not supported by the knowledge
base, we identify multiple instances of claims that
are factual but where we fail to retrieve the rele-
vant evidence. This either occurs due to the limited
size of our knowledge base or due to a failure on

1Full prompt in Appendix D.



Avg. Claim Support wrt.
Source Subset Size #Claims Ref. [%]

Senior Expert Grounded 74 8.6 93
Expert Grounded 403 13.1 52
Non-Expert Open-Ended 8,503 19.1 -

Closed-Ended 1,160 10.0 90
(Open-Ended) Grounded 2,368 19.0 43
(Closed-Ended) Grounded 1,024 9.6 91

Table 2: Climate-specific subsets of the ClimateGPT IFT data. For the closed-ended examples, claim support wrt.
reference refers to the context given in the prompt and for grounded examples it refers to the given paragraphs.

retrieval. For an assessment of factuality, we there-
fore note that the reported metric should just be
considered as a lower bound and more accurate
results could be achieved.

4 Ablation of the IFT Data

Motivated by the suboptimal faithfulness of Cli-
mateGPT, especially compared to Llama 2 Chat,
we want to study the post-training of the model. We
focus on the IFT step as we do not expect that the
continued pre-training step has a significant impact
on the faithfulness of the model. The IFT data of
ClimateGPT consists of a general domain partition
and a climate-specific partition that was specifically
curated to train the model. The different subsets of
the latter are listed in Table 2. A small portion of
the data was generated in close cooperation with
domain experts (Exp.), and the larger set generated
by non-experts (Non-Exp.). In closed-ended ques-
tions, the model is given a reference text to perform
its task, such as creating a summary of that text or
extracting specific information from it. In contrast,
for open-ended questions, no additional explicit
references are given in the prompt, and the model
is expected to use its parametric knowledge or to
retrieve additional sources via RAG.

Grounded refers to examples where additional
context is provided to the model as it would be the
case when RAG is used during inference. For the
expert and senior expert subsets, these references
were directly provided during annotation. In the
case of the non-expert subset, annotators only pro-
vided one or multiple URLs to sources the answer
is based on. For a subset of the dataset, these URLs
were crawled, chunked and Thulke et al. (2024)
used a heuristic2 to select the most relevant chunk
as context for the response. Additionally, for each

2See Section 4.3 in Thulke et al. (2024) for more details.

example up to four distractor paragraphs from other
documents were selected to make the model more
robust to noisy retrieval results. For closed-ended
questions, only distractors were added as all the
relevant content is already provided in the prompt.

We start our investigation by analysing the faith-
fulness of the gold responses in the IFT data with
respect to their context. For closed-ended ques-
tions, we use the full prompt as context and for
the grounded questions, the selected context para-
graphs. The percentage of supported claims for
each subset as well as the average number of claims
per response are reported in Table 2. We notice
that the Grounded Senior Expert and Closed-Ended
Non-Expert are faithful to their context with 93%
and 90% of claims being supported. The faithful-
ness of the Grounded Expert data is already much
lower with only 52% claim support. Upon closer
inspection, we found that the annotators only pro-
vided grounding passages for crucial claims in the
response. Finally, we observe the lowest level of
faithfulness for the Open-Ended Grounded Non-
Expert data with only 43% claim support.

Next, we repeated the IFT step on different sub-
sets of the data to observe the effect on the faithful-
ness on the final model. The results are reported
in Table 3. As anticipated from our previous anal-
ysis of the IFT subsets, excluding the grounded
non-expert data significantly increases the claim
support from 30% to 57%. Furthermore, excluding
the closed-ended but not grounded non-expert data
reduces the claim support again to 49%. This indi-
cates that closed-ended examples with high faithful-
ness seem to improve the faithfulness of the model
despite the context being provided directly in the
prompt, rather than via retrieval. Finally, removing
the open-ended non-expert data without grounding
does not have a significant effect on the claim sup-
port. For the final model, ClimateGPT Faithful+



Other Open-End. Closed-End. Grounded Avg. Claim Support

Size 65,000 8,503 1,160 3,328 #Claims wrt. Ref [%]

ClimateGPT 7B ✓ ✓ ✓ ✓ 21.1 30

✓ ✓ ✓ - 19.2 57
✓ ✓ - - 18.9 49
✓ - ✓ - 20.1 58
✓ - - - 20.4 53

Table 3: Ablation study results showing test-time claim support for different training data combinations.

we still include the open-ended data as we expect
it to improve other aspects.

4.1 Validation on Alternate Metrics and Tasks

To validate the generalizability and robustness of
our improvements, we conducted additional experi-
ments on a RAG dataset from Climate Policy Radar
(Juhasz et al., 2024) focussing on questions on cli-
mate policy documents. For ClimateGPT Faithful+,
we observe a similar improvement in faithfulness
with an improvement in claim support from 44%
to 58%. More details are discussed in Appendix F.

Further, we confirm the results on the Cli-
mateGPT IFT Task by using an additional faith-
fulness metric (LettuceDetect, Ádám Kovács and
Recski (2025)) and observe an improvement from
6% to 34% completely faithful responses with the
Faithful+. Details are discussed in Appendix G.

5 Related Work

Similar to our work, Schimanski et al. (2024) study
the faithfulness of a RAG system on climate ques-
tions. They restrict the output of the model so that
one sentence always corresponds to exactly one
reference passage and verify the faithfulness using
an NLI model. This way they avoid the claim de-
composition step. They also fine-tune the model on
a synthetic dataset following these constraints to
improve faithfulness. Our work focuses on improv-
ing faithfulness by fine-tuning on more complex
human written responses.

In addition to the faithfulness evaluation ap-
proaches discussed in this work, there are other
approaches to evaluate faithfulness of text gener-
ation. Early work on document-grounded dialog
used simple overlap based metrics like unigram
F1 scores between the response and retrieved pas-
sages as a proxy for faithfulness (Dinan et al., 2019;
Thulke et al., 2023). Fadeeva et al. (2024) make

use of uncertainty quantification to evaluate the fac-
tuality of generated responses. Other work does
not consider the claim decomposition step and di-
rectly verify the full response against the reference
(Honovich et al., 2022; Juhasz et al., 2024; Ádám
Kovács and Recski, 2025).

6 Conclusion

Ensuring faithfulness of LLM outputs is crucial for
improving the reliability of climate-related RAG se-
tups. Our study evaluates automated faithfulness as-
sessment methods. According to our metric, recent
LLMs like Llama 3.1 Instruct and GPT-4o provide
much higher faithfulness than Llama 2 Chat or the
climate-specific ClimateGPT model. Based on our
experiments, we assume that the main difference
comes from the instruction fine-tuning and other
post-training steps and not from the pre-training.

For ClimateGPT, we then do a detailed analy-
sis, which subsets of the IFT data are most impor-
tant for faithfulness. We show that faithful closed-
ended prompts in training also improve the faith-
fulness in the context of RAG and that it is crucial
to avoid unfaithful training examples in the IFT
data. With these insights, we develop ClimateGPT
Faithful+ which improves ClimateGPT’s faithful-
ness from 30% to 57% according to our automatic
metric. These results are confirmed by additional
experiments on an additional task as well as by
using an additional metric to measure faithfulness.

These initial findings point to promising direc-
tions for future work. Rather than discarding un-
faithful training examples, one potential approach
is to enrich them by retrieving supporting passages
for each claim and using those passages as context
during training. For cases where no suitable evi-
dence can be retrieved, synthetic context could be
generated using a LLM. This would keep a larger
portion of the data while still encouraging faithful
model behaviour.



Limitations

In this work, we discuss results from our ongoing
work towards more faithful LLMs for RAG on cli-
mate questions. While our preliminary results are
promising, there are still many open questions and
limitations.

While RAGAs (Es et al., 2024) is a popular
approach to evaluate faithfulness with RAG, we
did not perform a systematic evaluation of its
performance in the context of the task at hand.
Spot-checking of results during the development
progress indicated that the metric is reliable enough
for our purposes. We tested the approach on two
relevant climate datasets from the literature. The
results are reported in Appendices F and I, but the
results are inconclusive. Thus, a more thorough
human evaluation is needed to fully verify the ade-
quacy of the metric for the task and to validate the
improvements reported in this work.

The claim verification step in our pipeline cur-
rently focuses on verifying direct support via a
given evidence passage. This approach works well
if the claim is directly expressed in the given pas-
sage and we can consider its content as truth. In
the context of evaluating faithfulness one can argue
that this is a valid assumption. But as soon as we
want to also apply these methods to evaluate the
factuality of more complex claims, this does not
hold any more. Often claims are not directly stated
in a retrieved passage and more complex reasoning
is required to identify the support. Claims might
express opinions or more holistic statements that
require support from multiple sources to be consid-
ered as supported. Also, a binary decision between
supporting and not supporting might not be ade-
quate in many cases, or more nuance is needed.
More complex claim verification approaches as
proposed by Leippold et al. (2025) partially ad-
dress many of these points but are also much more
complex and computationally expensive than the
approach we use.

The behavior of a RAG system is highly depen-
dent on the relevancy and adequacy of the retrieved
passages. In this work, we adopted the same knowl-
edge base and retrieval method as used by Thulke
et al. (2024). Thus, our results are also limited
to this specific setting and generalization to other
settings needs to be studied. Furthermore, the size
of the knowledge base and the accuracy of the re-
trieval method limit the accuracy of the factuality
evaluation during the evidence retrieval step. Addi-

tional analysis would be needed to study the impact
of these factors on the claim support wrt. the knowl-
edge base, we consider as a proxy for factuality.

The ablation experiments on the IFT data fo-
cus on the climate-specific subsets. We did not
study the impact of the general domain IFT datasets
included in IFT training, such as Open Assistant
(Köpf et al., 2023), Dolly3 and FLAN v2 (Long-
pre et al., 2023). Further, ClimateGPT is based on
Llama 2. In our experiments, we observed higher
faithfulness for Llama 3.1 Instruct than for Llama
2 Chat. The impact of the pre-training compared
to different post-training steps on the faithfulness
of the model remains unclear.

Finally, during our evaluation we only focused
on claim support wrt. the reference and knowledge
base which we consider as a proxy for faithful-
ness and factuality. We do not consider additional
quality factors like the helpfulness or adequacy of
generated responses. In some cases, a less faithful
output can actually be more helpful or relevant. For
example the unfaithful parts in Figure 1 like the
information on the year might actually make the
response more helpful for some users.
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A Full Results on the ClimateGPT IFT
Task

Table 4 shows the claim support of all models that
we tested on the ClimateGPT IFT task. In contrast
to the table in the main part of the paper, here we
also report the claim support wrt. the reference for
the case that no RAG was used. As the reference
is not given to the model as additional input, we
do expect low claim support. The value is interest-
ing as an indication for the percentage of claims
that are faithful to the reference by chance. Inter-
estingly, we observe that the claim support of the
original ClimateGPT models is close to this value.
This further supports the interpretation that these
models do not make effective use of the provided
context. We omitted these results in the main part
of the paper for better clarity as they are not directly
relevant to the main claims of the paper.

B Evaluation Prompts

Listing 1 and Listing 2 show the prompts that were
used for the claim extraction and verification steps
in the evaluation pipeline. Both prompts are based
on the implementation of RAGAs4 (Es et al., 2024).

C Knowledge Base Details

Table 5 shows the statistics of the ClimateGPT
knowledge base.

D RAG Prompts

Listing 3 shows the prompt used in RAG for infer-
ence for all models except ClimateGPT.

Listing 3: Prompt used in RAG for inference for all
models except ClimateGPT.

You 're a helpful assistant supporting users
with their questions on climate change. Answer
the question based on the given contexts. Make
sure to only use information that is fully
grounded in the contexts.

Context:
[[0]] "{ passage [0]. title}", {passage [0]. year}
{passage [0]. content}
{...}
[[4]] "{ passage [4]. title}", {passage [4]. year}
{passage [4]. content}

Question:
{question}

E Training Details

In our training pipeline, we follow the setup from
Thulke et al. (2024). The models are trained using

4https://github.com/explodinggradients/ragas

Megatron-LLM5 a fork of NVIDIA’s Megatron-
LM 6 by the EPFL LLM team. A cosine learning
rate schedule with a peak LR of 10−5 and 100
warmup steps are used. The batch size is 64 and
the sequence length is 4096. Additionally, a weight
decay of 10−2 and dropout are used.

All 7B parameter models are trained with full pa-
rameter fine-tuning on 4xA100 80GB GPUs. One
training run takes approximately 4 hours, so in to-
tal 64 GPU hours were needed to train the models
reported in this paper.

F CPR’s RAG Dataset Evaluation

To further evaluate the generalization of Cli-
mateGPT 7B Faithful+ to other datasets, we tested
it on a set of question–passage pairs published by
the Climate Policy Radar team (Juhasz et al., 2024).
This dataset contains 1,013 examples, with the re-
trieved passages taken from Climate Policy Radar’s
internal database. We generated responses using
both ClimateGPT 7B and ClimateGPT 7B Faith-
ful+, and evaluated their faithfulness to the pro-
vided reference passages using our RAGAs-based
metric. On this dataset, ClimateGPT 7B Faithful+
achieved a claim support of 58%, substantially out-
performing the base ClimateGPT 7B model, which
achieved 44%. These results demonstrate that the
improvements made in the refined model general-
ize effectively to other climate-domain datasets.

In addition, Juhasz et al. (2024) also collected
expert annotations for model outputs from GPT-
4o, GPT-3.5, Gemini 1.0 and 1.5, and Mistral 7B
v0.2. Each response was evaluated for faithfulness
using a definition closely aligned with ours. Ex-
pert annotators labeled responses as either faithful
(58.9%), not faithful (9.6%), not applicable (28%),
or don’t know (3.5%). We used this data to evalu-
ate how well our RAGAs-based metric aligns with
human judgments. For the analysis, we focused
only on examples that were labeled as either faith-
ful or not faithful, excluding cases where the model
refused to answer. This resulted in a total of 1,367
samples. To convert the claim support from our
metric into a binary label for each example, we
classify an output as faithful if the claim support
exceeds 50%. On this test set, our metric achieved
an overall agreement of 86.7% with the human an-
notations. However, accuracy varied between label
categories: it reached 93.7% for human-labeled

5https://github.com/epfLLM/Megatron-LLM
6https://github.com/nvidia/megatron-lm
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#Tokens #Parameters Avg. Claim Support wrt.
Model in Trillion in Billion RAG #Claims Ref. [%] KB [%]

GPT-4o n/a n/a - 17.4 33 68
✓ 16.2 72 74

LLama 3.1 Instruct 15 8 - 22.7 24 59
✓ 17.3 67 72

70 - 21.8 25 60
✓ 16.1 70 74

LLama 2 Chat 2 7 - 23.3 25 60
✓ 21.2 48 65

70 - 25.1 24 60
✓ 21.6 54 68

ClimateGPT 2 7 - 21.6 25 59
✓ 21.1 30 61

70 - 21.8 27 61
✓ 22.2 30 62

ClimateGPT Faithful+ (ours) 2 7 - 20.2 27 57
✓ 19.2 57 69

Table 4: Results of all tested models for claim support wrt. the reference, as a metric of faithfulness, and wrt. the
knowledge base (KB) as a metric for factuality for different large language models with and without RAG. The best
values are in bold and the second best values underlined.

Listing 1: Prompt template used for Claim Extraction adapted from RAGAs.

Given a question , an answer , and sentences from the answer , analyze the complexity of
each sentence and break it down into one or more fully understandable statements.
Ensure that no pronouns are used in each statement and that every claim is explicit
and self -contained. Format the output as a structured JSON response.

EXAMPLE
Question: Who was Albert Einstein and what is he best known for?
Answer: He was a German -born theoretical physicist , widely acknowledged to be one of
the greatest and most influential physicists of all time. He was best known for
developing the theory of relativity. He also made important contributions to the
development of quantum mechanics.
Statements:
{

"statements ": [
"Albert Einstein was a German -born theoretical physicist.",
"Albert Einstein is recognized as one of the greatest and most influential physicists of all time.",
"Albert Einstein was best known for developing the theory of relativity .",
"Albert Einstein also made important contributions to the development of quantum mechanics ."

]
}

YOUR TURN
Question: {{ question }}
Answer: {{ sentences }}
Statements:



Listing 2: Prompt template used for Claim Verification adapted from RAGAs.

Your task is to judge the faithfulness of a series of claims based on a given context. For each claim you
must return verdict as 1 if the claim can be directly inferred based on the context or 0 if the claim can
not be directly inferred based on the context.

EXAMPLE 1:
Context: John is a student at XYZ University. He is pursuing a degree in Computer Science. He is enrolled in
several courses this semester , including Data Structures , Algorithms , and Database Management. John is a

diligent student and spends a significant amount of time studying and completing assignments. He often stays
late in the library to work on his projects.

Claims:
1. John is majoring in Biology.
2. John is taking a course on Artificial Intelligence.
3. John is a dedicated student.
4. John has a part -time job.

Analysis:
{" analysis ": [
{

"claim": "John is majoring in Biology.",
"reason ": "John 's major is explicitly mentioned as Computer Science. There is no information suggesting
he is majoring in Biology.",
"verdict ": 0

},
{

"claim": "John is taking a course on Artificial Intelligence .",
"reason ": "The context mentions the courses John is currently enrolled in, and Artificial Intelligence
is not mentioned. Therefore , it cannot be deduced that John is taking a course on AI.",
"verdict ": 0

},
{

"claim": "John is a dedicated student.",
"reason ": "The context states that he spends a significant amount of time studying and completing
assignments. Additionally , it mentions that he often stays late in the library to work on his projects ,
which implies dedication .",
"verdict ": 1

},
{

"claim": "John has a part -time job.",
"reason ": "There is no information given in the context about John having a part -time job.",
"verdict ": 0

}
]}

EXAMPLE 2:
Context: Photosynthesis is a process used by plants , algae , and certain bacteria to convert light energy
into chemical energy.

Claims:
1. Albert Einstein was a genius.

Analysis:
{" analysis ": [
{

"claim": "Albert Einstein was a genius.",
"reason ": "The context and claim are unrelated.",
"verdict ": 0

}
]}

YOUR TURN:
Context: {{ context }}
Claims:
{{ claims }}
Analysis:



Source # Docs # 512 Chunks

IPCC Reports 16 17,897
Potsdam Papers 390 8,539
Earth4All 14 235
Other 336 8,648

Total 756 35,319

Table 5: Statistics of the different data sources of the
ClimateGPT knowledge base.

faithful responses, but only 29.5% for not faithful
ones. Notably, Juhasz et al. (2024) themself ac-
knowledged that their annotations were sometimes
“too noisy along the faithfulness dimension”. In
addition, limited spot-checking on our part more
frequently agreed with our metric’s assessments
than with the human annotations.

G Evaluation with LettuceDetect

In addition to our primary faithfulness evaluation
using RAGAs, we include results using LettuceDe-
tect (Ádám Kovács and Recski, 2025), a recent
hallucination detection framework designed for
RAG systems. LettuceDetect is a token-level clas-
sifier based on ModernBERT (Warner et al., 2024),
trained on the RAGTruth dataset (Niu et al., 2024)
to identify hallucinated spans in LLM responses
given the input question and context. As LettuceDe-
tect’s definition of hallucination closely aligns with
our notion of faithfulness, we use it to validate the
results obtained with RAGAs.

For our evaluation, we convert LettuceDetect’s
span-level predictions into a binary faithfulness
score by marking a generation as faithful if no
hallucinated spans are detected. Results, using the
lettucedetect-large-v1 variant of the model,
are reported in Table 6.

The LettuceDetect results support the conclu-
sions drawn from our RAGAs-based evaluation.
Without RAG, both ClimateGPT and ClimateGPT
Faithful+ achieve low scores (6% and 2% respec-
tively), providing a baseline for how often gener-
ations align with the reference context by chance.
With RAG, ClimateGPT Faithful+ shows a substan-
tial improvement, reaching 34% hallucination-free
responses compared to only 6% for the original Cli-
mateGPT. This underpins the claim support results
obtained with RAGAs (57% vs. 30%), reinforcing
the effectiveness of our instruction fine-tuning strat-
egy in improving the model’s ability to ground its

Listing 4: Climate-FEVER example where our claim
verifier disagrees with the gold label.

Claim:
Global warming is driving polar bears toward
extinction

Evidence:
[Global Warming] Environmental impacts include
the extinction or relocation of many species as
their ecosystems change , most immediately the

environments of coral reefs , mountains , and the
Arctic.

Gold label: supported
Predicted label: not_supported

generations in the retrieved context.

H ClimateGPT IFT Example Output

Figure 2 shows an example output of ClimateGPT
7B and the ClimateGPT 7B Faithful+ model pro-
posed in this work. While both responses address
the question in the prompt and are generally cor-
rect, the refined model’s response demonstrates a
significantly closer alignment with the reference
passages.

I Climate FEVER Claim Verification

To evaluate our claim verification method, we ap-
plied it to the Climate-FEVER dataset (Diggel-
mann et al., 2021). The dataset consists of 1,535
claims, each paired with 5 corresponding evidence
passages. Each claim-evidence pair is annotated by
at least two annotators as either supported, refuted,
disputed, or lacking sufficient information. For
our analysis, we classify refuted and lacking suf-
ficient information as not supported, and exclude
all pairs labelled as disputed. In addition, we only
include examples where all annotators agree on
the label, resulting in a total of 1,146 claims and
3,348 claim-evidence pairs. On this subset, the
RAGAs-based claim verifier achieves an overall
accuracy of 67.1%. For pairs with the gold label
“not supported”, the accuracy is 99.7%, while for
supported pairs, it drops to 20.6%. Qualitatively,
we observe that our claim verifier is relatively strict,
requiring the claim to be explicitly stated in the ev-
idence. An example of this is given in Listing 4.
In this instance, the evidence does not explicitly
state that polar bears are one of the affected species.
However, it could be argued that it is plausible to
infer that polar bears are included among the “many
species” mentioned in the evidence.



#Tokens #Parameters Hallucination-Free Responses [%]
Model in Trillion in Billion w/o RAG w/ RAG

GPT-4o n/a n/a 9 73

LLaMA 3.1 Instruct 15 8 4 65
70 2 65

LLaMA 2 Chat 2 7 2 18
70 2 29

ClimateGPT 2 7 4 6
70 4 4

ClimateGPT Faithful+ (ours) 2 7 2 34

Table 6: Percentage of hallucination-free responses according to lettucedetect-large-v1 (Ádám Kovács and
Recski, 2025) for various models with and without RAG. The best values are in bold and the second best values
underlined.



Prompt
How do ocean ecosystems, ranging from coral reefs to the deep sea, support biodiversity and provide essential services? Answer in a
single detailed paragraph.
Context
[0] "Understanding the Effectiveness of Coastal Nature-based Solutions: Practitioner-based Learning", 2023
despite the high cost and failure rate. oyster reefs are effective for wave attenuation, and research suggests that focusing on positive
species interactions can provide a framework for restoration. biodiversity enhancement supports a shellfish reef’s ability to provide
ecosystem services. ecosystem services research highlights that healthy ecosystems provide high - quality services, while stressed
ecosystems produce degraded services and may harm human well - being. most ecosystem services are supported by biodiversity.
biodiversity in coastal systems contributes to providing ecosystem services such as fish habitat, nutrient cycling, and various cultural
services. additionally, biodiversity may play a role in the
[1] "The Role of Blue Carbon in Climate Change Mitigation and Carbon Stock Conservation", 2021
is an essential to sustainably manage and develop marine resources to their maximum potential. environmental measures should tackle
both terrestrial and marine ecosystems, with one as a continuum of the other. coral reef restoration can increase coastal resilience to sea
level rise and flooding and provide valuable environmental services for local populations. water pollution in rivers contributes to ocean
ecosystem degradation, via eutrophication and the formation of
[2] "The Ocean and Cryosphere in a Changing Climate", 2020
level of risk than the high emission scenario. changing marine ecosystem services and human well - being ecosystem services are
environmental processes and functions that provide benefits to people and support human well - being. marine ecosystem services are
generated throughout the ocean, from shallow water to the deep sea. these services can be divided into provisioning services, regulating
services, supporting services, and cultural services. they are also described as’nature’s contribution to people ’. changes in key ecosystem
[3] "Climate Change 2022: Impacts,Adaptation and Vulnerability", 2022
logical shifts and trophic mismatches, changes in communities and biodiversity, time of emergence of climate - impact signals in
ecological systems from background natural variability, and changes in biomass, primary productivity, and carbon export. coastal
ecosystems and seas warm - water coral reefs warm - water coral reef ecosystems, which house a significant portion of marine biodiversity,
provide food, income, and shoreline protection to coastal communities. these ecosystems are threatened by climate - induced and non -
climate drivers, including ocean warming, marine heatwaves, ocean acidification, sea - level rise, tropical cyclones
[4] "Understanding the Effectiveness of Coastal Nature-based Solutions: Practitioner-based Learning", 2023
research indicates that biodiversity plays a crucial role in the functioning of ecosystem services provided by habitats. recent studies have
focused on the climate mitigation capacity of forests in the context of biodiversity and nature - based solutions ( nbs ). challenges arise in
prioritizing monoculture plantations for carbon storage over intact and diverse ecosystems. the identity and richness of species, as well as
the concept of’niche complementarity ’, contribute to boosting ecosystem function and their services. significant restoration efforts are
underway for shellfish reefs, despite the high cost and failure rate. oyster reefs"

ClimateGPT 7B (Faithfulness: 19%, Factuality: 67%)
Ocean ecosystems, encompassing a diverse range from coral reefs to the deep sea, demonstrate unparalleled biodiversity and provide
a multitude of essential services. In the coral reef ecosystem, vibrant arrays of colorful fish and intricate coral structures serve as vital
breeding grounds and habitats for countless marine organisms. These ecosystems act as natural breakwaters, reducing coastal erosion and
protecting shorelines. Additionally, they store vast amounts of carbon, contributing to climate change mitigation. Moving out from the
coast, the deep sea presents a different world, characterized by complete darkness, extreme pressure, and cold temperatures. Despite the
harsh conditions, it sustains unique species adapted to these environments, many of which are still undiscovered. The deep sea plays a
crucial role in regulating climate and weather patterns, driven by its immense biological pump, which captures carbon from the surface and
transports it to the deep oceans. In essence, ocean ecosystems are not only a source of aesthetic beauty and recreation but also linchpins of
the Earth’s ecological balance and a treasure trove of biodiversity.
ClimateGPT 7B Faithful+ (Faithfulness: 92%, Factuality: 96%)
Ocean ecosystems, including coral reefs and the deep sea, play a vital role in biodiversity support and providing essential services.
They provide provisional services, regulating services, supporting services, and cultural services. Coral reefs contribute to coastal
resilience to sea level rise and flooding and provide valuable environmental services for local populations. However, they are threatened
by climate-induced and non-climate drivers, impacting coastal ecosystems and warm-water coral reefs. These ecosystems provide food,
income, and shoreline protection to coastal communities. Restoration efforts, such as oyster reefs, are essential for wave attenuation,
but their failure and high cost are challenges. Recent research has focused on the climate mitigation capacity of forests in the context of
biodiversity and nature-based solutions. Prioritizing monoculture plantations for carbon storage over intact and diverse ecosystems is a
challenge. The identity and richness of species and the concept of niche complementarity contribute to boosting ecosystem function and
services.

Figure 2: Example comparing the outputs of ClimateGPT and ClimateGPT 7B Faithful+ on one example of the
held-out test set. Parts marked in red correspond to claim that are not supported in the given context according to
our automatic evaluation.



Prompt
What is the purpose of the Global Stocktake?
Context
[0] Recalling Article 14 of the Paris Agreement, the objective of the Global Stocktake is to assess the collective progress towards achieving
the purpose of the Agreement and its long-term goals, considering mitigation, adaptation and the means of implementation and support, in
light of equity and the best available science. The outcome of the global stocktake shall inform Parties in updating and enhancing, in
a nationally determined manner, their actions and support in accordance with the relevant provisions of this Agreement, as well as in
enhancing international cooperation for climate action. The GST two-year process, begins with an information collection and preparation
component, followed by a technical assessment component and culminates in a consideration of outputs component, which includes the
outcomes of the GST. The SBSTA and the SBI invited submissions on views on the approach to the consideration of outputs component of
the first global stocktake. This submission responds to that invitation and sets out to identify important characteristics for the outputs
phase and the shaping of the outcomes of the GST.
[1] · Paragraph 34 of 19/CMA.1 decides that the outputs of this component of the global stocktake should: a) Identify opportunities for
and challenges in enhancing action and support for collective progress in relation to the thematic areas of the global stocktake referred to
in paragraph 6(b) above, as well as possible measures and good practices and international cooperation and related good practices;
[2] The SBSTA and the SBI invited submissions on views on the approach to the consideration of outputs component of the first global
stocktake. This submission responds to that invitation and sets out to identify important characteristics for the outputs phase and the
shaping of the outcomes of the GST. Approach to the Consideration of Outputs:
ClimateGPT 7B
The Global Stocktake is a key component of the Paris Agreement, scheduled to begin in 2023. It involves a comprehensive assessment of
global progress in addressing climate change, considering scientific evidence, economic implications, and societal impacts. The Stocktake
aims to inform the updates to countries’ climate commitments, known as “nationally determined contributions” (NDCs), to ensure they are
in line with the agreement’s objectives and targets. This process seeks to enhance international cooperation and commitment to mitigating
climate change on a global scale.
ClimateGPT 7B Faithful+
The Global Stocktake’s purpose, as outlined in Article 14 of the Paris Agreement, is to assess the collective progress made towards
achieving the Agreement’s purpose and long-term goals, which encompass mitigation, adaptation, and means of implementation. This
assessment is conducted considering equity and the best available science. The Global Stocktake process spans two years, beginning with
information collection and preparation and culminating in a consideration of outputs. The outputs of the latter component are decided
upon in paragraph 34 of 19/CMA.1, which states that they should identify opportunities for enhancing action and support for collective
progress in relation to thematic areas of the global stocktake and possible measures and good practices.

Figure 3: Example comparing the outputs of ClimateGPT and ClimateGPT 7B Faithful+ on one example from the
Climate Policy Radar data. Parts marked in red correspond to claim that are not supported in the given context
according to our automatic evaluation.
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