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Abstract
Neural front-ends are an appealing alternative to traditional,
fixed feature extraction pipelines for automatic speech recog-
nition (ASR) systems since they can be directly trained to fit the
acoustic model. However, their performance often falls short
compared to classical methods, which we show is largely due
to their increased susceptibility to overfitting. This work there-
fore investigates regularization methods for training ASR mod-
els with learnable feature extraction front-ends. First, we ex-
amine audio perturbation methods and show that larger rela-
tive improvements can be obtained for learnable features. Ad-
ditionally, we identify two limitations in the standard use of
SpecAugment for these front-ends and propose masking in the
short time Fourier transform (STFT)-domain as a simple but
effective modification to address these challenges. Finally, in-
tegrating both regularization approaches effectively closes the
performance gap between traditional and learnable features.
Index Terms: speech recognition, feature extraction, raw wave-
form modeling

1. Introduction
Feature extraction is a key component of any automatic speech
recognition (ASR) system. Conventional methods rely on hand-
crafted feature engineering which is often inspired by human
auditory perception [1, 2]. While this has shown to be effective,
these approaches risk discarding valuable speech information,
potentially limiting the ASR performance. Learnable feature
extraction methods address this limitation by optimizing fea-
tures directly for the acoustic model and thus ensure a more
tailored representation [3, 4, 5]. Beyond the final performance,
the use of learnable features aligns with the broader goal of de-
signing end-to-end ASR systems, where the entire processing
pipeline – from raw waveform to predicted labels – is optimized
jointly within a single monolithic neural framework.

In practice, learnable feature extraction front-ends often
struggle to compete with classical methods especially when the
amount of training data is limited [5]. While prior works have
not explicitly considered overfitting as a problem, we hypothe-
size that learnable front-ends are more susceptible to it. Figure 1
clearly shows this effect. This makes overfitting an important
concern that causes a performance gap. There are well-known
methods to mitigate it during neural network training in general
[6, 7]. However, their application to learnable feature extractors
in ASR has received little attention. In this work, we investigate
perturbations of the input audio during training as an effective
regularization strategy to improve generalization. Furthermore,
we demonstrate that the default use of SpecAugment [8] is sub-
optimal for learnable feature extractors and propose a refined
method to address these limitations.

Naturally, overfitting is particularly challenging when train-
ing data is limited. In this study, we focus on scenarios with
substantially less data than typically used in previous studies
that achieve competitive performance with learnable front-ends
[3]. The Switchboard corpus with 311 h of data is a suitable
choice for this. Beyond the size, this corpus is particularly chal-
lenging for learnable features because of its telephony speech
nature with a limited bandwidth of 8 kHz. Our approach is
thus viable for demanding low resource scenarios and situations
where large pretrained models are prohibitive due to efficiency
constraints.

The key contributions of this work are as follows:
• We show that overfitting is a problem when training ASR

models with learnable features.
• A systematic study on the effect of audio perturbation for

learnable front-ends is presented which, to the best of our
knowledge, has not been explored before.

• A novel variant of SpecAugment is proposed to specifically
address the challenges of learnable feature extraction.

• We demonstrate that combining both regularization methods
allows the learnable front-end to perform on par with tradi-
tional features on Switchboard with 311 h of training data.
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Figure 1: Train and dev connectionist temporal classification
(CTC) scores for the baseline training with log Mel and super-
vised convolutional features (SCF), respectively, demonstrating
the overfitting issue for the latter.

2. Related Work
While there exists a line of research on learnable front-ends for
ASR and related tasks [3, 4, 5, 9], the mitigation of overfitting
in this context has not been addressed so far. Parametric meth-
ods [10] may inherently suffer less from overfitting due to their
restricted modeling capacity. However, this limitation may po-
tentially affect the overall performance. As an alternative ap-
proach, we therefore aim to use regularization methods during
the neural network training to mitigate overfitting in this work.



The literature provides a rich set of techniques for regular-
izing neural network training such as weight decay [6], dropout
[7] or label smoothing [11]. Perturbation of the input is an-
other important regularization technique. Common methods
for audio perturbation are speed, tempo and pitch perturbation
[12, 13, 14]. Further ideas to augment the audio input include
signal companding [15] and mixup [16].

Additionally, SpecAugment [8] has been shown to be par-
ticularly effective for ASR. It works by masking blocks of time
frames or feature channels during training as well as performing
time warping. Following its success, numerous variations have
been proposed, e.g. dropping [17] or swapping [18] blocks in-
stead of masking, masking based on phonemes or other seman-
tic regions [19, 20] and more [21, 22, 23]. [24] proposes a vari-
ation of SpecAugment’s time warping for a wav2vec 2.0 model
with learnable front-end. However, this modification does not
appear to be specifically designed for learnable feature extrac-
tion and the experimental results do not isolate its individual
contribution to the performance improvement.

The SpecAugment variation proposed in this work is differ-
ent from previous work in that it works in the short time Fourier
transform (STFT)-domain and caters specifically for the needs
of learnable front-ends.

3. Methods
3.1. Feature Extraction

Typically, acoustic models for ASR operate on features that rep-
resent the input speech. One of the most common representa-
tions are log Mel filterbank features. They are obtained by first
computing the STFT, in our case with window size 25 ms and
shift 10 ms, and then taking the square of the magnitude. Using
Mel warping, an 80-dim vector is obtained per frame and finally
a logarithmic compression and normalization are applied.

As the learnable feature extraction front-end, we use super-
vised convolutional features similar to [5, 25, 26]. The main
components are two convolutional layers that operate as time-
frequency-decomposition and temporal integration. These op-
erations resemble the functional principle of the Gammatone fil-
terbank and the Hanning window used for Gammatone features
[2]. However, all filters are randomly initialized and trained
with the rest of the neural network with the same supervised
objective function. The first convolutional layer takes the wave-
form as input. It has 150 filters with a size of 16 ms and a stride
of 0.625 ms. The second layer has 5 filters with a size of 40
frames and a stride of 16, resulting in feature frames with a
10 ms shift. Since each of the 5 filters is applied to all 150 out-
put channels of the first layer, the final feature dimension is 750.
In contrast to Gammatones features, a multi-resolutional tem-
poral integration is achieved because 5 different filters can be
learned. Additionally, we use the absolute value as the element-
wise activation function after the first layer and the 2.5th root
of the absolute value after the second layer. Finally, layer nor-
malization is applied. In this case of a learnable front-end, the
border between feature extraction and acoustic model blurs and
the neural network operates directly on the raw waveform.

Both feature extraction blocks are followed by SpecAug-
ment (see Section 3.3) and VGG convolutions, resulting in a
subsampling by a factor of 4 and a frame shift of 40 ms.

3.2. Audio Perturbation

For our work, we investigate multiple ways of modifying the au-
dio signal in order to regularize the training of our model. Each

of the perturbations is applied at the sequence level with a spec-
ified probability p, where p < 1 ensures to also include original
audio in training. While most earlier works generate copies of
the corpus with fixed perturbation factors, we sample random
factors for the modification in a given range on-the-fly to in-
crease the variability of perturbed examples. This allows the
same sequence to pass through different modifications across
multiple training iterations.

Speed, Tempo and Pitch Perturbation: The most com-
mon way of modifying an audio signal is changing its speed,
tempo or pitch. For speed perturbation, we resample the audio
by a factor a. This results in both the duration and the pitch be-
ing modified. Tempo perturbation only changes the tempo and
thus the duration of the audio while keeping the pitch level con-
stant. This is achieved using the waveform similarity overlap-
add (WSOLA) algorithm [27]. Lastly, we can also only mod-
ify the pitch of the audio while keeping the duration constant.
Again we use WSOLA, by first changing the tempo of the audio
signal but then resample the signal back to the original duration.

Nonlinear Amplitude Perturbation: The next perturba-
tion involves a nonlinear distortion of the audio signal’s ampli-
tudes. It is defined as:

x̃(t) = sign(x(t)) · |x(t)|β (1)

where x(t) is the original audio normalized to be between -1
and 1, β is the factor that controls the strength of the distortion
and x̃(t) is the perturbed audio. The perturbation either results
in a more peaky signal or de-emphasizes outliers.

µ-Law Perturbation: The next perturbation technique we
investigate is based on µ-law companding. This companding al-
gorithm reduces the dynamic range of a given signal and is typ-
ically used in telecommunication systems. However, previous
work has also applied it as a method for speech data augmen-
tation [15]. We use the continuous encoding equation which
offers the possibility to control the strength of the augmentation
effect by a single parameter µ:

x̃(t) = sgn(x(t)) · ln(1 + µ · |x(t)|)
ln(1 + µ)

(2)

While in telecommunication usually µ is set to 255, we use sig-
nificantly smaller values in order to avoid perturbed examples
that deviate too far from the distribution of the real training data.
Note that since µ > 0, this is the only perturbation where in
general E[x̃(t)] ̸= x(t).

Preemphasis: Preemphasis is a filter technique often used
for ASR to emphasize higher frequencies in the audio signal.
The filter output y(t) is defined as:

y(t) = x(t)− αx(t− 1) (3)

where α is usually chosen to be close to 1. To avoid any mis-
match, preemphasis is applied in the same way during training
and inference. In addition to the standard usage of preemphasis,
we experiment with a second level of preemphasis as a pertur-
bation technique. For this, we apply Eq. (3) a second time with
a random value α̃ sampled from a pre-defined range close to 0.
For inference, we only apply the regular preemphasis with α.

3.3. SpecAugment

SpecAugment [8] is a regularization technique that involves
masking random regions of the extracted features along both
the time and feature dimensions during training. Similar to
dropout [7], this approach prevents overfitting by ensuring the
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(b) Proposed masking in STFT-domain before feature extraction.

Figure 2: Baseline vs. proposed masking strategies.

model does not overly depend on any particular part of the fea-
tures. However, unlike dropout, SpecAugment introduces struc-
ture by masking contiguous regions of data. Specifically, when
applying time masking, blocks of consecutive time frames are
masked. Since neighboring frames typically have a high corre-
lation, masking a single frame results in minimal information
loss. In contrast, masking entire regions pushes the model to
learn dependencies over longer contexts.

For log Mel features, this logic trivially transfers to mask-
ing in the feature dimension since neighboring feature channels
correspond to adjacent frequency regions. However, this is fun-
damentally different in the case of learnable features. While the
model also typically learns a set of bandpass filters [5, 26], it
cannot be assumed that adjacent channels represent similar fre-
quencies since the order of filters is arbitrary. We hypothesize
that this limits the efficacy of SpecAugment for learnable front-
ends. Furthermore, SpecAugment is applied after the feature
extraction as depicted in Figure 2a. This causes the gradient for
the masked positions to be 0, resulting in fewer updates for each
front-end filter. As another consequence, learnable layers be-
fore and after the masking allow the model to shift information
and bypass the masks resulting in ineffective regularization.

In this work, we investigate two different ways to solve
these issues. The first way is to sort the filters based on the
peak frequency in their frequency response and to mask chan-
nels with neighboring peak frequencies. However, this is com-
plicated by the fact that the learned filters are not perfectly sharp
bandpass filters but sometimes include wide or even multiple
passbands [5, 26]. Thus, a proper masking of frequency areas
cannot be guaranteed. Also, the masking is still applied after
the feature extractor such that this approach only addresses the
first issue described above.

For the second proposed approach, we apply SpecAugment
before the feature extraction process. We apply masking in both
time and frequency dimension in the STFT-domain, transform
the signal back using the inverse STFT and use the resulting
signal as input to our model. This way, we can apply SpecAug-
ment before feature extraction and guarantee that both time and
frequency areas are masked properly, tackling both issues de-
scribed above. The information flow for the baseline and pro-
posed masking strategies is visualized in Figure 2.

4. Experimental Setup
4.1. Data

The Switchboard-1 Release 2 dataset [28] serves as training
data for our experiments. The corpus contains 311 h of con-
versational English telephony speech sampled at 8 kHz. We use
Hub5’00 as the development set and Hub5’01 for evaluation.

4.2. ASR Model

For our experiments, we use a connectionist temporal classifica-
tion (CTC)-based ASR model [29]. We follow the setup from a
previous work [30] and use a 4-gram language model (LM) dur-
ing recognition. Feature extraction is done as explained in Sec-
tion 3.1 including VGG-style subsampling, followed by dropout
and a final linear layer producing representations with a shift of
40 ms. Following results from preliminary experiments, stan-
dard preemphasis with α = 0.97 is used for the supervised
convolutional features, but not for log Mel. Also, for the log
Mel baseline, it was beneficial to normalize the input waveform
over time and the resulting features over the batch. Our encoder
consists of 12 conformer [31] layers with a hidden dimension
of 512. Compared to the original paper, we swap the position
of convolution and multi-head self-attention modules. A final
linear layer maps the encoder output to the target vocabulary,
resulting in 74M parameters for the log Mel model. When us-
ing learnable features, there are around 21k parameters for the
feature extractor and the number of parameters for the linear
layer after VGG increases from 1.3M to 12.3M because of the
almost 10 times larger feature dimension1 leading to 85M pa-
rameters in total. We train our model using the NAdam opti-
mizer applying L2 weight decay [6] with a factor of 0.01 for
the VGG frontend and 0.0001 for the encoder. Further, dropout
[7] is applied with a probability of 0.1 for regularization. We
split the data into 6 sub-epochs and train a total of 450 sub-
epochs, evaluating our model on sub-epochs 400 to 450 in steps
of 10 and select the best checkpoint based on word error rate
(WER) on Hub5’00 for test evaluation. We apply SpecAugment
from the first sub-epoch. To increase training stability, perturba-
tions are only enabled after the first 4 full epochs by initializing
the model with the corresponding checkpoint of the baseline.
To keep the total number of training epochs constant, we stop
training with perturbations 4 full epochs earlier. We use a one-
cycle learning rate (OCLR) schedule starting from 1.325 ·10−5

with a peak of 4.0 · 10−4 after 180 sub-epochs going down to
1.0 ·10−5 over another 180 sub-epochs and staying at that level
for the final sub-epochs of training. The experiments can be
run on a single consumer graphics processing unit (GPU) with
24 GB VRAM (e.g. Nvidia RTX 3090) so that the barrier for
reproduction is low. Also, the software is publicly accessible
[32, 33] and the recipes are available online2.

5. Experimental Results
5.1. Audio Perturbation

We study the effect of the audio perturbation techniques intro-
duced in Section 3.2 in Table 1. Due to hardware availabil-
ity constraints, we run the ablation study for Table 1 on less
powerful GPUs with only 11 GB of memory. To facilitate this,
the batch size is reduced from 100 s to 50 s and the gradients
are accumulated over two batches. Note that this is not strictly
equivalent when the model contains batch normalization. Ad-
ditionally, preemphasis with α = 1.0 yielded better results for
some trainings and we always report the lower WER in Table 1.
The full ablation study contains a large number of experiments,
however, in the interest of clarity, we present only those exper-
iments here that deliver the best results for log Mel and super-

1The VGG output dimension is 32 times the feature dimension re-
sulting in 750 · 32 · 512 ≈ 12.3M parameters for the linear layer.

2https://github.com/rwth-i6/
returnn-experiments/tree/master/
2025-regularizing-learnable-features



vised convolutional features for each perturbation type.
For each experiment, we define the probability p of per-

turbing the audio input as well as the range to sample the hyper-
parameter controlling the perturbation strength from. We check
p ∈ {0.3, 0.7, 1.0} for most perturbations to cover a wide range
of probabilities. For speed perturbation, we sample from the
range that is typically used, i.e., a ∼ U(0.9, 1.1) [12], but also
from the less common a ∼ U(0.88, 1.12) [34]. Most other
works use a range of [0.9, 1.1] for tempo perturbations as well
[12]. However, our experiments showed that larger ranges are
more beneficial and therefore our best results with tempo per-
turbation are obtained with a ∼ U(0.7, 1.3). For pitch pertur-
bation, a change of -2 to 2 semitones roughly corresponds to
speed changes of 0.9 to 1.1 and is therefore our starting point.
Yet, larger ranges degraded the performance.

For non-standard perturbations, selecting appropriate hy-
perparameters is more challenging due to the lack of prior refer-
ences. To address this, we determined the minimum and maxi-
mum perturbation factors such that the audio still sounded natu-
ral based on the authors’ subjective perception. Based on initial
experimental results, we further tuned the parameters.

Table 1 shows the obtained results. It is clear that tempo
perturbation achieves the best WERs across both feature types.
While the log Mel model also clearly benefits from the nonlin-
ear amplitude, µ-law and preemphasis perturbation, only the
latter yields a small improvement for the learnable features.
However, the overall best results exhibit a larger relative im-
provement for the learnable front-end.

Table 1: Ablation study of different audio perturbation meth-
ods. Results are reported for both log Mel and supervised con-
volutional features (SCF) on Hub5’00. All results use standard
SpecAugment.

Perturbation WER [%]
Type p Min Max log Mel SCF
None - - - 13.0 13.2
Speed 0.7 0.88 1.12 13.1 13.3
Tempo 1.0 0.7 1.3 12.6 12.6
Pitch 0.7 -2 2 13.2 13.4

Nonlin. Amp. 0.8 1.2 12.6 13.2
µ-law 0.3 1 5 12.6 13.2

Preemphasis 0.7 -0.05 0.05 12.7 13.0

5.2. SpecAugment Variations

The next set of experiments deals with the analysis of the previ-
ously proposed variations of SpecAugment. A maximum time
mask size of 15 frames was tuned for the log Mel baseline
model and previously copied for experiments with the learnable
front-end. The maximum feature mask sizes were tuned indi-
vidually for each row in Table 2 and are 8 or 15 in the baseline
cases. Now, we first evaluate creating larger time masks while
reducing the number of masks at the same time to keep the ratio
of masked time frames constant. Because of the temporal cor-
relation of the input, this has a stronger regularization effect and
forces the model to learn longer context dependencies. As vis-
ible in Table 2, this has little effect for the log Mel features but
yields a 0.4% absolute improvement for the learnable front-end.
Applying SpecAugment in the STFT-domain achieves the same
absolute gain of 0.4%. In combination with larger time masks,
the best result is obtained. Interestingly, even the log Mel fea-
tures benefit from masking in the STFT-domain in combination
with larger time masks. Finally, feature masking based on the
sorted order of learned filters does not improve the result.

Table 2: Comparison of different SpecAugment variations. The
given mask sizes for time (T) and frequency/feature (F) are up-
per limits for random sampling of the actual sizes. Results are
reported on Hub5’00.

Features SpecAugment Mask Size WER [%]T F

log Mel
Baseline 15 8 12.8

30 12.8

STFT-domain 15 4 12.8
30 8 12.5

SCF

Baseline 15 15 13.2
30 8 12.8

Sorted 15 13.3

STFT-domain 4 12.8
30 8 12.6

Table 3: Final results on Hub5’00 and Hub5’01 for the com-
bination of the previously best performing audio perturbations
(tempo perturbation) and SpecAugment settings.

Features Perturbation SpecAugment WER [%]
Hub5’00 Hub5’01

log Mel
no default 12.8 11.5

yes 12.4 11.2
STFT-domain 12.4 11.3

SCF no default 13.2 12.4
yes STFT-domain 12.5 11.3

5.3. Final Combination

To obtain the final best model, we combine the best SpecAug-
ment variation with the best audio perturbations. We select
tempo perturbation here as it performed best on both log Mel
and learnable features. While we also tried combining differ-
ent perturbations, this resulted in an overall worse performance,
likely because the regularization effect is too strong in this case.
Table 3 presents the results. As visible in the first three lines,
tempo perturbation improves the log Mel baseline results on
both Hub5’00 and Hub5’01. In combination with tempo per-
turbation, SpecAugment in the STFT-domain is not beneficial
for log Mel features. In contrast, the combination yields the best
results for the learnable front-end which are now within 0.1%
absolute from the best log Mel results. We also observe that the
gap between train and dev scores is significantly smaller than
in Figure 1, showing that overfitting has been mitigated effec-
tively. Therefore, we demonstrate that the presented regulariza-
tion methods for training an ASR system with learnable features
allow closing the performance gap to traditional features.

6. Conclusion
This work focuses on regularization techniques for training
CTC-based ASR models using both traditional and learnable
feature extractors on the Switchboard dataset. The examined
audio perturbations can mitigate the overfitting during training
and the overall improvements are relatively larger for learn-
able features. Furthermore, we propose masking in the STFT-
domain as a simple but effective modification of SpecAugment
to allow masking of contiguous frequency regions and ensur-
ing variability in the input which was previously not the case
for neural front-ends. The final results with a combination of
both techniques effectively close the performance gap between
traditional and learnable features.
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