
Dynamic Acoustic Model Architecture Optimization in Training for ASR

Jingjing Xu1,2, Zijian Yang1, Albert Zeyer1,2, Eugen Beck2, Ralf Schlüter1,2, Hermann Ney1,2

1Machine Learning and Human Language Technology Group, RWTH Aachen University, Germany
2AppTek GmbH, Germany

{jxu, zeyer, zyang, schlueter}@ml.rwth-aachen.de, ebeck@apptek.com

Abstract
Architecture design is inherently complex. Existing approaches
rely on either handcrafted rules, which demand extensive em-
pirical expertise, or automated methods like neural architecture
search, which are computationally intensive. In this paper, we
introduce DMAO, an architecture optimization framework that
employs a grow-and-drop strategy to automatically reallocate
parameters during training. This reallocation shifts resources
from less-utilized areas to those parts of the model where they
are most beneficial. Notably, DMAO only introduces negligi-
ble training overhead at a given model complexity. We evaluate
DMAO through experiments with CTC on LibriSpeech, TED-
LIUM-v2 and Switchboard datasets. The results show that, us-
ing the same amount of training resources, our proposed DMAO
consistently improves WER by up to ∼ 6% relatively across
various architectures, model sizes, and datasets. Furthermore,
we analyze the pattern of parameter redistribution and uncover
insightful findings.
Index Terms: speech recognition, dynamic architecture opti-
mization, CTC

1. Introduction & Related Work
In the last decade, self-attention-based architectures such as

Transformer [1], Conformer [2], and E-branchformer [3] have
revolutionized the automatic speech recognition (ASR) field,
significantly boosting the performance of acoustic models. For
convenience and efficient scalability, identical neural blocks are
stacked together to construct the acoustic encoder. However,
this may result in inefficient use of parameters, as research
[4, 5, 6] has shown that the model may perform different roles at
varying depths, and such behavior is data-dependent. The basic
components of the model architecture, such as feed-forward,
convolutional, and attention layers, are specialized for differ-
ent tasks. The question of how to design a better data-specific
model architecture by optimally distributing the parameters of
different types at various depths based on their usefulness re-
mains under-explored.

The recently proposed Zipformer [7] divides the layers into
stacks, with each stack having a different embedding dimen-
sion. However, the authors do not provide an explanation for
the choice of these specific dimensions. In the works [8, 9],
a block-wise scaling approach based on hand-crafted rules is
employed to adjust the depth and width of blocks. However,
the hyper-parameters governing the scaling process still require
tuning to achieve optimal performance, thereby introducing ad-
ditional training efforts. Neural architecture search (NAS) can
be used to discover efficient architectures that outperform hand-
designed ones and has been applied in [10, 11, 12] for the ASR
task. However, NAS approaches often demand significantly
more time and computational resources due to the extensive

exploration of the architecture space and repeated evaluations
of candidate models. These previous solutions are non-trivial.
They either demand extensive expertise from researchers or re-
quire additional training efforts. Therefore, in this work, we aim
to find a solution that dynamically optimizes the model archi-
tecture within a fixed resource budget during training, without
incurring additional overhead.

The grow-and-drop paradigm has been utilized for training
sparse networks from scratch [13, 14, 15, 16]. In those works,
training begins with a randomly initialized sparse network with
predefined sparsity, but the optimal architecture remains un-
known. During the grow phase, neurons or connections are ei-
ther added randomly or based on certain strategies, allowing the
model to explore a variety of architectural configurations. After
the growth phase, the network deactivates parameters that are
considered unimportant.

In this work, we extend the grow-and-drop paradigm to
dense network training. We propose a simple Dynamic Model
Architecture Optimization (DMAO) framework that utilizes the
grow-and-drop strategy to efficiently redistribute parameters
during the training process. To enable flexible adaptation, we
partition the dense model into finer groups of parameters. We
define and compare various metrics to assess the importance of
these parameter groups based on their contribution to the ASR
model’s performance. The parameter groups are ranked accord-
ing to these metrics, after which we grow the top-ranked groups
and remove the lowest-ranked ones. In this way, we enhance
the model’s capacity by reallocating resources from underuti-
lized areas to those where they are most needed. We evaluate
our approach by conducting experiments with the connectionist
temporal classification (CTC) [17] model on LibriSpeech, TED-
LIUM-v2 and Switchboard datasets. The results demonstrate
that DMAO consistently improves word-error-rate (WER) by
up to ∼6% relative across different architectures (e.g. Con-
former, E-Branchformer), model sizes, and datasets. We also
investigate the optimal schedule for applying DMAO during
training. Furthermore, we analyze how the parameter distribu-
tion changes with DMAO and provide possible explanations.

2. Dynamic Model Architecture
Optimization

In this section, we present our approach for dynamically
optimizing the acoustic model architecture during training. The
core idea is to redistribute the parameters from parts of the
model where they are least useful to those where they are most
critical, thereby enhancing the model’s capacity while maintain-
ing a fixed budget for specific resource constraints. To enable
more flexible global adjustments, we begin with partitioning
the model into smaller parameter groups. We then rank these
groups based on their importance, as computed using the met-

Interspeech 2025
17-21 August 2025, Rotterdam, The Netherlands

3603 10.21437/Interspeech.2025-1126

rics described in Sec. 2.2. The parameters are reallocated using
the grow-and-drop paradigm, i.e., by removing the least impor-
tant ones and duplicating the most important ones. The remain-
ing parameters are left unchanged, and training proceeds with
the updated model.

2.1. Model Partition

Conformer [18] and E-branchformer [3], which are among
the most prevalent encoder architectures for ASR tasks, are
used in this work. Conformer consists of feed-forward net-
work (FFN), multi-head self-attention module (MHSA) and
convolutional module (Conv). FFN has two weight matrices
Wff1 ,W

T
ff2 ∈ Rdmodel×dff , dmodel is the model dimension and

dff denotes the inner dimension of FFN. We partition the FFN

into C groups,with sub-matrices W c
ff1 ,W

c
ff2

T ∈ Rdmodel×
dff
C .

MHSA has H heads and consists of four projection matrices,
Wk,Wq,Wv,W

T
o ∈ Rdmodel×(dh·H), dh is the dimension per

head. We partition the MHSA into H groups, each with sub-
matrices Wh

k ,W
h
q ,W

h
v ,W

h
o

T ∈ Rdmodel×dh . Conv consists of
weights Win ∈ Rdmodel×4dmodel , Wconv ∈ Rk×k×2dmodel×1, and
Wout ∈ R2dmodel×dmodel . Likewise, we partition one Conv into

M groups, with sub-matrices Wm
in ∈ Rdmodel×

4dmodel
M , Wm

conv ∈
Rk×k× 2dmodel

M
×1 and Wm

out ∈ R
2dmodel

M
×dmodel . This partition al-

lows for easy adjustment of the hidden dimensions in each mod-
ule. The E-branchformer can be partitioned into a similar man-
ner. Suppose the encoder has L layers, we partition the model
into (2C +H +M)× L groups.

2.2. Ranking Based on Importance Scores

We define several metrics to assess the importance of pa-
rameter groups. These scores are used to rank parameter groups
according to their contribution to ASR performance. Addition-
ally, they should be efficient to calculate and easily accessible,
ensuring minimal computational overhead. Suppose the param-
eter group has N weight elements wi ∈ R, i = {1, ..., N}.
Magnitude refers to the absolute value of a weight and are
widely used as metric for pruning ASR models [19, 20].
Weights with larger values after applying a norm to their mag-
nitudes are considered more important, as they have a greater
influence on the activation and final output [21, 22]. To cal-
culate the importance score at training step t, we average the
magnitudes of all weights in the parameter group. Addi-
tionally, to make the score more stable, we use exponential
smoothing, as in [23], where α is a constant smoothing factor.

st = (1− α)st−1 + α

(
1

N

N∑
i=1

|wi|

)
(1)

Gradient represent the rate of change of the loss function with
respect to the model’s weights [24, 25]. Weights with small ab-
solute gradients have a smaller impact on reducing the model’s
loss and are therefore less influential in the training process. To
assess the importance of each parameter group, we compute the
averaged L2 norm of the gradients across all weights in that
group and apply exponential smoothing as in Eq. (1) as well.

st = (1− α)st−1 + α
1

N

√√√√ N∑
i=1

(
∂LASR

∂wi

)2

(2)

First-order Taylor Approximation provides a linear approx-
imation of a function around a given point. We compute
the importance score of an individual weight wi using the
first-order Taylor approximation to estimate the loss differ-
ence when wi is removed or equivalently set to zero, as in

Figure 1: Illustration of grow/prune parameter groups in an
FFN module. Grey nodes indicate input/output. The parame-
ter groups (green, red, yellow) include hidden nodes and their
connections. Selecting the green group for doubling adds dff

C
new hidden nodes and their connections (in red), updating FFN
weight matrices to Wff1 ,W

T
ff2 ∈ Rdmodel×

C+1
C

dff . Pruning the
red group removes its nodes and corresponding connections.

[26, 23]. Compared to using gradients alone, this approach
also takes the weight value into account, ensuring that both the
size and effect of the weights are accounted for the decision-
making process. For parameter groups, we compute the im-
portance score using the same averaged L2-norm as in Eq. (2).

st = (1− α)st−1 + α
1

N

√√√√ N∑
i=1

(
∂LASR

∂wi
wi

)2

(3)

Learnable Score Inspired by movement pruning [27, 28], we
assign a learnable score s to each parameter group to indicate
its importance. We directly scale all weight elements in that
group as w′

i = wi × s. After each adaptation, the scales of all
parameter groups (i.e., s) are reset to 1 to ensure a fair compar-
ison in the next round. Empirically, we observe that the model
may diverge if the scaling effect is removed. Therefore, we ran-
domly sample training steps with a probability of 0.5, i.e., for
half of the training steps, unscaled weights are used, and for the
other half, scaled weights are applied. In this way, the model
remains robust to the scaling effect.
2.3. Architecture Optimization

The adaptation is performed iteratively over I iterations
during training. Let Tend denote the training step at which adap-
tation stops, and ∆T the number of training steps per iteration.
At the end of each ith iteration, i.e., at the i∆T training step, we
use the updated importance scores to rank the parameter groups
and optimize the model architecture. Let δ ∈ [0, 0.5] denote the
adaptation ratio, then we optimize the architecture by removing
the bottom δ

I
fraction of the parameters and doubling the top

δ
I

fraction. As a result, a total of 2δ parameters are modified.
The grow-and-prune paradigm of FFN is illustrated in Figure 1
and can be easily analogized to all Conformer modules. With
the partitioning design described in Sec. 2.1, only the hidden
dimension of each module is modified, while the input and out-
put dimensions remain unchanged. This design enables each
parameter group to be independently doubled or pruned with-
out altering the shapes of other groups. The initialization of the
newly introduced weights is investigated in Sec. 3.2.3. Alter-
natively, we can use different resource constraints, such as the
number of FLOPs, as used in [29].

3. Experiments
3.1. Experimental Setup

We conduct the experiments on the 960h LibriSpeech (LBS)
corpus [30], the 200h TED-LIUM-v2 (TED-v2) corpus [31] and
the 300h Switchboard (SWB) corpus [32]. We use a phoneme-
based CTC model following the setup in [33] as baseline, with
log Mel-filterbank features as the input. It has a VGG front-end

3604

Figure 2: Comparison of training loss between the baseline and
the model w/ DMAO on LibriSpeech dataset.

and 12 Conformer/E-branchformer blocks. The output labels
are 79 end-of-word augmented phonemes. SpecAugment [34]
is applied for data augmentation. For Conformer, the number
of attention heads H is dmodel

64
and dff = 4 × dmodel. For E-

branchformer, the inner dimension of local extractor dinter is set
to 6 × dmodel. In terms of model partition, we set both C and
M to 4. We train all models for the same number of epochs:
50 epochs for SWB and TED-v2, and 30 epochs for LBS. The
one-cycle learning rate scheduler [35] is used, with the learning
rate increasing from 4×10−6 to 4×10−4 for 45% of the train-
ing, decreasing for the next 45%, and decaying to 10−7 in the
final 10%. We use RETURNN [36] to train the acoustic models
and RASR [37] for recognition. In inference, we apply Viterbi
decoding with a 4-gram word-level language model. To further
reduce computation, the smoothed scores in Eq. (1-3) are com-
puted and updated every 1000 steps. All our config files and
code to reproduce the results can be found online1.
3.2. Experimental Results
3.2.1. Overall Results with Conformer Encoder
We present the overall results with Conformer across different
model sizes in Table 1. The optimal DMAO setting including
the selection of importance metrics is used, ablation study re-
sults are presented in the following sections. The results show
that DMAO improves WER performance across all model sizes
and datasets, achieving up to a 6% relative improvement. Fur-
thermore, within each size category, the ‘retrain’ model with the
optimized architecture outperforms the baseline model. To en-
sure a fair comparison, all training factors, except for the model
architecture, remain consistent. This suggests that the updated
architecture provides greater model capacity. Moreover, when
compared to retraining with optimized architecture, the model
with DMAO yields comparable or even slightly better results,
indicating that directly applying adaptation during training does
not disrupt model convergence. Figure 2 plots the training loss
for both the baseline model and the model with DMAO. After
the architecture update, we observe a sharp increase in training
loss, as the model’s weights and parameter distribution are al-
tered. However, the loss decreases quickly, indicating that the
model recovers rapidly. Following this, the training loss of the
DMAO model remains slightly lower than the baseline, verify-
ing our assumption that the updated model has greater capac-
ity. To assess the reliability of the improvement, we compute
bootstrap-estimated probabilities of WER reduction on each test
set using the implementation from [38]. Absence of notation
+,++,+++ signifies a confidence level below 90%. The results in-
dicate strong confidence that DMAO improves WER compared
to the baseline on both the LBS and SWB datasets.

1https://github.com/rwth-i6/returnn-experiments/tree/master/2025-dynamic-
model-architecture-optimization

Table 1: Overall WERs [%] results using Conformer as the
encoder architecture across different model sizes on three
datasets. The baseline model does not use DMAO. The ‘w/
DMAO’ model applies model architecture optimization once at
20% (15% for LBS) of the total training steps, with the adapta-
tion ratio δ set to 0.15, using the first-order Taylor approxima-
tion as the metric. The ‘retrain’ model uses the final architec-
ture from the ‘w/ DMAO’ model but is trained from scratch.

Params.
[M] Model TED-v2 SWB LBS

dev test
Hub
5’00

Hub
5’01

dev-
other

test-
other

19.0
baseline 7.8 8.2 14.8 13.4 7.6 7.9
w/ DMAO 7.6 7.7 14.2 12.8+++ 7.3 7.8+++

+retrain 7.7 7.9+ 14.2 13.1+++ 7.5 7.9+++

42.1
baseline† 7.7 7.9 14.0 12.8 7.0 7.5
w/ DMAO‡ 7.3 7.9 13.5 12.3+++ 6.8 7.2+++

+retrain 7.4 7.9 13.9 12.5++ 6.7 7.2+++

72.8
baseline 7.6 7.7 13.9 12.6 6.8 7.1
w/ DMAO 7.4 7.7 13.8 12.2++ 6.6 6.9++

+retrain 7.3 7.5 13.2 11.8+++ 6.6 7.0
† used as the baseline for Table 2, Table 3 and Table 4. ‡ used to plot Figure 3.
+,++,+++ denotes probability of improvement > 90%, > 95%, and > 99%.

Table 2: Comparison of WERs [%] using different metrics and
various values of the smoothing factor α to compute importance
scores for parameter groups. The baseline model does not use
dynamic architecture adaptation, whereas the other models ap-
ply it once at 20% (15% for LBS) of the total training steps with
adaptation ratio δ 0.15. The baseline is † from Table 1.

Metric Smooth
factor α

SWB LBS
Hub5’00 Hub5’01 dev-o test-o

baseline - 14.0 12.8 7.0 7.5
magnitude

0.9
14.0 12.8 7.7 7.9

gradient 13.6 12.3 7.0 7.2

first order
Taylor

13.5 12.3 6.8 7.2
1 13.7 12.3 7.1 7.5

0.7 13.8 12.5 6.9 7.3
0.5 13.6 12.3 7.0 7.3

learnable score - 13.6 12.2 6.9 7.3

3.2.2. Importance Score Metrics Comparison
In Table 2, we compare the ASR results using different scor-
ing metrics for ranking parameter groups in dynamic model ar-
chitecture adaptation. Except for the magnitude-based scoring
metric, all other metrics lead to WER improvements over the
baseline, highlighting the importance of choosing a good met-
ric. Among the metrics, the first-order Taylor approximation
achieves the best performance, showing a ∼ 4% improvement
over the baseline on both the SWB Hub5’01 and LBS test-other
sets. Additionally, the results suggest that exponential smooth-
ing improves WER, making the scores more reliable.
3.2.3. Initialization Comparison for Newly Introduced Weights
In Table 3, we investigate different initialization strategies for
the newly introduced weights after each model architecture up-
date. The results show that directly copying the weights from
the top δ parameters yields the best performance.
3.2.4. Ablation Study of DMAO schedule
Table 4 presents the results of an ablation study on the DMAO
schedule. We observe that, applying DMAO too late in the
training process can degrade performance, possibly because the
model struggles to recover from the updates. On the other hand,
applying it too early is suboptimal, as the scores computed in
the initial training steps may be suboptimal. A good balance

3605

Table 3: WERs [%] comparison of different initialization for the
newly introduced weights after each architecture optimization.
The baseline is † and ‘copy’ is ‡ from Table 1. ‘copy’ refers to
using the exact same weights from the top δ parameters, while
‘copy + noise’ adds extra Gaussian noise with a mean of 0 and
a standard deviation of 0.01.

Initialization SWB LBS
Hub5’00 Hub5’01 dev-other test-other

baseline w/o DMAO 14.0 12.8 7.0 7.5
copy 13.5 12.3 6.8 7.2
copy + noise 13.7 12.3 6.9 7.2
random 13.6 12.3 7.0 7.4

Table 4: WERs [%] of applying DMAO at different training
stages, with varying adaptation ratios and number of iterations
(first-order Taylor approximation as metric). Ttotal denotes the
total number of training steps. The baseline is † from Table 1.

Tend
Ttotal

Update
ratio δ

Num.
iters. I

TED-v2 SWB
dev test Hub5’00 Hub5’01

baseline w/o DMAO 7.7 7.9 14.0 12.8

20%

0.1 1 7.6 7.7 13.4 12.3

0.15
7.3 7.9 13.5 12.3

4 7.5 8.0 13.5 12.3
8 7.5 7.9 13.9 12.3

0.2

1

7.4 7.7 13.5 12.5
0.25 7.5 7.7 13.3 12.2

10%
0.15

7.7 8.0 13.5 12.5
30% 7.7 8.1 14.0 12.5
50% 8.0 7.9 14.0 13.0

is observed when applying DMAO at around 20% of the to-
tal training steps, during a phase where the model has not yet
plateaued but the loss is no longer changing rapidly. Applying
DMAO once tends to outperform multiple iterations, as mul-
tiple architecture updates may introduce excessive disruption.
Lastly, an adaptation ratio δ between 0.15 and 0.25 appears to
be effective.
3.2.5. Applying DMAO to E-branchformer
To validate that DMAO can enhance model capacity regardless
of the architecture, we also apply DMAO to the E-branchformer
model and present the results in Table 5. The results align with
those obtained using the Conformer, showing that DMAO gen-
erally enhances the performance of the E-branchformer encoder
across various model sizes and datasets.
3.2.6. Updated Architecture Analysis
Figure 3 illustrates the distribution of parameters in the model
after DMAO. We observe that in the lower layers, more MHSA
is utilized, while fewer Convs are employed. In contrast, in
the top layers, MHSA heads are removed, and more Convs and

Table 5: WERs [%] of applying DMAO on E-branchformer
across different model sizes. The same DMAO schedule from
Table 1 is used, with DMAO applied once at 20% (15% for LBS)
of total training steps, an adaptation ratio of δ=0.15, and the
first-order Taylor approximation as the metric.

Params.
[M] DMAO SWB LBS

Hub5’00 Hub5’01 dev-other test-other

25.7 no 13.9 12.8 7.3 7.7
yes 13.8 12.5 6.9 7.4

56.9 no 13.6 12.1 6.6 6.9
yes 13.0 11.7 6.5 6.8

100.2 no 12.9 11.9 6.3 6.7
yes 13.0 11.9 6.2 6.6

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5
1

1.5
2

FFN2 Conv MHSA FFN1

TED-LIUM-v2

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5
1

1.5
2

LibriSpeech
Figure 3: Distribution of model parameters with DMAO‡

(shown in Table 1) across all depths. The y-axis represents the
ratio of parameters after vs. before DMAO for each module.
The dotted line indicates the baseline† (shown in Table 1).

Figure 4: Averaged self-attention scores across the 6 attention
heads in the 1st, 10th, and 12th layers of a randomly selected
sequence from LBS for the baseline† (from Table 1).

FFNs are introduced. To explain this, we illustrate Figure 4
to show that as the depth increases, the attention maps display
highly diagonal patterns. Similar observations have also been
made in works [39, 40, 2, 41] for the ASR task. As the range of
learned context grows with increasing depth, the global view of
the entire sequence appears to become less useful for the upper
layers. Moreover, [4] reveals that attention roles can be divided
into phonetic and linguistic localization. The lower layers pri-
marily perform phonetic localization, where the model focuses
on content-wise similar frames, which may be farther apart, to
extract phonologically meaningful features. In contrast, higher
layers focus on neighboring frames and aggregate the informa-
tion for text transcription. This helps explain our observation,
as Convs and FFNs are effective for local processing, while
MHSA is specialised for global interaction. Additionally, we
observe that more MHSA heads are used for LBS than for TED-
v2. A possible explanation is that LBS has longer sequences
than TED-v2 (average 12.3s vs 8.2s), so more MHSA heads are
needed to capture dependencies over greater distances.

4. Conclusion
We propose the DMAO training framework to dynamically

optimize the acoustic encoder architecture during training. The
optimization is achieved through the grow-and-drop paradigm,
where the model’s parameter allocation is balanced by redis-
tributing parameters from underutilized regions to areas where
they are most needed, thereby enhancing the model’s capacity.
We demonstrate the effectiveness of DMAO by applying it with
a CTC encoder on various datasets, model sizes, and architec-
tures (Conformer, E-Branchformer). The results show a consis-
tent improvement of up to ∼ 6% relative to the baseline when
applying DMAO, with only negligible training overhead.

5. Acknowledgement
This work was partially supported by NeuroSys, which as part of the ini-

tiative “Clusters4Future” is funded by the Federal Ministry of Education and Re-
search BMBF (funding ID 03ZU2106DD), and by the project RESCALE within
the program AI Lighthouse Projects for the Environment, Climate, Nature and Re-
sources funded by the Federal Ministry for the Environment, Nature Conservation,
Nuclear Safety and Consumer Protection (BMUV), funding IDs: 6KI32006A and
6KI32006B.

3606

6. References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin, “Attention is All you Need,”
in NeuIPS, USA, Dec. 2017, pp. 5998–6008.

[2] M. Burchi and V. Vielzeuf, “Efficient Conformer: Progressive
Downsampling and Grouped Attention for Automatic Speech
Recognition,” in ASRU, Colombia, Dec. 2021, pp. 8–15.

[3] K. Kim, F. Wu, Y. Peng, J. Pan, P. Sridhar, and et. al., “E-
Branchformer: Branchformer with Enhanced Merging for Speech
Recognition,” in SLT, Doha, Qatar, Jan. 2022, pp. 84–91.

[4] K. Shim, J. Choi, and W. Sung, “Understanding the Role of Self
Attention for Efficient Speech Recognition,” in ICLR, Virtual,
Apr. 2022.

[5] A. Pasad, J. Chou, and K. Livescu, “Layer-Wise Analysis of a
Self-Supervised Speech Representation Model,” in ASRU, Carta-
gena, Colombia, Dec. 2021, pp. 914–921.

[6] K. Shim and W. Sung, “Similarity and Content-based Phonetic
Self Attention for Speech Recognition,” in Interspeech, H. Ko and
J. H. L. Hansen, Eds., Incheon, Korea, Sep. 2022, pp. 4118–4122.

[7] Z. Yao, L. Guo, X. Yang, W. Kang, F. Kuang, Y. Yang, Z. Jin,
L. Lin, and D. Povey, “Zipformer: A faster and better encoder for
automatic speech recognition,” in ICLR, Austria, May 2024.

[8] S. Mehta, M. Ghazvininejad, S. Iyer, L. Zettlemoyer, and H. Ha-
jishirzi, “DeLighT: Deep and Light-weight Transformer,” in
ICLR, Virtual, May 2021.

[9] S. Mehta, M. H. Sekhavat, Q. Cao, M. Horton, Y. Jin, C. Sun,
S. Mirzadeh, M. Najibi, D. Belenko, P. Zatloukal, and M. Raste-
gari, “OpenELM: An Efficient Language Model Family with
Open Training and Inference Framework,” 2024.

[10] Y. Liu, T. Li, P. Zhang, and Y. Yan, “NAS-SCAE: Searching Com-
pact Attention-based Encoders For End-to-end Automatic Speech
Recognition,” in Interspeech, Incheon, Korea, Sep. 2022, pp.
1011–1015.

[11] A. Mehrotra, A. G. C. P. Ramos, S. Bhattacharya, L. Dudziak,
and et. al., “NAS-Bench-ASR: Reproducible Neural Architecture
Search for Speech Recognition,” in ICLR, Virtual, May 2021.

[12] Y. Liu, T. Li, P. Zhang, and Y. Yan, “Improved Conformer-
based End-to-End Speech Recognition Using Neural Architecture
Search,” 2021.

[13] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu,
and A. Liotta, “Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science,” Nature
communications, vol. 9, no. 1, p. 2383, 2018.

[14] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging
the Lottery: Making All Tickets Winners,” in ICML, vol. 119,
Virtual, Jul. 2020, pp. 2943–2952.

[15] U. Evci, Y. Ioannou, C. Keskin, and Y. N. Dauphin, “Gradient
Flow in Sparse Neural Networks and How Lottery Tickets Win,”
in AAAI, Virtual, Feb. 2022, pp. 6577–6586.

[16] H. Mostafa and X. Wang, “Parameter efficient training of deep
convolutional neural networks by dynamic sparse reparameteriza-
tion,” in ICML, vol. 97, California, Jun. 2019, pp. 4646–4655.

[17] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in ICML, vol. 148,
Pittsburgh, Pennsylvania, USA, Jun. 2006, pp. 369–376.

[18] A. Gulati, J. Qin, C. Chiu, N. Parmar, and et. al., “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Interspeech, Shanghai, China, Oct. 2020, pp. 5036–5040.

[19] C. J. Lai, Y. Zhang, A. H. Liu, S. Chang, Y. Liao, Y. Chuang,
K. Qian, S. Khurana, D. D. Cox, and J. Glass, “PARP: Prune,
Adjust and Re-Prune for Self-Supervised Speech Recognition,”
in NeurIPS, virtual, Dec. 2021, pp. 21 256–21 272.

[20] J. Kim, S. Chang, and N. Kwak, “PQK: Model Compression
via Pruning, Quantization, and Knowledge Distillation,” in Inter-
speech, Brno, Czechia, Aug. 2021, pp. 4568–4572.

[21] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights
and Connections for Efficient Neural Network,” in NeurIPS, Mon-
treal, Quebec, Canada, Dec. 2015, pp. 1135–1143.

[22] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Find-
ing Sparse, Trainable Neural Networks,” in ICLR, New Orleans,
USA, May 2019.

[23] Z. Yang, Y. Cui, X. Yao, and S. Wang, “Gradient-based Intra-
attention Pruning on Pre-trained Language Models,” in ACL,
Toronto, Canada, Jul. 2023, pp. 2775–2790.

[24] X. Ding, G. Ding, X. Zhou, Y. Guo, J. Han, and J. Liu, “Global
Sparse Momentum SGD for Pruning Very Deep Neural Net-
works,” in NeurIPS, Vancouver, BC, Canada, Dec. 2019, pp.
6379–6391.

[25] D. Bekal, K. Gopalakrishnan, K. Mundnich, S. Ronanki, S. Boda-
pati, and K. Kirchhoff, “A Metric-Driven Approach to Conformer
Layer Pruning for Efficient ASR Inference,” in Interspeech 2023,
Dublin, Ireland, Aug. 2023, pp. 4079–4083.

[26] P. Michel, O. Levy, and G. Neubig, “Are Sixteen Heads Really
Better than One?” in NeurIPS, Vancouver, BC, Canada, Dec.
2019, pp. 14 014–14 024.

[27] V. Sanh, T. Wolf, and A. M. Rush, “Movement Pruning: Adaptive
Sparsity by Fine-Tuning,” in NeurIPS, virtual, Dec. 2020.

[28] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block Prun-
ing For Faster Transformers,” in EMNLP, Punta Cana, Dominican
Republic, Nov. 2021, pp. 10 619–10 629.

[29] J. Xu, E. Beck, Z. Yang, and R. Schlüter, “Efficient Supernet
Training with Orthogonal Softmax for Scalable ASR Model Com-
pression,” in ICASSP, Apr. 2025, arXiv:2501.18895 To Appear.

[30] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in ICASSP, South Brisbane, Australia, Apr. 2015, pp. 5206–5210.

[31] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-
LIUM Corpus with Selected Data for Language Modeling and
More TED Talks,” in LREC, Reykjavik, Iceland, May 2014, pp.
3935–3939.

[32] J. Godfrey, E. Holliman, and J. McDaniel, “Switchboard:
Telephone Speech Corpus for Research and Development,” in
ICASSP, vol. 1, San Francisco,USA, Mar. 1992, pp. 517–520.

[33] J. Xu, W. Zhou, Z. Yang, E. Beck, and R. Schlüter, “Dynamic En-
coder Size Based on Data-Driven Layer-wise Pruning for Speech
Recognition,” in Interspeech, Greece, Sep. 2024, pp. 4563–4567.

[34] W. Zhou, W. Michel, K. Irie, M. Kitza, R. Schlüter, and H. Ney,
“The Rwth ASR System for Ted-Lium Release 2: Improving Hy-
brid HMM With Specaugment,” in ICASSP, Barcelona, Spain,
May 2020, pp. 7839–7843.

[35] W. Zhou, W. Michel, R. Schlüter, and H. Ney, “Efficient Training
of Neural Transducer for Speech Recognition,” in Interspeech, In-
cheon, Korea, Sep. 2022, pp. 2058–2062.

[36] A. Zeyer, T. Alkhouli, and H. Ney, “RETURNN as a Generic
Flexible Neural Toolkit with Application to Translation and
Speech Recognition,” in ACL, Melbourne, Australia, Jul. 2018,
pp. 128–133.

[37] S. Wiesler, A. Richard, P. Golik, R. Schlüter, and H. Ney,
“RASR/NN: the RWTH neural network toolkit for speech recog-
nition,” in ICASSP, Florence, Italy, May 2014, pp. 3281–3285.

[38] M. Bisani and H. Ney, “Bootstrap estimates for confidence inter-
vals in ASR performance evaluation,” in ICASSP, Montreal, Que-
bec, Canada, May 2004, pp. 409–412.

[39] S. Zhang, E. Loweimi, P. Bell, and S. Renals, “On The Usefulness
of Self-Attention for Automatic Speech Recognition with Trans-
formers,” in SLT, Shenzhen,China, Jan. 2021, pp. 89–96.

[40] ——, “Stochastic Attention Head Removal: A Simple and Effec-
tive Method for Improving Transformer Based ASR Models,” in
Interspeech, Brno, Czechia, Aug. 2021, pp. 2541–2545.

[41] S. Kim, A. Gholami, A. E. Shaw, N. Lee, K. Mangalam, J. Malik,
M. W. Mahoney, and K. Keutzer, “Squeezeformer: An Efficient
Transformer for Automatic Speech Recognition,” in NeurIPS,
New Orleans, LA, USA, Dec. 2022.

3607

