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ABSTRACT

This paper presents improved methods for vocal tract ndazenal
tion (VTN) along with experimental tests on three databases

We propose a new method for VTN in training: By using
acoustic models with single Gaussian densities per stasefect-
ing the normalization scales it is avoided that the modelmi¢he
normalization scales of the training speakers. We showusiag
single Gaussian densities for selecting the normalizattates in
training results in lower error rates than using mixturesikies.

For VTN in recognition, we propose an improvement of the
well-known multiple—pass strategy: By using an unnornealiz
acoustic model for the first recognition pass instead of anabr
ized model lower error rates are obtained. In recognitiststehis
method is compared with a fast variant of VTN.

The multiple—pass strategy is an efficient method but itls su
optimal because the normalization scale and the word sequer
determined sequentially. We found that for telephone digihg
recognition this suboptimality reduces the VTN gain in igte
tion performance by 30% relative.

On the German spontaneous scheduling task Verbmobil, the
WSJ task and the German telephone digit string corpus $tae&il
proposed methods for VTN reduce the error rates signifigantl

1. INTRODUCTION

This paper deals with improved methods for vocal tract nbrma
ization (VTN) [2, 3, 5, 6]. In [8], we presented a new method
for VTN in training. Similar to the methods described in [2, 6
our approach avoids the problem that the acoustic modetsfase
selecting the normalization scales in training learn thenadiza-
tion scales (in the following called scales) of the trainsppak-
ers. However, compared to the methods in [2, 6] our appraach i
conceptually simpler: The intermediate acoustic modeds te
use for scale selection are trained on the full training asrand
consist of only a small number of Gaussian densities pee.stat
Thus the intermediate models do not learn the scales of dlre tr
ing speakers. This paper extends our work in [8] and preskets
following novel contributions:

e VTN in training. The effect of the acoustic model for scale
selection in training on the resulting word error rates is
demonstrated. We show that using single Gaussian den-
sities per generalized triphone state for scale selection i
training results in better recognition rates than using-mix
ture densities for scale selection.

This work was partly funded by the German Ministry of Scieacel
Technology (BMBF) in the framework of the BRBMOBIL project under
grant 01 IV 701 T4. The responsibility for the contents osthtudy lies
with the authors.

Improved multiple—pass strategyan improved multiple—
pass strategy [2] for VTN in recognition is presented: By
using an unnormalized acoustic model for the first recog-
nition pass instead of a normalized model lower error rates
are obtained.

Fast VTN.A method for fast scale selection in recognition
is described in detail. The method is similar to the method
in [6] but the training of the mixture model for normalized
acoustic vectors is simpler with our approach.

Experimental comparison.The improved multiple—pass
strategy and the fast VTN are compared in recognition tests.

Suboptimality of multiple—pass stratedyhe multiple—pass
strategy is an efficient method but it is suboptimal because
the scale and the word sequence are determined sequen-
tially. We found that for telephone digit string recognitio
this suboptimality reduces the VTN gain in recognition per-
formance by 30% relative.

e Results on WSJ, Verbmobil and SieWlle present recogni-
tion tests on three different databases, namely the German
spontaneous scheduling task Verbmobil [1], the Wall Street
Journal task and the German telephone digit string corpus
SieTill. The results show that the proposed method for VTN
in training in combination with the improved multiple—pass

strategy lead to consistent reductions in the word erresrat

2. EXPERIMENTAL CONDITIONS

For all experiments in this work, we used the recognizer ritesd
in [4, 7] and the following set—up:

A piecewise—linear frequency normalization is used [6]e Th
selection of the scale is done on speech excluding silence using
an exhaustive line search for thein the range.88 < o < 1.12
with step size0.02. A scale is estimated for each sentence in
recognition and for each speaker in training. We used gender
independent acoustic models.

The following databases were used: For the WSJO experi-
ments, recognition was done on the Nov.'92 development zald e
uation sets (18 speakers, 740 sentences) and training &30
84—speaker corpus. For the Verbmobil task, testing was dane
the 1996 evaluation data (62 speakers, 343 sentences)amddr
on the 1996 training corpus (568 speakers). The SieTilluDip
a German telephone digit string database. It consists ofra@2
ing speakers (42860 digits) and 356 testing speakers (480A5)
representing a large variety of line and speaker charatitei
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Figure 1: Histogram of scales for WSJO 84—speaker corpus.

3. VTN IN TRAINING

For the training of a normalized acoustic model using VTN, we
propose the following three—step procedure:

1. An intermediate acoustic modal consisting of a single
Gaussian density per generalized triphone state is esti-
mated from the unnormalized acoustic vectors of all train-
ing speakers by maximum likelihood training [4].

. For each training speakera scalev, is chosen as the scale
for which the training data of this speakéf;”, achieve the
greatest likelihood, given the transcriptiois. and the sin-
gle density modeh:

ay = arg max Pr(X;|W,, \).

. Anormalized mode is trained on the normalized acoustic
vectors by maximum likelihood training.

This method is conceptually simple. However, the choice of
the intermediate acoustic model for scale selection igalitAs
can be seen from Table 1, an intermediate acoustic modetwdgth
high resolution can learn the scales of the training speakene
table contains the number of Gaussian densities per stasedte
selection along with the corresponding recognition resoit the
WSJO0 data obtained with the baseline multiple—pass siratsg
explained in Section 4. Table 1 shows that applying VTN only i

Table 1. Effect of the number of densities per state for ssale
lection in training on the word error rate (WSJO, bigram laauge
model (Im) withPP = 107).

VTN #Dens./State| #Dens. | DEL-INS| WER
scale selectior\\ recognition [%0] [%0]
rec. only - 103k | 1.4 —0.6] 6.8
32 ar ~ 1.00
train.+rec. 8 143k 1.2 -0.6] 6.1
1 140k 1.2 -0.6| 5.9
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Figure 2: Histogram of scales for SieTill training speakers

recognition gives a word error rate of 6.8%. Using VTN also in
training with 32 Gaussians per state for scale selectiors do¢
lead to an improvement since scales of 1.00 are produceddst m
training speakers. Using eight Gaussians per state, the rate

is reduced down to 6.1%. The lowest word error rate of 5.9% is
obtained with only one single Gaussian density per statehier
selection of the scales in training.

Histograms of the obtained scales using single Gaussian den
sities are shown in Figure 1 for the WSJO and in Figure 2 for the
SieTill corpus. In Figure 2, the range for the scalesas extended
t0 0.80 < a < 1.20 in order to verify that the baseline set-up
with 0.88 < o < 1.12 is adequate. According to Figure 2, only
approx. five percent of the training speakers get a scaler lthae
0.88 or higher than 1.12. Both histograms show that theiblistr
tion of the chosen scales is approximately bimodal with oneen
per gender.

4. VTN IN RECOGNITION

This section deals with different strategies for VTN in rgeition.
First, we shortly summarize the baseline multiple—pasategy
[2]. Then, we propose an improved multiple—pass approadraan
method for fast VTN. These three recognition strategiebtidn
be compared in recognition tests.

In [2], the multiple—pass strategy has been introduced:

1. A recognition pass with unnormalized acoustic vectsrs
and a normalized acoustic modelproduces a preliminary
transcriptioniV’:

W' = arg max Pr(W)Pr(X|W,A)

2. The scale is selected according to
& = arg max Pr(X*|W',A)

3. A second recognition pass with normalized featukes
and a normalized acoustic modebives the final transcrip-
tion W:

W = arg max Pr(W)Pr(X%|W, )



Table 2: Comparison of error rates for recognition using ramou-
malized A versus a normalized acoustic model WSJO: bigram
Im with PP = 107; Verbmobil: trigram Im withP P = 35.

Corpus Model #Dens.| DEL—-INS | WER

normalization [%0] [%0]

wsio | 08| ddok | 1308 75

Verbmotil | I | sk | a7 -20] 187

sem | o | poos s
4.1. IMPROVED MULTIPLE—PASS STRATEGY

The multiple—pass strategy as described above uses a wechal
model in both recognition passes. However, the number oflwor
errors in the preliminary transcriptio’ can be reduced, if an

Table 3: Effect of different strategies for VTN in recogaition
the error rate on WSJO (bigram Im wifhP = 107) and SieTill.

Corpus VTN #Dens. | DEL-INS | WER
[%0] (%]
no 103k 14 -06| 6.8
fast 143k 1.3 -0.6| 6.2

WSJO0 | multiple—pass
baseline 140k 1.2 -05| 59
improved | 103k/140k| 1.2 — 0.5| 5.7
no 358 1.0 - 08| 4.6

._— | multiple—pass
SieTill baseline 358 1.0 -0.8| 4.0
improved 358 1.0 -0.8| 3.9

4.3. EXPERIMENTAL COMPARISON

To compare the different strategies for VTN in recognitiore

unnormalized model is used in the first pass. As Table 2 shows, carried out recognition tests on the WSJO0 and SieTill dataha

the error rates on the WSJO0, Verbmobil and SieTill databases

ing unnormalized acoustic vectors are consistently betitr an

unnormalized acoustic modglthan with a normalized modél.
Therefore, we propose to improve the multiple—pass styateg

by using an unnormalized modé&linstead of a normalized model

A in the first recognition pass. Experimental results will beg

in Section 4.3.

4.2. FAST VTN

In the following, we describe a fast method for scale sebecii
recognition which does not require a preliminary trangaip[8].
Similar to the approach in [6], the method is based on a Ganssi
mixture model that represents the distribution of the ndizaed
feature vectors.

After the training data have been normalized as explained in
Section 3, a Gaussian mixture modél is trained on the normal-
ized acoustic vectors by employing the LBG algorithm and the
maximum likelihood criterion. During recognition, the & se-
lected using the Gaussian mixture modél

1. The scalé is selected according to

& = arg max Pr(X%|M)

A maximum approximation is used to compute
Pr(X®|M): For each acoustic vectoK“(t) at time

t, the sum over the component densitiesMfis replaced
by the maximum.

. A recognition pass with normalized featur®¢' and the
normalized acoustic mod@l gives the transcriptioh :

W = arg max Pr(W)Pr(X%W, 1)

In our tests, the Gaussian mixture model had a single didgona
covariance matrix and 64 component densities. The fast seal
lection was done on speech excluding silence: For eachrsmnte
we compute the component density;; of the mixture model\/
which is selected most often according to the maximum approx
mation. Acoustic vectorX (¢) attributed tom.;; are not used for
scale selection. Figure 3illustrates this fast scale Setemethod.

Table 3 summarizes the recognition results. Without VTN in
training and recognition, a word error rate of 6.8% is oledion
the WSJO testing data. The fast VTN leads to a significant re-
duction from 6.8% to 6.2%. However, the baseline multipbess
strategy described in Section 4 clearly outperforms thienfi@shod
and gives an error rate of 5.9%. The improved multiple—ptias-s
egy presented in Section 4.1 leads to a further reductiomror e
rate down to 5.7%.

The results on the SieTill database are similar: Using no VTN
a word error rate of 4.6% is obtained. The baseline multjpess
strategy reduces the error rate down to 4.0%. Again, thedueat
multiple—pass strategy outperforms the baseline strated\ygives
aword error rate of 3.9%. The fast VTN has not been testeden th
SieTill data since the fast method is not necessary for digitg
recognition.

4.4. SUPOPTIMALITY OF MULTIPLE-PASS STRATEGY

From the viewpoint of the Bayes’ decision rule, the unknovardv
sequence and the scale should be determined accordingftd-the
lowing criterion:

W = arg max Pr(W)Pr(X*|W, ) . (1)
The previously described multiple—pass strategies arepsub
timal methods for maximizing Equation 1 since the scale &ed t

XO.88 |

Pr( M)

X Pr (x| m)

Pr(x*2|m)

Figure 3: Fast scale selection in recognition.



Table 4: Effect of approximations for VTN in recognition dmet
word error rate on WSJO (bigram Im wifAP = 107) and SieTill.

Corpus| VTN #Dens. |DEL-INS|WER
(%] [%]

WSJO improved mult.-pass103k/140k| 1.2 — 0.5| 5.7
correct transcriptio 140k 1.1 -0.5| 57
improved mult.-pas 358 1.0 - 0.8 3.9

SieTill | correct transcriptio 358 1.0 - 0.7 3.6
full optimization 358 1.0 - 0.7 3.6

word sequence are determined sequentially and not in c@ambin
tion. In this section, we show that for telephone digit gfniecog-
nition this suboptimality of the multiple—pass reduces dga@ in
recognition performance due to VTN significantly.

Table 4 compares the error rates on WSJO0 and SieTill for the
improved multiple—pass strategy and for scale selectisedan
the correct transcription of the test sentences instedteqgirelim-
inary transcription’’. As Table 4 shows, an error rate of 5.7%
results for both methods on the WSJO data. However, on the Si-
eTill data the error rates differ significantly: An erroreaif 3.9%
is obtained with the improved multiple—pass strategy cargbéo
3.6% with the correct transcription.

A full optimization over the scale and the word sequence can
be implemented by a separate recognition pass for each 3¢ae
combination of word sequence and scale which maximizes-Equa
tion 1 is selected. This method leads to an error rate of 3.6% o
the SieTill data, as shown in Table 4, instead of 3.9% withitine
proved multiple—pass strategy and 4.6% with no VTN (see€Tabl
3). Thus we observed that for telephone digit string recogmi
the suboptimal multiple—pass strategy reduces the VTN mmain
recognition performance by 30% relative. In our view, tHfea
results from the short average length of the SieTill testittgr-
ances of only 3.2 seconds (3.3 digits) compared to 7.0 sedond
the WSJO0 task.

5. RESULTS ON WSJ, VERBMOBIL AND SIETILL

In this section, we summarize the improvements in word eatar
due to the presented methods for VTN on three different carpo
For VTN in training, we used the method presented in Section 3
For VTN in recognition, we employed the improved multiplesp
strategie as explained in Section 4.1 on the WSJO and Verbmob
tasks and the full optimization as explained in Section 4. &e-

Till. As Table 5 shows, we get a significant reduction in womehe
rate by 16% relative on the WSJO data, 5% relative on Verbmobi
and 22% relative on SieTill.

Table 5: Effect of VTN in training and recognition on the word
error rate (WSJO and Verbmobil: trigram Im).

Corpus| VTN | PP| #Dens. | DEL—INS | WER
[%] [%]
no T03k | 08 —05] 4.9

W
S0 Jes | %0 | 103k140k| 07 —05| 41
Verb- | no | 5| 195k | 32 —3.1] 167
mobil | yes 195k/185k| 3.1 —3.1| 15.9
| M0 | 11| 358 | 1.0-08| 46
SieTill | ves 358 | 1.0 -07| 36

6. SUMMARY

The main contributions of this paper are:

¢ Using single Gaussian densities for scale selection in-trai
ing leads to distributions of scales that reflect typicalasar
tions of vocal tract lengths among speakers. Based on this
method, we presented a three—step procedure for the train-
ing of a normalized acoustic model.

We reduced the error rates obtained with the multiple—pass
strategy by using an unnormalized instead of a normalized
model in the first recognition pass.

We compared a fast method for VTN with the improved
multiple—pass strategy. The fast method reduces the error
rate on the WSJO task from 6.8% to 6.2% compared to 5.7%
obtained with the improved multiple—pass strategy.

We found that for telephone digit string recognition the-sub
optimality of the multiple—pass strategy reduces the VTN
gain in recognition performance by 30% relative.

By using the presented methods for VTN the word error rates
were reduced from 4.9% to 4.1% on the WSJO0 task, from 16.7% to
15.9% on the Verbmobil task and from 4.6% to 3.6% on the SieTil
corpus.
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