Automatic Sign Language Recognition (ASLR):
- no special hardware, inhomogeneous background, occlusions, ...
- important features for ASLR:
 - hand-shapes
 - orientation and movement of the hands, arms or body
 - facial expressions
 - lip-patterns
 - tracking of head and hands is hard
- problems:
 - hands are signing in front of the face
 - hands are moving very fast and abrupt
- We avoid preliminary decisions and propose to use the same techniques that are successfully applied in automatic speech recognition (ASR).

Tracking
- Tracking is necessary to extract sign language features. (hand position relative to the body, facial expressions, ...)
- Possible features
 - motion, background subtraction
 - skin, skin-motion
 - template matching, eigenfaces
- Environment problems: features are not correct and can only be used to produce candidate regions

Dynamic Programming Tracking
- Idea: prevent taking possibly wrong local decisions
- How: tracking is done at the end of a sequence by tracking back the decisions to reconstruct the best path
- the best path is the path with the highest score wrt. a given scoring function
- 2 Steps:
 1. Score calculation: calculate a global score \(S(t, x, y) \) and a backpoint table \(B \) for the best tracking until time step \(t \) which ends in position \((x, y)\)
 2. Traceback: reconstruct the best path \(t \rightarrow (x, y) \) using \(S \) and \(B \)

1. Step: Score calculation
- local score: For each pixel \((x, y)\) of a frame \(X_t \) at time step \(t = 1, ..., T \) a score \(S(t, x, y) \) is calculated
- bookkeeping at time \(t \) of the best predecessors at time \(t - 1 \) within a neighborhood of position \((x, y)\)

2. Step: Traceback
- full traceback: starts from last frame of the sequence at time \(T \) using \(c_T = \text{argmax}_{(x',y') \in M(x,y)} S(T, x, y) \)
- best tracking center \(c \) at time \(t - 1 \): \(c_{t-1} = B(t, c_t = (x',y')) \)

Recursive equation for DPT:
\[
S(t, x, y) = \max_{x',y' \in M(x,y)} \{ (S(t - 1, x', y') - T(x', y', x, y) \} + s(t, x, y)
\]
\[
B(t, x, y) = \text{argmax}_{x',y' \in M(x,y)} \{ (S(t - 1, x', y') - T(x', y', x, y) \}
\]
\[
M(x,y) \text{ is the set of possible predecessors of point } (x,y)
\]
\[
T(x', y', x, y) \text{ is the jump-penalty from point } (x',y') \text{ in the predecessor image to point } (x, y) \text{ in the current image}
\]

Scoring Functions
- Local scoring functions
 - example: track moving parts, i.e. maximize motion
 \[
 u := (x, y) \\
 Q := \{(x, y) : -w \leq x \leq w, -h \leq y \leq h\} \\
 Q_i := \{u + u : u \in Q\} \\
 X'_i[u] := X_i[u] - X_{i-1}[u]
 \]
 \[
 \text{argmax}_{u' \in \mathcal{Q}} \left\{ \sum_{i=1}^{T} (X'_i[u])^2 + \sum_{u \in Q_{i-1}} (X'_i[u])^2 - \lambda ||u_i - u_{i-1}||^2 \right\}
 \]
- Additional scoring functions/features:
 - skin color
 - Eigenfaces
 - special distance measures like Tangent distance or IDM
- Example: combination of skin color score \(s_k \) and Eigenfaces \(s_f \) for head tracking
 \[
 s(t, x, y) = (1 - w) \cdot s_k(t, x, y) + w \cdot s_f(t, x, y)
 \]
- Jump penalty functions
 - Euclidean distance: \(T(x', y', x, y) = \lambda \sqrt{(x-x')^2 + (y-y')^2} \)
 - \(L_1 \)-norm, complex motion models, ...

Experimental Results
- Tracking under noisy circumstances
- Successful tracking of head and dominant hand for ASLR

Conclusion
- if no pruning is used, the optimal path is guaranteed to be found
- the proposed tracking algorithm enables to track a target disregarding information gaps (e.g. due to occlusions)
- advantages under noisy circumstances

Outlook
- integrate further scoring functions which don’t require any priori knowledge of the target
- combine tracking and recognition
- extend tracking framework:
 - multiple objects
 - automatic traceback
- apply tracking in different areas, e.g. PETS