A Comparative Study on Maximum Entropy and Discriminative Training for Acoustic Modeling in Automatic Speech Recognition

Wolfgang Macherey and Hermann Ney

Lehrstuhl für Informatik VI, Computer Science Department
RWTH Aachen – University of Technology, 52056 Aachen, Germany
{w.macherey,ney}@informatik.rwth-aachen.de

Abstract

While Maximum Entropy (ME) based learning procedures have been successfully applied to text based natural language processing, there are only little investigations on using ME for acoustic modeling in automatic speech recognition. In this paper we show that the well known Generalized Iterative Scaling (GIS) algorithm can be used as an alternative method to discriminatively train the parameters of a speech recognizer that is based on Gaussian densities. The approach is compared with both a conventional maximum likelihood training and a discriminative training based on the Extended Baum algorithm. Experimental results are reported on a connected digit string recognition task.

1. Introduction

Over the past years, maximum entropy (ME) based training methods have been successfully applied to the field of natural language processing, e.g. to language modeling [1], part of speech tagging, language understanding [2], and statistical machine translation [3]. Unlike natural language processing, ME based methods have hardly been investigated for automatic speech recognition. In [4], ME is employed to estimate the parameters of a direct model for a phoneme recognizer. The approach generalizes the ME Markov Models (MEMM) proposed by [5] such that sequential processes with complex contextual information can be processed.

The reason why ME is hardly ever used in acoustic modeling is that, in general the optimization problem is difficult to manage if hidden variables occur. Hidden variables may lead to non-convex objective functions and hence, the most common training algorithms, the Generalized Iterative Scaling (GIS) as well as its faster version, the Improved Iterative Scaling (IIS) cannot be applied. However, in automatic speech recognition, there are typically at least two types of events, which are not observable and thus have to be described via hidden variables: the alignment of a sequence of acoustic observations with the states of a Markov chain and the component weights of a mixture of densities. Moreover, as ME tries to optimize the class posterior probabilities, the objective function corresponds with the Maximum Mutual Information (MMI) criterion, and in ASR, there is already an effective optimization method (namely the Extended Baum (EB) algorithm) that allows for efficiently training free model parameters.

Nevertheless, as we will show in this paper, ME can still be used to discriminatively train the acoustic parameters of a speech recognizer that is based on Gaussian densities by relaxing some constraints of the GIS algorithm. In contrast to [4], the used features are not rank-based lists of Gaussian model indices, but cepstral coefficients as they are provided by the signal analysis part of most common speech recognizers. Since the framework of ME takes competing classes into account, we will not only compare the achieved performance with the word error rate obtained by a maximum likelihood (ML) trained system, but also with a discriminatively trained system that is based on the MMI criterion. Experimental results are reported on a speech corpus for the recognition of telephone line recorded German connected digit strings.

The remainder of this paper is organized as follows. In Section 2 we briefly describe the basics of ME together with the GIS algorithm and show how the acoustic models can be embedded into a log-linear framework. In Section 3 we derive the update rules for the GIS algorithm and compare the resulting re-estimation formulae with those obtained from a “conventional” discriminative approach based on the EB algorithm. Experimental results and a discussion are presented in Section 4. The paper concludes with a summary and an outlook in Section 5.

2. Maximum Entropy Modeling

Given a set of training samples, the principle of ME is to choose a distribution such that it is consistent with constraints derived from the training data while making as little assumptions as possible. It can be shown that the resulting distribution is well defined and leads to a log-linear framework. In Section 3 we derive the update rules for the GIS algorithm and compare the resulting re-estimation formulae with those obtained from a “conventional” discriminative approach based on the EB algorithm. Experimental results and a discussion are presented in Section 4. The paper concludes with a summary and an outlook in Section 5.
training samples \((x_n, c_n)\), the objective function of the ME criterion is given by
\[
G(\Lambda) := \sum_{n=1}^{N} \log p_{\Lambda}(c_n|x_n) = \sum_{x,c} N(x,c) \log p_{\Lambda}(x|c) \tag{4}
\]
where \(N(x,c)\) is the number of occurrences of the pair \((x,c)\) in the training corpus. The parameter setting \(\Lambda\) that maximizes Eq. 4 can be obtained by derivating \(G\) wrt. \(\lambda_i\):
\[
\frac{\partial G}{\partial \lambda_i} = N_i - Q_i(\Lambda) = 0 \tag{5}
\]
where
\[
N_i := \sum_{x,c} N(x,c) \cdot f_i(x,c) \tag{6}
\]
\[
Q_i(\Lambda) := \sum_{x} N(x) \sum_{c} p_{\Lambda}(c|x) \cdot f_i(x,c). \tag{7}
\]
Note that the counts \(N_i\) are not necessarily integer values as \(\alpha_c\) in Eq. 1 might be any positive real number. Since \(G(\Lambda)\) is a sum of convex functions it is also convex and there exists exactly one global maximum that can effectively be determined with the GIS algorithm. For each iteration, the GIS algorithm is a sum of convex functions it is also convex and there exists
\[
\text{Eq. 4 can be obtained by derivating in the training corpus. The parameter setting } \Delta \lambda_i \text{ for each feature } i \text{ results from solving the equation}
\]
\[
Q_i(\Lambda) \cdot \exp[\Delta \lambda_i F] = N_i \tag{9}
\]
which finally leads to the GIS algorithm as shown in Table 1.

![Table 1: Implementation of the GIS algorithm. The parameter \(\varepsilon\) is a small positive value that controls the terminating condition of the outer loop.](image)

with. Moreover, to ensure that the features are positive and sum up to one they are affinely transformed with a diagonal scaling matrix \(A\) and a bias \(b\) such that
\[
y_t := A^T x_t + b \text{ with } y_{id} > 0 \text{ and } \sum_{r=1}^{R} y_{r} = 1 \tag{10}
\]
holds for each training sample \(x_t\). Thus, we can define the feature functions by
\[
f_{s',d}(x,s) := \left\{ \begin{array}{ll}
 y_{d} & \text{if } s = s' \\
 0 & \text{otherwise}
\end{array} \right. \tag{11}
\]
Note that affine transformations can always be applied to arbitrary, finite sets of training samples to force the positivity and the normalization of the data, as these transformations do not change the optimum of the GIS algorithm [6].

The emission probability of a Markov state \(s\) given an acoustic observation vector \(x\) is modeled via a Gaussian distribution \(p(x|\theta_s) = N(x|\mu_s, \Sigma)\) with \(\theta_s = \{\mu_s, \Sigma\}\) denoting a state dependent mean \(\mu_s\) and a globally pooled covariance matrix \(\Sigma\). Using only one covariance matrix has the advantage that the terms quadratic in \(x\) in the exponent of \(N\) can be neglected as they can be cancelled due to the explicit renormalization. Thus, we obtain the required log-linear model for the emission probabilities:
\[
p(W_t|x_t) = \frac{p(W_t) \cdot \max_{s|\theta_s} \{ \sum_{t=1}^{T_r} p(s_t|x_{t-1}) \cdot N(x_t|\mu_{s_t}, \Sigma) \}}{p(W_t) \cdot \max_{s|\theta_s} \{ \sum_{t=1}^{T_r} p(s_t|x_{t-1}) \} e^{\sum_{d=1}^{D} \lambda_{s,t,d} f_{s,t,d}(x_{t},s_x)}}
\]
where \(M_r\) denotes a set of competing word sequences, \(\lambda_{s,t,d} = [\eta_t \Sigma^{-1} A^{-1} - \frac{1}{2} \log \det(2\pi \Sigma)] + \frac{1}{2} (\log \det(2\pi \Sigma) + \eta_t \Sigma^{-1} r_{t}^T) \in \mathbb{R}^{D+1}\) with \(r_{t} = \mu_s + A^{-1} b\), and the augmented observation vector \(\tilde{x} = [x_t, 1]^T \in \mathbb{R}^{D+1}\). Ideally, the set \(M_r\) would contain all possible word sequences. In practice, \(M_r\) is obtained through a recognition pass and can be represented by word lattices or N-best lists [8]. Even though the ME objective function corresponds with the Maximum Mutual Information (MMI) criterion, we denote the respective function with \(\mathcal{F}_{\text{MMI}}\) in order to emphasize the use of the log-linear model:
\[
\mathcal{F}_{\text{MMI}}(\Lambda) = \sum_{r=1}^{R} \log \frac{p(W_t) \cdot p(X_t|W_t)}{p(W_t) \cdot p(X_t|W)} \tag{13}
\]
where
\[
\rho(X_t|W) = \max_{s|\theta_s} \{ \sum_{t=1}^{T_r} p(s_t|x_{t-1}) e^{\sum_{d=1}^{D+1} \lambda_{s,t,d} f_{s,t,d}(x_{t},s_x)} \} \tag{12}
\]
Due to the omitted normalization, \(\rho(X_t|W)\) is in contrast to \(p(W_t|X_t)\) no real distribution. Nevertheless, it can still be used to decode a spoken utterance since it is sufficient to compare the scores only during a recognition phase. In order to maximize
of the objective function, we must determine the partial derivative of \(F_{\text{MMI}} \) wrt. \(\lambda_{s,d} \):

\[
\frac{\partial F_{\text{MMI}}(\Lambda)}{\partial \lambda_{s,d}} = \sum_{r=1}^{R} \sum_{k=1}^{T_{r}} \gamma_{r,s}(W_{r}) - \gamma_{r,s}(s) \cdot y_{r,s,d} \quad (14)
\]

with the forward-backward (FB) probability \(\gamma_{r,s}(W_{r}) \) of hypothesizing the state \(s \) at time frame \(t \) given the transcription \(W_{r} \), and the generalized FB probability \(\gamma_{r,s}(s) \) of hypothesizing the state \(s \) at time frame \(t \) independently of any word sequence. The FB probabilities can be estimated efficiently on word lattices or state graphs [8].

3. ME and Discriminative Training

So far, we have not yet addressed the problem of aligning the acoustic observations with the states of a Markov chain. As mentioned before, the alignment cannot be observed directly and thus has to be modeled via a hidden variable. Moreover, in general an alignment is not fixed and may change over the training passes. However, we can make the assumption that the alignment of a spoken word sequence and hence, the \(N_{s,d} \) statistics remains unchanged over some GIS iterations. This assumption is indeed risky and holds a certain wrongness since an update of the parameter set \(\Lambda \) might change the optimal alignment of a spoken sentence. To compensate for this, the training utterances have to be re-aligned at times in order to ensure that the \(N_{s,d} \) statistics are still reliable. As a consequence, the \(N_{s,d} \) counts now depend on the parameter set \(\Lambda \) and we have to redefine the statistics from Eq. 6 and 7:

\[
N_{s,d}(\Lambda) = \sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \gamma_{r,s}(W_{r}) \cdot y_{r,s,d} \quad (15)
\]

\[
Q_{s,d}(\Lambda) = \sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \gamma_{r,s}(s) \cdot y_{r,s,d} \quad (16)
\]

Due to the necessary re-alignments, the optimization problem is not convex any longer and thus, we cannot expect that the GIS algorithm will converge to a global optimum. However, the gradients of the resulting update rules can still be used to train the parameters of the log-linear model of the emission probabilities:

\[
\overline{\lambda}_{s,d} = \lambda_{s,d} + \frac{1}{F} \log \left[\frac{N_{s,d}(\Lambda)}{Q_{s,d}(\Lambda)} \right] \quad (17)
\]

3.1. Comparison with Discriminative Training

In contrast to Eq. 17, the re-estimation formulae in 'standard' discriminative training lead to update rules that depend on the logarithm of the difference between \(N_{s,d} \) and \(Q_{s,d} \) instead of their ratio. To demonstrate this, we consider a standard optimization technique for discriminative training that is based on the Extended Baum (EB) algorithm. Although the objective functions are identical for the ME and the MMI criterion, we introduce the MMI objective function as a separate definition in order to distinguish the dependency on the model (i.e. log-linear vs. Gauss) and the optimization method used (i.e. GIS vs. EB):

\[
F_{\text{MMI}}(\theta) = \sum_{r=1}^{R} \log \frac{p(W_{r}) \cdot p_{0}(X_{r} \mid W_{r})}{\sum_{W \in M_{r}} p(W) \cdot p_{0}(X_{r} \mid W)} \quad (18)
\]

The derivation of \(F_{\text{MMI}}(\theta) \) wrt. \(\theta_{s} \) yields:

\[
\frac{\partial F_{\text{MMI}}(\theta)}{\partial \theta_{s}} = \Gamma_{s} \left(\frac{\partial \log p(x \mid \theta_{s})}{\partial \theta_{s}} \right) \quad (19)
\]

where \(\Gamma_{s} \) denotes the discriminative average for state \(s \) which is defined by:

\[
\Gamma_{s}(g(X)) := \sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \left[\gamma_{r,s}(W_{r}) - \gamma_{r,s}(s) \right] \cdot g(x_{r,t}) \quad (20)
\]

The EB method leads to the following re-estimation equations:

\[
\overline{\theta}_{s,d} = \mu_{s,d} + \epsilon_{s,d} \cdot \left[\Gamma_{s,d}(x) - \mu_{s,d} \cdot \Gamma_{s}(1) \right] \quad (21)
\]

with \(\epsilon_{s,d} = 1/(\Gamma_{s}(1) - D_{s}) \). Here, \(D_{s} \) is a state specific iteration constant that controls the convergence of the training process. The choice of \(D_{s} \) has to ensure that \(\epsilon_{s,d} \) is positive which can be achieved by setting

\[
D_{s} = h \cdot \max \{ D_{s}^{\text{min}}, 1/\beta - \Gamma_{s}(1) \}
\]

where \(D_{s}^{\text{min}} \) is a constant that guarantees positive definite variances; the parameter \(\beta > 0 \) is chosen to prevent overflows caused by low-valued denominators and \(h > 1 \) is a scaling factor that controls the step size of the gradient [8]. With the decomposition of the discriminative averages \(\Gamma_{s} \) into the correct model \(\Gamma_{s}^{c} \) and the competitive model \(\Gamma_{s}^{c'} \),

\[
\Gamma_{s}^{c}(g(X)) = \sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \gamma_{r,s}(W_{r}) \cdot g(x_{r,t}) \quad (22)
\]

\[
\Gamma_{s}^{c'}(g(X)) = \sum_{r=1}^{R} \sum_{t=1}^{T_{r}} \gamma_{r,s}(s) \cdot g(x_{r,t}) \quad (23)
\]

we can rewrite Eq. 17 and obtain the following re-estimation formulae for the GIS algorithm and the EB method:

GIS:

\[
\overline{\lambda}_{s,d} = \lambda_{s,d} + \frac{1}{F} \cdot \log \left[\frac{N_{s,d}(\Lambda)}{Q_{s,d}(\Lambda)} \right] \quad (24)
\]

EB:

\[
\overline{\theta}_{s,d} = \mu_{s,d} + \epsilon_{s,d} \cdot \left[\Gamma_{s,d}(x) - \mu_{s,d} \cdot \Gamma_{s}(1) \right] \quad (25)
\]

Comparing both gradients we may expect that the convergence of the GIS algorithm will turn out to be very slow, since the update rules depend on the logarithm of the ratio of the correct model \(\Gamma_{s}^{c} \) and the competing model \(\Gamma_{s}^{c'} \), whereas the gradient of the EB algorithm is based on the difference \(\Gamma_{s}^{c} - \Gamma_{s}^{c'} \).

3.2. Integration of Linear Feature Space Transformations

The log-linear form of the emission probabilities allows for initializing the parameter set \(\Lambda \) with a linear feature transformation, e.g. a linear discriminant analysis (LDA). Let \(H \) denote a LDA transformation matrix. If \(H \) has full rank, then the mean \(m \) and the variance \(S \) of the scaled features can be computed from the parameters of a Gaussian distribution \(N(H^T x \mid m_{s}, S_{s}) \) in the unscaled LDA-transformed feature space:

\[
m = AH^{-1} \mu_{s} + b \quad (26)
\]

\[
S = AH^{-1} S_{s} H^{-1} A^{T} \quad (27)
\]

Thus, we obtain the following expression for \(\lambda_{s} \), which can be used in order to initialize the free parameters of the log-linear model:

\[
\lambda_{s} = \begin{pmatrix}
\frac{1}{2} \log \det (2 \pi S_{s}) + m_{s}^{T} S_{s}^{-1} m_{s}
\end{pmatrix}
\]
4. Experimental Results

Experiments were performed on the SieTill corpus for telephone line recorded German continuous digit strings. The corpus consists of approximately 43k spoken digits in 13k sentences for both training and test set. In Table 2 some information on corpus statistics is summarized.

The recognition system is based on gender-dependent whole-word HMMs using continuous emission densities. For each gender 214 distinct states plus one for silence is used. The observation vectors consist of 12 cepstral features with first derivatives and the second derivative of the first component. The baseline recognizer applies ML training using the Viterbi approximation and achieves a word error rate (WER) of 9.74%.

The baseline recognizer applies ML training using the Viterbi approximation and achieves a word error rate (WER) of 9.74%. Every time the objective function increases by more than 10% relative, the GIS algorithm is terminated and the training utterances are re-aligned. After 15 re-alignments, the ME based system achieves a WER of 3.52%, which is a relative improvement of 62% compared with the ML based system. Using the same number of re-alignments for the EB algorithm, the standard discriminative approach achieves a WER of 4.11%. However, the GIS algorithm requires several thousand iterations between the re-alignments in order to obtain the reported performance.

Using a Linear Discriminant Analysis (LDA), the relative performance gain decreases, but is still significant. Thus the relative improvement between the baseline result and the ME approach is 14%. In contrast to the ML and the EB trained systems, the parameters of the ME trained system were initialized with the LDA transformation matrix according to Eq. 28. As a consequence, the GIS algorithm operates on the untransformed high-dimensional features and thus, it has the possibility to extract more information from the data, whereas the ML and the EB based systems use the LDA transformed features. However, due to the small number of re-alignments, the ME based approach has not yet reached its optimum and further training iterations will be necessary.

Table 2: Corpus statistics for the SieTill corpus.

<table>
<thead>
<tr>
<th>corpus</th>
<th>female</th>
<th>male</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sent.</td>
<td>digits</td>
</tr>
<tr>
<td>test</td>
<td>6176</td>
<td>20203</td>
</tr>
<tr>
<td>train</td>
<td>6113</td>
<td>20115</td>
</tr>
</tbody>
</table>

5. Conclusion

In this paper the Generalized Iterative Scaling (GIS) algorithm was applied to discriminatively train the parameters of a speech recognizer. For this purpose some constraints of the GIS algorithm were modified. The Maximum Entropy approach was analytically and experimentally compared with a standard approach to discriminative training based on the Extended Baum (EB) algorithm. Experiments conducted on a connected digit string recognition task achieved a relative improvement of up to 23% compared with a Maximum Likelihood trained system. In combination with a linear discriminant analysis, the EB algorithm achieved a performance gain of less than 10% relative compared with the ME approach.

Acknowledgments: This work was funded by the European Commission under the Human Language Technologies Project CORETEX (IST-1999-11876).

6. References