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Introduction

I Arabic handwriting system

. right-to-left, 28 characters, position-dependent character writing variants

. ligatures and diacritics

. Pieces of Arabic Word (PAWs) as subwords

(a) Ligatures (b) Diacritics

I state-of-the-art

. preprocessing (normalization, baseline estimation, etc.) + HMMs

I our approach:

. adaptation of RWTH-ASR framework for handwriting recognition

. preprocessing-free feature extraction, focus on modeling
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System Overview

Image Input
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Extraction

Character Inventory

Writing Variants Lexicon

Language Model
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Word Sequence
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Visual Modeling: Feature Extraction and Model Length Estimation

I recognition of characters within a context, temporal alignment necessary

I features: sliding window, no preprocessing, PCA reduction

I more complex characters should be represented by more HMM states
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RWTH-OCR Training and Decoding Architectures

I Training

. Maximum Likelihood (ML)

. CMLLR-based Writer Adaptive Training (WAT)

. discriminative training using modified-MMI criterion (M-MMI)

I Decoding

. 1-pass
◦ ML model
◦ M-MMI model

. 2-pass
◦ segment clustering for CMLLR writer adaptation
◦ unsupervised confidence-based M-MMI training for model adaptation
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Training: Modified-MMI Criterion

I training: weighted accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · xt

1. ML: Maximum Likelihood

ωr,s,t := 1.0

2. MMI: Maximum Mutual Information

ωr,s,t :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr)∑

V

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V )

I ωr,s,t is the “(true) posterior” weight

I iteratively optimized with Rprop
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Training: Modified-MMI Criterion

I margin-based training for HMMs

. similar to SVM training, but simpler/faster
within RWTH-OCR framework?

. M-MMI = differentiable approximation to
SVM optimization  0

 1
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modified MMI

3. M-MMI:

ωr,s,t(ρ 6= 0) :=

∑
sTr1 :st=s

[p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr) · e−ρδ(Wr,Wr)]γ

∑
V

∑
sTr1 :st=s

[p(xTr1 |s
Tr
1 )p(sTr1 )p(V ) · e−ρδ(Wr,V )]γ

I ωr,s,t is the “margin posterior” weight

I e−ρδ(Wr,Wr) corresponds to the margin offset

I with γ →∞ equals to the SVM hinge loss function

I iteratively optimized with Rprop
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Decoding: Unsupervised Confidence-Based Discriminative Training

I example for a word-graph and the corresponding 1-best state alignment
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c = 0.001

c = 0.1

c = 0.7

I necessary steps for margin-based model adaptation during decoding:

. 1-pass recognition (unsupervised transcriptions and word-graph)

. calculation of corresponding confidences (sentence, word, or state-level)

. unsupervised M-MMI-conf training on test data
to adapt models (w/ regularization)

I can be done iteratively with unsupervised corpus update!
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Decoding: Modified-MMI Criterion And Confidences

4. M-MMI-conf:

ωr,s,t(ρ 6= 0) :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr) · e−ρδ(Wr,Wr)

∑
V

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V )

︸ ︷︷ ︸
posterior

· e−ρδ(Wr,V )︸ ︷︷ ︸
margin

· δ(cr,s,t > cthreshold)︸ ︷︷ ︸
confidence

I weighted accumulation becomes:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t(ρ)︸ ︷︷ ︸
margin posteriorρ 6=0

· cr,s,t︸︷︷︸
confidence

· xt

I confidences at:

. sentence-, word-, or state-level
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Training Criterions

I ML training: accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

xt

I M-MMI training: weighted accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · xt

I M-MMI-conf training: confidence-weighted accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · cr,s,t · xt

. with confidence cr,s,t at sentence-, word, or state-level
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Arabic Handwriting - IFN/ENIT Database

I 937 classes

I 32492 handwritten Arabic words (Tunisian city names)

I database is used by more than 60 groups all over the world

I writer statistics
set #writers #samples
a 102 6537
b 102 6710
c 103 6477
d 104 6735
e 505 6033

Total 916 32492

I examples (same word):
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Results - Training: ML vs. MMI vs. Modified-MMI Criterion

I ML = Maximum Likelihood

I MLE = Model Length Estimation

I MMI vs. modified-MMI after 30 Rprop iterations

I ICDAR 2005 Setup [Comparison]

WER [%]
Train Test ML +MLE +MMI +Modified MMI
abc d 10.88 7.80 7.44 6.12
abd c 11.50 8.71 8.24 6.78
acd b 10.97 7.84 7.56 6.08
bcd a 12.19 8.66 8.43 7.02
abcd e 21.86 16.82 16.44 15.35
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Results - Unsupervised Model Adaptation: M-MMI-conf

I M-MMI criterion with posterior confidences (M-MMI-conf)

I unsupervised training for model adaptation during decoding

I word-confidence based M-MMI-conf training and rejections
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. confidence threshold c = 0.5→ more than 60% segment rejection rate

. small amount of adaptation data only
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Results - Unsupervised Model Adaptation: M-MMI-conf

I unsupervised training for model adaptation during decoding

I state-confidence based M-MMI-conf training and rejections

. arc posteriors from the lattice output from the decoder

. only word frames aligned with a high confidence in 1st pass
→ unsupervised model adaptation

. only 5% frame rejection rate (20,970 frames of 396,416)

I ICDAR 2005 Setup [Comparison]

Training/Adaptation WER[%] CER[%]
ML 21.86 8.11
M-MMI 19.51 7.00
+ unsupervised adaptation 20.11 7.34

+ word-confidences 19.23 7.02
+ state-confidences 17.75 6.49

+ supervised adaptation 2.06 0.77
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Arabic Handwriting - Experimental Results for IFN/ENIT

I ICDAR 2005 Setup [Comparison]

Train Test WER[%]
1st pass 2nd pass

ML +MLE +M-MMI M-MMI-conf
abc d 10.88 7.80 6.12 5.95
abd c 11.50 8.71 6.78 6.38
acd b 10.97 7.84 6.08 5.84
bcd a 12.19 8.66 7.02 6.79
abcd e 21.86 16.82 15.35 14.55
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Arabic Handwriting - Experimental Results for IFN/ENIT

I evaluation of RWTH-OCR systems at Arabic HWR Competition, ICDAR 2009

. external evaluation at TU Braunschweig, Germany

. set f and set s are unknown (not available)

. unsupervised M-MMI-conf model adaptation achieved similar improvements

. 3rd rank (group)

ID WRR[%]
set fa set ff set fg set f set s

RWTH-OCR, ID12 86.97 88.08 87.98 85.51 71.33
RWTH-OCR, ID13 87.17 88.63 88.68 85.69 72.54
RWTH-OCR, ID15 86.97 88.08 87.98 83.90 65.99
A2iA, ID8 90.66 91.92 92.31 89.42 76.66
MDLSTM, ID11 94.68 95.65 96.02 93.37 81.06

I Note:

. focus on modeling (ID12 and ID13) and speed (ID15) - no preprocessing
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Summary

I RWTH-ASR→ RWTH-OCR

. simple feature extraction and preprocessing

. Arabic: created a SOTA system, ranked 3rd at ICDAR 2009

. Latin: created a SOTA system, best single system

I discriminative training

. margin-based HMM training (ML vs. MMI vs. M-MMI)

. unsupervised confidence-based MMI model adaptation (M-MMI-conf)

. relative improvements of about 33% w.r.t. ML training

I ongoing work

. to be evaluated in ASR experiments

. impact of preprocessing in feature extraction (Arabic vs. Latin)

. more complex features (e.g. MLP)

. character context modeling (e.g. CART)

. further databases/languages
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Outlook: Latin Handwriting - IAM Database

I English handwriting, continuous sentences

Train Devel Eval 1 Eval 2 Total
Lines 6,161 1,861 900 940 9,862
Running words 53,884 17,720 7,901 8,568 88,073
Vocabulary size 7,754 3,604 2,290 2,290 11,368
Characters 281,744 83,641 41,672 42,990 450,047
Writers 283 128 46 43 500
OOV Rate ≈15% ≈17% ≈15%

I Example lines:
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Outlook: Latin Handwriting - UPV Preprocessing

I Original images

I Images after color normalisation

I Images after slant correction

I Images after height normalisation
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Outlook: Latin Handwriting - Experimental Results on IAM Database

Systems Devel WER [%] Eval WER [%]
RWTH-OCR*
Baseline 81.07 83.60

+ UPV Preprocessing 57.59 65.26
+ LBW LM & 20k Lexicon 34.64 41.45

+ discriminative training (M-MMI) 29.40 35.32
Other Single Systems
[Bertolami & Bunke 08] 30.98 35.52
[Natarajan & Saleem+ 08] - 40.01
[Romero & Alabau+ 07] 30.6 -
System Combination
[Bertolami & Bunke 08] 26.85 32.83

*see [Jonas 09] for details
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Thank you for your attention

Philippe Dreuw

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/
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Appendix: Comparisons for IFN/ENIT

I ICDAR 2005 Evaluation

Rank Group WRR [%]
abc-d abcd-e

1. UOB 85.00 75.93
2. ARAB-IFN 87.94 74.69
3. ICRA (Microsoft) 88.95 65.74
4. SHOCRAN 100.00 35.70
5. TH-OCR 30.13 29.62

BBN 89.49 N.A.
1* RWTH 94.05 85.45

*own evaluation result (no tuning on test data)
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Appendix: Arabic Handwriting - IFN/ENIT Database

Corpus development

I ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e

I ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f

I ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f
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Appendix: Participating Systems at ICDAR 2005 and 2007

I MITRE: Mitre Cooperation, USA
over-segmentation, adaptive lengths, character recognition with post-processing

I UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris
HMM-based (HTK), slant correction

I MIE: Mie University, Japan
segmentation, adaptive lengths

I ICRA: Intelligent Character Recognition for Arabic, Microsoft
partial word recognizer

I SHOCRAN: Egypt
confidential

I TH-OCR: Tsinghua Universty, Beijing, China
over-segmentation, character recognition with post-processing

I CACI: Knowledge and Information Management Division, Lanham, USA
HMM-based, trajectory features

I CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA
over-segmentation, HMM-based

I PARIS V / A2iA: University of Paris 5, and A2iA SA, France
hybrid HMM/NN-based, shape-alphabet

I Siemens: SIEMENS AG Industrial Solutions and Services, Germany
HMM-based, adapative lenghths, writing variants

I ARAB-IFN: TU Braunschweig, Germany
HMM-based
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Appendix: Visual Modeling - Model Length Estimation

I more complex characters should be represented by more HMM states

I the number of states Sc for each character c is updated by

Sc =
Nx,c

Nc

· α

with
Sc = estimated number states for character c

Nx,c = number of observations aligned to character c
Nc = character count of c seen in training
α = character length scaling factor.

[Visualization]
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Appendix: Visual Modeling - Model Length Estimation

Original Length

I overall mean of character length = 7.9 pixel (≈ 2.6 pixel/state)

I total #states = 357
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Appendix: Visual Modeling - Model Length Estimation

Estimated Length

I overall mean of character length = 6.2 pixel (≈ 2.0 pixel/state)

I total #states = 558
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Appendix: Alignment Visualization

I alignment visualization with and without discriminative training

I upper lines with 5-2 baseline setup, lower lines with additional
discriminative training
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Appendix: Arabic Handwriting - UPV Preprocessing

I Original images

I Images after slant correction

I Images after size normalisation

Experimental Results:

I important informations in ascender and descender areas are lost

I not yet suitable for Arabic HWR
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Appendix: Visual Modeling - Writing Variants Lexicon

I most reported error rates are dependent on the number of PAWs

I without separate whitespace model

I always whitespaces between compound words

I whitespaces as writing variants between and within words

White-Space Models for Pieces of Arabic Words [Dreuw & Jonas+ 08] in ICPR 2008
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