

# Writer Adaptive Training and Writing Variant Model Refinement for Offline Arabic Handwriting Recognition

Philippe Dreuw, David Rybach, Christian Gollan, and Hermann Ney

dreuw@cs.rwth-aachen.de

International Conference on Document Analysis and Recognition – July 2009

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany





#### **Outline**

2/19

- 1. Introduction
- 2. Adaptation of an ASR framework for Handwriting Recognition
  - **▶** Writing Variant Model Refinement
  - Writer Adaptation and Writer Adaptive Training
- 3. Experimental Results
- 4. Summary





#### Introduction

- ► Arabic handwriting system
  - ▶ right-to-left, 28 characters, position-dependent character writing variants
  - **▶** ligatures and diacritics
  - ▶ Pieces of Arabic Word (PAWs) as subwords





- ► state-of-the-art
  - ▶ preprocessing (normalization, baseline estimation, etc.) + HMMs
- ▶ our approach:
  - > adaptation of RWTH-ASR framework for handwriting recognition
  - > preprocessing-free feature extraction, focus on modeling



### **System Overview**





### **Writing Variant Model Refinement**

#### **►** HMM baseline system

- riangleright searching for an unknown word sequence  $w_1^N := w_1, \dots, w_N$
- $\triangleright$  unknown number of words N
- riangleright maximize the posterior probability  $p(w_1^N|x_1^T)$
- ▶ described by Bayes' decision rule:

$$\hat{w}_1^N = rg\max_{w_1^N} \left\{ p^{\gamma}(w_1^N) p(x_1^T|w_1^N) 
ight\}$$

with  $\gamma$  a scaling exponent of the language model.



#### Writing Variant Model Refinement

- ligatures and diacritics in Arabic handwriting
  - > same Arabic word can be written in several writing variants
  - → depends on writer's handwriting style
- ► Example: *laB khM* vs. *khMlaB*



- ► lexicon with multiple writing variants [Details]
  - > problem: many and rare writing variants



#### Writing Variant Model Refinement

- lacktriangle probability p(v|w) for a variant v of a word w
  - usually considered as equally distributed
  - ▶ here: we use the count statistics as probability:

$$p(v|w) = rac{N(v,w)}{N(w)}$$

writing variant model refinement:

$$p(x_1^T|w_1^N) pprox \max_{v_1^N|w_1^N} \left\{ p^{lpha}(v_1^N|w_1^N) p(x_1^T|v_1^N, w_1^N) 
ight\}$$

with  $v_1^N$  a sequence of unknown writing variants  $\alpha$  a scaling exponent of the writing variant probability

training: corpus and lexicon with supervised writing variants possible!





#### **Visual Modeling**

- **▶** Feature Extraction
  - > recognition of characters within a context, temporal alignment necessary
  - ▶ features: sliding window, no preprocessing, PCA reduction



- **▶** Model Length Estimation (MLE)
  - ▶ more complex characters should be represented by more HMM states







#### **RWTH-OCR Training and Decoding Architectures**

#### **▶** Training

- Maximum Likelihood (ML)
- CMLLR-based Writer Adaptive Training (WAT)
- discriminative training using modified-MMI criterion (M-MMI)

#### **▶** Decoding

- ▶ 1-pass
  - ML model
  - M-MMI model
- ▶ 2-pass
  - segment clustering for CMLLR writer adaptation
  - o unsupervised confidence-based M-MMI training for model adaptation

# Constrained Maximum Likelihood Linear Regression (CMLLR)

#### writer adaptation

- method for improving visual models in handwriting recognition
- > refine models by adaptation data of particular writers
- widely used is affine transform based model adaptation

#### **► CMLLR**

- $\triangleright$  Idea: normalize writing styles by adaptation of the features  $x_t$
- constrained MLLR feature adaptation technique
- ▷ also known as feature space MLLR (fMLLR) [Details]
- > estimate affine feature transform:

$$x_t' = Ax_t + b$$

- > CMLLR is text dependent
  - o requires an (automatic) transcription



# **Training: CMLLR-based Writer Adaptive Training**

- writer adaptation compensates for writer differences during recognition
  - → do the same during visual model training
  - → maximize the performance gains from writer adaptation

- writer variations are compensated by writer adaptive training (WAT)
- writer normalization using CMLLR
- necessary steps
  - 1. train writer independent GMMs model
  - 2. CMLLR transformations are estimated for each (estimated) writer
    - supervised if writers are known
  - 3. apply CMLLR transformations on features to train writer dependent GMMs



#### **Decoding: CMLLR-based Writer Adaptation**

- writers and writing styles are unknown
- necessary steps
  - 1. estimate writing styles using clustering
    - ▶ Bayesian Information Criterion (BIC) based stopping condition
  - 2. estimate CMLLR feature transformations for every estimated writing style cluster
  - 3. second pass recognition
    - > WAT models + CMLLR transformed features





### **Arabic Handwriting - IFN/ENIT Database**

- ▶ 937 classes
- ▶ 32492 handwritten Arabic words (Tunisian city names)
- ▶ database is used by more than 60 groups all over the world
- writer statistics

| set   | #writers | riters #samples |  |
|-------|----------|-----------------|--|
| а     | 102      | 6537            |  |
| b     | 102      | 6710            |  |
| С     | 103      | 6477            |  |
| d     | 104      | 6735            |  |
| е     | 505      | 6033            |  |
| Total | 916      | 32492           |  |

examples (same word):





# **Results - Training: Writing Variant Model Refinement**

comparison of supervised and unsupervised writing variants in training

| Train | Test | unsupervised |        | supervised |        |
|-------|------|--------------|--------|------------|--------|
|       |      | WER[%]       | CER[%] | WER[%]     | CER[%] |
| abc   | d    | 11.60        | 3.88   | 11.00      | 3.66   |
| abd   | С    | 12.95        | 4.60   | 11.41      | 3.97   |
| acd   | b    | 11.98        | 3.91   | 11.16      | 3.65   |
| bcd   | a    | 12.33        | 4.26   | 11.93      | 4.27   |
| abcd  | е    | 24.60        | 9.34   | 22.58      | 8.39   |



# Results - Decoding: Writing Variant Model Refinement

- ightharpoonup empirical optimization of the writing variant scale  $\alpha$  on the cross folds
- verification on the development set





# **Results - Decoding: Writer Adaptation**

- **▶** comparison of MLE, WAT, and CMLLR based feature adaptation
- comparison of unsupervised and supervised writer clustering
  - decoding always unsupervised
  - ▷ supervised clustering → only the writer labels!

| Train | Test | WER[%]   |       |          |       |
|-------|------|----------|-------|----------|-------|
|       |      | 1st pass |       | 2nd pass |       |
|       |      | SWV +MLE |       | WAT+C    | MLLR  |
|       |      |          |       | unsup.   | sup.  |
| abc   | d    | 10.88    | 7.83  | 7.72     | 5.82  |
| abd   | С    | 11.50    | 8.83  | 9.05     | 5.96  |
| acd   | b    | 10.97    | 7.81  | 7.99     | 6.04  |
| bcd   | a    | 12.19    | 8.70  | 8.81     | 6.49  |
| abcd  | е    | 21.86    | 16.82 | 17.12    | 11.22 |



### **Results - Decoding: Writer Adaptation**

- unsupervised clustering: error analysis
  - histograms for segment assignments over the different test folds
  - > problem: unbalanced segment assignments





#### **Summary**

- ► RWTH-ASR → RWTH-OCR
  - simple feature extraction and preprocessing
  - > writing variants model refinement
  - character model length estimation
- writer adaptive training
  - supervised writer adaptation demonstrated the potential
  - relative improvements of about 33% w.r.t. ML training
- ongoing work
  - improve unsupervised writer clustering
  - discriminative training
    - ranked 3rd at Arabic HWR Competition, ICDAR 2009
    - see second talk (Tuesday, Session 5.2)
  - ▶ impact of preprocessing in feature extraction (Arabic vs. Latin)

  - character context modeling (e.g. CART)
  - ▶ further databases/languages





# Thank you for your attention

### **Philippe Dreuw**

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

19 / 19



#### References

- [Bertolami & Bunke 08] R. Bertolami, H. Bunke: Hidden Markov model-based ensemble methods for offline handwritten text line recognition. *Pattern Recognition*, Vol. 41, No. 11, pp. 3452–3460, Nov 2008.
- [Dreuw & Jonas<sup>+</sup> 08] P. Dreuw, S. Jonas, H. Ney: White-Space Models for Offline Arabic Handwriting Recognition. In *International Conference on Pattern Recognition*, Tampa, Florida, USA, Dec. 2008. 8, 28
- [Jonas 09] S. Jonas: Improved Modeling in Handwriting Recognition. Master's thesis, Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany, Jun 2009.
- [Natarajan & Saleem<sup>+</sup> 08] P. Natarajan, S. Saleem, R. Prasad, E. MacRostie, K. Subramanian: *Arabic and Chinese Handwriting Recognition*, Vol. 4768/2008 of *LNCS*, chapter Multi-lingual Offline Handwriting Recognition Using Hidden Markov Models: A Script-Independent Approach, pp. 231–250. Springer Berlin / Heidelberg, 2008.
- [Romero & Alabau<sup>+</sup> 07] V. Romero, V. Alabau, J.M. Benedi: Combination of N-Grams and Stochastic Context-Free Grammars in an Offline Handwritten



Recognition System. *Lecture Notes in Computer Science*, Vol. 4477, pp. 467–474, 2007.



# **Appendix: Comparisons for IFN/ENIT**

#### ► ICDAR 2005 Evaluation

| Rank | Group            | WRR [%] |        |
|------|------------------|---------|--------|
|      |                  | abc-d   | abcd-e |
| 1.   | UOB              | 85.00   | 75.93  |
| 2.   | ARAB-IFN         | 87.94   | 74.69  |
| 3.   | ICRA (Microsoft) | 88.95   | 65.74  |
| 4.   | SHOCRAN          | 100.00  | 35.70  |
| 5.   | TH-OCR           | 30.13   | 29.62  |
|      | BBN              | 89.49   | N.A.   |
| 1*   | RWTH             | 94.05   | 85.45  |

<sup>\*</sup>own evaluation result (no tuning on test data)

#### RWTH

# Appendix: Participating Systems at ICDAR 2005 and 2007

- MITRE: Mitre Cooperation, USA over-segmentation, adaptive lengths, character recognition with post-processing
- ▶ UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris HMM-based (HTK), slant correction
- MIE: Mie University, Japan segmentation, adaptive lengths
- ► ICRA: Intelligent Character Recognition for Arabic, Microsoft partial word recognizer
- SHOCRAN: Egypt confidential
- ► TH-OCR: Tsinghua Universty, Beijing, China over-segmentation, character recognition with post-processing
- CACI: Knowledge and Information Management Division, Lanham, USA HMM-based, trajectory features
- ► CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA over-segmentation, HMM-based
- ► PARIS V / A2iA: University of Paris 5, and A2iA SA, France hybrid HMM/NN-based, shape-alphabet
- ► Siemens: SIEMENS AG Industrial Solutions and Services, Germany HMM-based, adaptive lenghths, writing variants
- ► ARAB-IFN: TU Braunschweig, Germany HMM-based





# **Appendix: Visual Modeling - Model Length Estimation**

more complex characters should be represented by more HMM states



ightharpoonup the number of states  $S_c$  for each character c is updated by

$$S_c = rac{N_{x,c}}{N_c} \cdot lpha$$

with

 $S_c$  = estimated number states for character c

 $N_{x,c}$  = number of observations aligned to character c

 $N_c$  = character count of c seen in training

 $\alpha$  = character length scaling factor.



# **Appendix: Visual Modeling - Model Length Estimation**

#### **Original Length**

- ightharpoonup overall mean of character length = 7.9 pixel ( $\approx$  2.6 pixel/state)
- ▶ total #states = 357





# **Appendix: Visual Modeling - Model Length Estimation**

#### **Estimated Length**

- ightharpoonup overall mean of character length = 6.2 pixel (pprox 2.0 pixel/state)
- **▶** total #states = 558









# **Appendix: Arabic Handwriting - UPV Preprocessing**

Original images





Images after slant correction





► Images after size normalisation





#### **Experimental Results:**

- **▶** important informations in ascender and descender areas are lost
- ▶ not yet suitable for Arabic HWR



### **Appendix: Visual Modeling - Writing Variants Lexicon**

- most reported error rates are dependent on the number of PAWs
- without separate whitespace model



▶ always whitespaces between compound words



whitespaces as writing variants between and within words



White-Space Models for Pieces of Arabic Words [Dreuw & Jonas<sup>+</sup> 08] in ICPR 2008





# **Appendix: Arabic Handwriting - IFN/ENIT Database**

#### **Corpus development**

- ▶ ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e
- ► ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f
- ► ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f





# **Appendix: Constrained Maximum Likelihood Linear Regression**

Idea: improve the hypotheses by adaptation of the features  $x_t$ 

- effective algorithm for adaptation to a new speaker or environment (ASR)
- ► GMMs are used to estimate the CMLLR transform
- iterative optimization (ML criterion)
  - $\triangleright$  align each frame x to one HMM state (i.e. GMM)
  - $\triangleright$  accumulate to estimate the adaptation transform A
  - $\triangleright$  likelihood function of the adaptation data given the model is to be maximized with respect to the transform parameters A,b
- ▶ one CMLLR transformation per (estimated) writer
- ▶ constrained refers to the use of the same matrix A for the transformation of the mean  $\mu$  and variance  $\Sigma$ :

$$x_t' = Ax_t + b o N(x|\hat{\mu},\hat{\Sigma})$$
 with  $\hat{\mu} = A\mu + b$   $\hat{\Sigma} = A\Sigma A^T$