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Abstract

In this paper we continue to investigate how the deep neural net-
work (DNN) based acoustic models for automatic speech recog-
nition can be trained without hand-crafted feature extraction.
Previously, we have shown that a simple fully connected feed-
forward DNN performs surprisingly well when trained directly
on the raw time signal. The analysis of the weights revealed
that the DNN has learned a kind of short-time time-frequency
decomposition of the speech signal. In conventional feature ex-
traction pipelines this is done manually by means of a filter bank
that is shared between the neighboring analysis windows.

Following this idea, we show that the performance gap be-
tween DNNGs trained on spliced hand-crafted features and DNNs
trained on raw time signal can be strongly reduced by introduc-
ing 1D-convolutional layers. Thus, the DNN is forced to learn a
short-time filter bank shared over a longer time span. This also
allows us to interpret the weights of the second convolutional
layer in the same way as 2D patches learned on critical band
energies by typical convolutional neural networks.

The evaluation is performed on an English LVCSR task.
Trained on the raw time signal, the convolutional layers allow to
reduce the WER on the test set from 25.5% to 23.4%, compared
to an MFCC based result of 22.1% using fully connected layers.
Index Terms: acoustic modeling, raw time signal, convolu-
tional neural networks

1. Introduction

In our previous work [1] we have shown how a fully connected
DNN can be trained from scratch without any feature extraction
directly on the raw time signal. We also presented an analy-
sis of the weights of the first hidden layer that revealed that
the DNN tends to learn a filter bank of band pass filters. This
finding nicely confirmed the time-frequency decomposition be-
ing the basic principle of popular short-term feature extraction
pipelines such as MFCC [2], PLP [3] or Gammatone [4].

Since band pass filters can be expressed naturally by means
of convolution in time, we decided to extend our investigations
to convolutional neural networks (CNNs). The questions that
we try to answer in this paper are: can we improve the DNN
acoustic model trained on raw time signal if the learning of
the filter bank is simplified by employing convolutional layers?
How close can we then come to the conventional feature extrac-
tion methods? What can we learn from the parameters of the
convolutional layers?

Several attempts have already been made to employ data-
driven learning to improve feature extraction (e.g. [5, 6]), and
indeed this approach leads to a better parametrization of the fea-
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ture extraction pipeline. An artificial neural network is a suit-
able framework since it combines feature processing and the
classification mechanisms, allowing to optimize both jointly.
Training CNNs on the raw time signal has also been investi-
gated in [7, 8] and has shown competitive results on smaller
tasks. In this paper we perform the evaluation on a real-world
LVCSR task.

This paper is structured as follows. Section 2 formally de-
fines the convolutional layers that will be used in this work. Sec-
tion 3 gives an overview of the evaluation task. The experimen-
tal results are presented in Section 4 followed by an analysis
of the learned weights in Section 5. Conclusions are drawn in
Section 6.

2. Convolutional neural networks

The convolutional neural networks (CNNs, [9, 10]) have be-
come state-of-the-art models in the computer vision community
[11]. In speech recognition, the CNNs have been applied in the
same fashion to critical band energies (CRBE), obtained by a
short-term filter bank [12, 13, 14]. We first consider a fully
connected hidden layer. Given a sequence of D-dimensional
observations arranged in a mini-batch of length IV, the output
of a hidden layer y at node ¢ and time n is calculated from the
input z,, € R as

D-1
Yin = 0'( Z Wi, jTjn +bi), 0<n<N

=0

)]

where w; ; are the weights, b; is the bias and o is a non-linear
function such as sigmoid or rectified linear unit [15]. The free
parameters (w(;,»), b;) depend on the identity of the neuron 4.
In a typical convolutional layer that operates on both time and
frequency dimensions (i.e. columns and rows of the mini-batch
matrix), the weights are arranged as a 2D-patch and the param-
eters (w(;,«,0), bi) also depend on the identity of the convolu-
tional unit <. The output of such a neuron can be evaluated at
different positions (m, n):

mtk—1n+k’—1

Yim,n = U( E g Wi, j—m,h—nLj,h + bz)
h=n

j=m

(@)

where the weight patch w € R*** (k < D, k' < N) is multi-
plied with a part of the input covering the direct neighborhood
of the position (m,n). The set of outputs of a convolutional
unit ¢ at all positions {y;,ee} is referred to as “feature map”
[10] and can be thought of as a feature stream, extracted by this
unit. For brevity, we omit the discussion on patch symmetry and
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boundary handling. However, within the framework of frame-
wise training it is convenient to end up with a feature map that
has the same number of columns as the mini-batch.
Convolutional layers need to support processing of multi-
ple feature streams for two reasons. First, the input can con-
sist of pre-processed features like log-Mel energies and their
first/second temporal derivatives. Second, once we stack more
than one convolutional layer, the output of each filter from the
first layer [ — 1 is considered an input stream for the following
layer [. If the R input streams are also arranged in mini-batches
of the same dimension, the weight patch and the input both get
an additional dimension that needs to be summed over in Eq. 2:

m+k—1n+k’—1 R—1

Yi,m,n = U( Z Z Z Wi, j—m,h—n,rLjh,r + bi) (3)

j=m h=n r=0

Convolving the raw speech signal in time is a one-
dimensional operation on a single input stream, which sim-
plifies Eq. 3 as follows. First, the mini-batch is now con-
structed from consecutive signal intervals of length D (e.g.
D = 170ms - 16kHz = 2720). The output of a convolutional
unit ¢ is then defined as

m+k—1

Yiom = 0( Z Wi j—mTj + bi) 4)
j=m

where m is the position within the output vector and w € R*
is a weight vector. Evaluating the inner product in Eq. 4 for
each sample m = 0,1,2,... would be very expensive and
the output would be highly correlated. For this reason, it is
useful to proceed with a step size s > 1, such that the out-
put feature stream is only calculated for a subset of positions:
{Yims : 0<m-s<D—k}.

If s = 1, the hidden unit ¢ performs the convolution of the
input vector with the mirrored weight vector (denoted as w;)
o(z*w;+b;), producing an output sequence of length D—k+1.
If s > 1, the output of the hidden unit ¢ is sub-sampled by
this factor after evaluating convolution. Stacking multiple 1D-
convolutional layers is possible by introducing the additional
dimension to the weight and the input vector analogously to
Eq. 3, such that :cil)r = yﬁf._ Y for two consecutive layers | — 1
and [. A convolutional layer that consists of G filters has only
G - (Rk+ 1) trainable parameters, which is usually far less than
in a fully connected layer.

3. Experimental setup

The training of the DNN-HMM acoustic models is performed
w.r.t. the frame-wise cross entropy criterion on 50 hours of
speech from the Quaero [16] English database trainli. The de-
velopment and evaluation sets consist of ca. 3.5 hours of speech
each. The recognition is performed using a 4-gram language
model (LM).

In all experiments we use fully connected hidden layers
with 2000 rectified linear units (ReLUs). The output layer with
4500 nodes corresponds to the generalized triphones tied by a
phonetic classification and regression tree. The weights are ini-
tialized randomly and pre-trained discriminatively in a layer-
wise fashion [17]. The mini-batches are drawn from the shuf-
fled training utterances.

The ASR baseline system is a conventional GMM/HMM
based model trained on the same data w.r.t. the maximum likeli-
hood criterion. We apply linear discriminant analysis (LDA) to
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9 consecutive MFCC frames to obtain the final 45-dimensional
features. The GMM with a globally pooled diagonal covariance
matrix consists of approx. 660k densities, which corresponds
to about 30M trainable parameters. For acoustic training and
recognition we used the RASR toolkit [18, 19].

In baseline experiments with MFCC features we feed 17
stacked frames into the DNN so that the overall length of the
temporal context is approximately the same as in the experi-
ments on the raw time signal. When processing audio sam-
pled at 16 kHz in the same 10 ms steps as in the MFCC
pipeline, a raw time signal “feature” frame consists of 160 sam-
ples from the PCM waveform. These rectangular windows are
non-overlapping so that stacking 17 neighboring vectors does
not result in discontinuities of the signal. The samples quan-
tized with 16 bit need to be normalized to a numerically robust
range by performing a global mean and variance normalization.
This 1D operation can be interpreted as DC bias removal and
loudness equalization and at the same time it serves numerical
purposes to stabilize the DNN training with gradient descent.

4. Experimental results

In the first set of experiments, we trained a Gaussian Mixture
Model (GMM) and two fully connected DNNs with 9 hidden
layers. Table 1 shows that the DNN performs clearly better than
GMM, even if trained on the raw time signal. Also, adding more
layers slightly improves the DNN performance.

Table 1: Baseline results. WER in %.

Features model | #hidden layers | dev  eval
MFCC GMM - 244 316
DNN 9 169 22.1
time signal | DNN 9 20.7 263
DNN 12 203 255

We start the investigation of the convolutional layers with
the following topology: a single convolutional layer with a
ReLU activation function is followed by a maximum pooling
layer [12] with a non-overlapping pooling size of 4 and several
fully connected hidden layers. Each input vector spans 170 ms
of the time signal sampled at 16 kHz (D = 2720) and the con-
secutive input vectors in a mini-batch are obtained by shifting
the time signal by 10 ms.

The convolutional layer has G = 128 filters of size k =
256 that are shifted by s = 31 samples such that every filter
produces an output sequence of size [ (D — k)/s| + 1 = 80.
The pooling layer further reduces the total output dimension of
this layer by factor 4 to G - 80/4 = 2560, which has about the
size of a typical fully connected hidden layer. Table 2 shows
that the ASR performance saturates at 10 fully connected lay-
ers. Notably, such a CNN with just 5 fully connected layers
already reaches the performance of the DNN with 12 layers (cf.
Table 1).

Table 2: Varying the number of fully connected layers in a CNN
with a single convolutional layer. WER in %.
Fully connected layers
5 7 8 9 10 11 12
203 195 19.1 189 18.6 187 185
25.6 25.1 243 243 241 239 240

dev
eval

Now a filter of length £ = 256 has an impulse response that
corresponds to at most 256/16kHz = 16ms or a bandwidth of



at least 16kHz/256 = 62.5Hz. Table 3 shows how the window
length affects the recognition performance. It seems that 256 is
a good choice and that the performance is not very sensitive to
this parameter.

Table 3: Varying the length k of the filters. WER in %.

Filter length & in samples

128 256 512 1024
dev | 188 18.6 188 18.9
eval | 242 241 241 243

Let us now move on to a setup with two convolutional lay-
ers. As discussed in Section 2, the input to the second hid-
den layer can be considered to consist of G feature streams,
where every stream is an output of a filter from the first convo-
lutional layer. Each filter in the first layer processes an interval
of 2720 samples (170 ms) and outputs 80 samples (for the mo-
ment we ignore the sub-sampling by the pooling layer). While
this sounds like a strong sub-sampling, in Section 5 we will see
that the learned filters correspond to band passes, such that the
output is band-limited and can thus be sub-sampled without too
much loss of information. Similar to Eq. 4, the output of a con-
volutional unit in the second hidden layer can be expressed as

mik—1R—1
Yiym = U( Z Z Wi j—m,rTjr + bi) ®)
j=m r=0

where the number of feature streams R equals the number of
filters GG in the first convolutional layer. So the input to every
node in the second convolutional layer consists of 80 samples
from each of the G filters, representing the same 170 ms of input
signal. The weights are not shared between the streams, so that
each filter in the second layer learns a different combination of
the inputs.

For practical reasons, in the following we choose a slightly
different parametrization of the CNN. Table 4 gives an overview
of the important parameters.

Table 4: Parameters of a CNN with two convolutional layers:

input streams R, convolutional filters G, size of the filters k,

step size s

Layer number | R G k s | pooling size
1 1 64 256 31 2
2 64 | 128 15 1 2

Here every filter in the second convolutional layer takes
80/2 = 40 input samples from each of the 64 streams and pro-
duces 40 — 15+ 1 = 26 samples. The overall output dimension
of the second convolutional layer is then 128-26 /2 = 1664. Ta-
ble 5 compares the performance of the CNNs with one and two
convolutional layers. Adding a second convolutional layer im-
proves the recognition performance only slightly, but the CNN
with a single convolutional layer cannot compensate the gap
with more fully connected layers.

S. Analysis of the learned weights
5.1. First convolutional layer

Previously we proposed an analysis of the learned weights in a
fully connected DNN trained on the raw time signal [1]. The
basic idea was to perform a Fourier transform of each row of
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Table 5: Results for CNNs with multiple convolutional layers.

number of hidden layers WER [%]
convolutional  fully connected | dev  eval
1 10 18.6 24.1
11 18.7 239
12 18.5 24.0
2 10 18.3 23.6
11 182 234
64 64
g ] 0
g |- ?Z “® 4 -20
§ 32 ?’ 32 -40
2 2
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216 €16
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Frequency [kHz]
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Figure 1: Left: the weights learned by a convolutional layer.
Right: magnitude spectrum of the rows on the left, sorted by the
estimated center frequency.

the first weight matrix w; o) and to estimate the bandwidth fi
and the center frequency f of the coefficients learned by ev-
ery hidden node i. Re-ordering the nodes by the estimated filter
center frequency revealed that about 75% of the hidden nodes
have learned a bank of relatively narrow band pass filters. This
sorting is a permutation of indices m(7). The filter bank has
been found to resemble the audiologically parametrized time-
frequency decomposition that is implemented in many conven-
tional feature extraction pipelines like MFCC or PLP.

In case of a CNN trained on the raw time signal, the analysis
of the weights in the first convolutional layer can be done in the
same straight-forward manner as for DNNs, since the weight
vector of each convolutional unit corresponds to a mirrored im-
pulse response of a filter with finite impulse response (FIR).
The weights of each filter w(;,4) € R* are zero-padded and a
DFT is performed to obtain the magnitude spectrum of the filter
response:

Wi =20 -log,, |[DFT{w ¢} € RV 0<i< G (6)

The center frequency is estimated by a simple heuristic based on
the position of the maximum in the magnitude spectrum [1]. Fi-
nally, the rows W; are sorted by the estimated center frequency
such that ff(o) < ff(l) <. < ff(G_l).

Figure 1 shows the weights w(; o) learned from a random
initialization by 64 convolutional filters in the first hidden layer
and the corresponding magnitude spectra with the sorted rows
Wr(i). This representation shows clearly that the CNN has
learned a filter bank of relatively narrow band pass filters. It
can also be seen that the filters are distributed non-linearly with
about 78% of the filter centers below 4 kHz and a few filters
(three topmost rows) that have a much larger bandwidth. Also,
the center frequencies are sub-linear functions of the (sorted)
filter index (cf. Mel/Bark scales).

5.2. Second convolutional layer

As discussed in Sections 2 and 4, the second convolutional layer
operates on multiple input streams, one for each filter output
from the filters in the first convolutional layer. In the previous



section we have seen that the learned filters in the first convolu-
tional layer perform a time-frequency decomposition similar to
an FIR filter bank. Having estimated the center frequencies of
the band pass filters, we were able to reorder the hidden nodes
such that neighboring filters operate on neighboring frequen-
cies. This allows us to interpret the output of the first convo-
lutional layer as follows: each node in the first hidden layer
performs a band pass filtering of 170 ms of raw time signal,
outputting 40 samples (because of the shift size s = 31 and the
max-pooling layer with pooling size 2, cf. Table 4). Thus, for
each input vector in the mini-batch, the first convolutional layer
extracts a spectrogram or critical band energies {y(;),o } that
can be naturally thought of as a matrix with 64 rows (one for
each filter) and 40 columns (one for each output sample).

Since the second convolutional layer also performs convo-
lution in time and not in frequency (similar to a Time-Delay
Neural Network [9]), every hidden unit ¢ in the second layer
has a weight vector w; e.e € R¥* of length k = 15 for each
of the R = 64 input frequency bands (cf. Eq. 5). With a shift
size of s = 1, a node in the second convolutional layer outputs
40 — 15 4+ 1 = 26 samples.

Figure 2 shows some of the 128 weight vectors (wi,e,e)”
learned by the second convolutional layer from a random ini-
tialization. The rows in each subplot are reordered such that
the neighboring rows represent input from neighboring fre-
quency bands. The X-axis corresponds to the time axis, al-
though the input samples are now the sub-sampled outputs of
the first layer. The weight patches shown in the plot are thus
“shifted” horizontally 26 times over the critical band energies
extracted by the first hidden layer. After forwarding through
the max-pooling layer, the output is arranged as a vector of size
128 - 26/2 = 1664 before being fed into the fully connected
hidden layers.

The filters in Figure 2 show some recognizable patterns.
First, the learned weights are blurred along the time axis, which
is presumably because this is the direction of the convolution,
i.e. the axis along which the weights are shared between mul-
tiple positions in the input vector. Second, the weights are
close to zero (green area) everywhere except for relatively small
regions. In those “active” regions within the time-frequency
plane, the weights appear to represent a pattern that is non-
stationary in both directions (e.g. ¢ € {0,8,10,14}). Third,
many of the patterns represent a difference (i.e. a “contrast’)
between the regions with negative (blue areas) and positive
weights (red areas). This means these filters produce a strong
output when they match a similar pattern in the input spectro-
gram, which can occur at the onset or offset of a phonetic event
characterized e.g. by some dynamics of the formants.

Further, the weights in filters number ¢ € {1,9,13} have
learned to perform a Gaussian-like filtering in time in several
bands that is similar to the MRASTA filtering [20]. In contrast,
filter number ¢ = 7 has learned a band pass that is more time-
invariant. Similar patterns have been observed when analyzing
the weights learned by a conventional 2D-CNN on manually
extracted filter bank outputs [21].

6. Conclusions

Previously we have demonstrated that a hybrid DNN/HMM
acoustic model trained on the raw time signal can achieve rea-
sonable recognition performance on an LVCSR task [1]. In this
work we have shown that the performance can be further im-
proved by adopting the idea from classical feature extraction
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Figure 2: Learned weights from the second convolutional layer.
X-axis represents time and the Y-axis the frequency after a re-
ordering of the rows by the filter center frequency (cf. Sec-
tion 5.1). Please refer to Section 5.2 for a detailed description
of the plots.

pipelines of filter bank parameters shared across subsequent po-
sitions in time. We switched from conventional fully connected
layers to one-dimensional convolutional layers that perform fil-
tering in time. This is a natural choice for the raw time signal in-
put that has several advantages. First, the weight sharing greatly
reduces the number of trainable parameters, thus simplifying
the optimization problem. Second, the learned weights can be
interpreted as impulse responses of FIR filters more directly. By
introducing convolutional layers to the raw time signal DNN,
the WER on the test set dropped from 25.5% to 23.4%. This
reduces the gap to an MFCC based result of 22.1% to only 6%
relative increase in WER. We were able to repeat the analysis
performed earlier on the fully connected input layer and ob-
served the same trend: the first convolutional layer learned a
filter bank of band pass filters that are non-linearly distributed
in frequency. Further, we extended this analysis to the second
convolutional layer by reordering the learned weights accord-
ing to the estimated center frequency of the band passes from
the first layer. This revealed the patterns that the filters in the
second layer “look for” in the output of the first hidden layer.
Some of those patterns can be interpreted as detectors of dy-
namic events in the time-frequency plane that are relevant for
the state posterior estimation.
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