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Abstract
In language processing applications like speech recogni-

tion, printed/handwritten character recognition, or statistical
machine translation, the language model usually has a major
influence on the performance, by introducing context. An in-
crease of context length usually improves perplexity and in-
creases the accuracy of a classifier using such a language model.
In this work, the effect of context reduction, i.e. the accuracy
difference between a context sensitive, and a context-insensitive
classifier is considered. Context reduction is shown to be related
to feature omission in the case of single symbol classification.
Therefore, the simplest non-trivial case of feature omission will
be analyzed by comparing a feature-aware classifier that uses
an emission model to a prior-only classifier that statically in-
fers the prior maximizing class only and thus ignores the obser-
vation underlying the classification problem. Upper and lower
tight bounds are presented for the accuracy difference of these
model classifiers. The corresponding analytic proofs, though
not presented here, were supported by an extensive simulation
analysis of the problem, which gave empirical estimates of the
accuracy difference bounds. Further, it is shown that the same
bounds, though not tightly, also apply to the original case of
context reduction. This result is supported by further simula-
tion experiments for symbol string classification.
Index Terms: language model, context, error bound

1. Introduction
In applications like automatic speech recognition, statistical
machine translation, printed/or handwritten character recogni-
tion, classification refers to string classes, where each class rep-
resents a string (or sequence) of symbols (words, characters,
phonemes, etc.). The corresponding language models, provid-
ing symbol probability distributions in symbol sequence con-
text of varying length, are an important aspect of many natural
language processing tasks. Language modeling paradigms may
be based on smoothed n-gram counts [8], or on multilayer per-
ceptrons [2]. Empirically, using longer context improves per-
plexity and, up to some extent, also the accuracy [13] of string
classifiers. Nevertheless, to the best of the authors’ knowledge,
currently no formal relation is known between the order of the
Markov model used in the language model and the accuracy of
a resulting recognition system.

To discover corresponding bounds, an empirical Monte-
Carlo approach was applied. To judge if a measure is a potential
candidate for a bound, millions of distributions were simulated,
discarding measures that did not exhibit a suitable bounding be-
havior on the accuracy difference of two classifiers with differ-
ent context length. If a bound existed, its functional form was

conjectured, followed by an attempt to find a formal proof.
Information theory provides a number of bounds on the

Bayes error itself. Examples for this are the Chernoff bound
[4], the Lainiotis bound [10], and the nearest neighbor bound
[7]. These bounds do not provide information on the effect of
context in string classification, although the nearest-neighbor
bound resembles a part of the lower bound presented here.
In [5], an upper bound on the Bayes error of a string classi-
fier using two classes is described. The bound is a function
of the class prior and requires a restriction on the class con-
ditional observation distribution. In [11], two bounds on the
accuracy difference between a Bayes single symbol classifier
and a model classifier (e.g. one learned from data) are pre-
sented. These bounds are based on the squared distance and the
Kullback-Leibler divergence [9]. The Kullback-Leibler based
bound was later tightened and extended to the general class of
f -divergences [6] in [12].

In this work, the feature-dependence of a classifier is ana-
lyzed by comparing a feature-aware classifier using an emis-
sion model to a prior-only classifier that statically infers the
prior maximizing class only. The corresponding accuracy dif-
ference between such a pair of classifiers is shown to be closely
related to the accuracy difference between a context sensitive,
and a context-insensitive classifier, being the original motiva-
tion for this work. Upper and lower tight bounds are presented
for this accuracy difference. Although not presented here, ana-
lytic proofs are available. Extensive simulation analysis of the
problem provided the initial hypothesis that lead to these proofs.
Further derivations presented here also show that the derived
bounds can be related to the accuracy difference induced by
context length variation in a language model for symbol string
classification, which is supported by simulation results.

2. Context Reduction vs. Feature Omission
Let C be a finite set of classes (e.g. words, symbols, etc.) and
X be the set of observations. For simplicity X is assumed to be
finite. Then the task of string classification is to map a sequence
of observations xN

1 ∈ XN to a sequence of classes cN1 ∈ CN .
Note that here the sequence of classes and observations have
the same length and no alignment problem is assumed, like in
automatic speech recognition. An exemplary task, which would
be represented by this model would be part-of-speech tagging.
Let

pr(cN1 , xN
1 ) = pr(cN1 ) · pr(xN

1 |cN1 )

be the probability mass function of the true joint distribution,
with the language model pr(cN1 ) and the observation model
pr(xN

1 |cN1 ). Then the accuracy of a Bayes classifier at position



i in the string of classes is:

A∗i =
∑
xN
1

max
c

 ∑
cN1 :ci=c

pr(cN1 )pr(xN
1 |cN1 )


The language model is assumed to be a bigram:

pr(cN1 ) =

N∏
n=1

pr(cn|cn−1)

From this bigram a position dependent unigram can be derived
by marginalization for position i ≤ N :

pri(c) =
∑

cN1 :ci=c

pr(cN1 ) =
∑

ci1:ci=c

pr(ci1)

Also, it is assumed that the observation model pr(xN
1 |cN1 )

only exhibits local dependence:

pr(xN
1 |cN1 ) =

N∏
n=1

pr(xn|cn)

To measure the effect of the language model context, the
difference ∆Ai between the full, bigram-based classifier’s ac-
curacy A∗i , and the accuracy of the reduced context classifier Ãi

that is based on the derived unigram prior, is considered:

∆Ai = A∗i − Ãi =
∑
xN
1

max
c

pri(c, x
N
1 )−

∑
x

max
c

pri(c, x),

with:

pri(c, x
N
1 ) :=

∑
cN1 :ci=c

pr(cN1 , xN
1 ),

pri(c, x) :=pri(c)pr(x|c).

To emphasize the connection to single symbols, the last equa-
tion is rewritten as follows:

∆Ai =
∑
xi

pri(xi)∆Ai(xi), (1)

with the definition of the local accuracy difference:

∆Ai(xi) :=
∑

y=xN
1 \xi

pri(y|xi) max
c

pri(c|y, xi)−max
c

pri(c|xi),

(2)

and the marginals in symbol position i are, with y = xN
1 \ xi:

pri(x) =
∑

cN1 ,xN
1 :xi=x

pr(cN1 )pr(xN
1 |cN1 )

pri(c|x) =
pri(c)pr(x|c)

pri(x)

pri(c|y, xi) = pri(c|xN
1 ) =

pri(c, x
N
1 )∑

c′ pri(c
′, xN

1 )

pri(c, y|xi) = pri(c, x
N
1 \ xi|xi) =

pri(c, x
N
1 )

pri(xi)

pri(y|xi) =
∑
c

pri(c, y|xi)

The local accuracy difference defined in Eq. (2) actually
shows the difference between the accuracies of a single sym-
bol classifier that maps an observation y ∈ Y to a single class
c ∈ C, and a classifier that only uses the prior (mapping every
observation to the same class). Discarding the condition on xi

and replacing y with x, the accuracy difference for the case of
feature omission is obtained:

∆A = A∗ − Ã =
∑
x

max
c

pr(c)pr(x|c)−max
c

pr(c), (3)

for which bounds will be derived in the following section that
also lead to similar bounds for the symbol string classification
case introduced here.

3. Gini Difference Bounds
Assume single symbol classification, and define the following
statistical measure for the difference between the class poste-
rior and the class prior probability, which will be called Gini
difference in the following:

∆G =
∑
x

pr(x)
∑
c

pr(c|x)2 −
∑
c

pr(c)2

=
∑
x

pr(x)
∑
c

[pr(c|x)− pr(c)]2

The term Gini difference is chosen here, as it is similar to the
Gini criterion, as, e.g. used in decision tree learning. In [7],
the minuend and subtrahend of the Gini difference are known
as Bayesian distance.

In the following, tight lower and upper bounds of the accu-
racy difference for the case of feature omission are presented in
terms of the Gini difference. The corresponding proofs are not
presented for lack of space, but are available from the authors
on request.

Note that both the Gini difference, and the accuracy dif-
ference can take values between 0 and |C|−1

|C| . Therefore, both
measures are be normalized:

∆A′ =
|C|
|C| − 1

∆A,

∆G′ =
|C|
|C| − 1

∆G.

As shown in the following, in terms of these normalized mea-
sures, the bounds do not explicitly depend on the number of
classes |C|.

3.1. Upper Bound

The normalized accuracy difference defined in Eq. (3) is tightly
bounded from above by the square root of the normalized Gini
difference:

∆A′ ≤
√

∆G′.

3.2. Lower Bound

The lower bound of the Gini difference consists of three differ-
ent segments.

3.2.1. First Segment of the Lower Bound

The (normalized) accuracy difference is positive:

∆A′ ≥ 0, (4)



and equality can be obtained iff the normalized Gini difference
is constrained to:

0 ≤ ∆G′ ≤ 1

4
.

3.2.2. Second Segment of the Lower Bound

Also, the normalized accuracy difference is linearly bounded
from below by the normalized Gini difference minus a constant:

∆A′ ≥ ∆G′ − 1

4

This bound is tight for 1
4
≤ ∆G′ ≤ 3

4
.

3.2.3. Third Segment of the Lower Bound

If the Gini difference is constrained to

∆G′ ≥ 3

4
, (5)

then the set of tight lower bounds of the normalized accuracy
difference is completed by:

∆A′ ≥ 1−
√

1−∆G′

⇔ ∆G′ ≤ 2∆A′ − (∆A′)2

The bounds are shown in Fig. 1 in terms of normalized Gini
difference and normalized accuracy difference.

3.3. Transition to Context Reduction

For the case of symbol string classification, the Gini difference
can also be defined for a specific symbol position i:

∆Gi :=
∑
xi

pri(xi)∆Gi(xi)

with the local Gini difference:

∆Gi(xi) :=
∑

y=xN
1 \xi

pri(y|xi)
∑
c

pri(c|y, xi)
2 −

∑
c

pri(c|xi)
2

Apart from the additional condition on xi, both the local
accuracy difference ∆Ai(xi), and the local Gini difference
∆Gi(xi) effectively can be identified as single symbol cases,
such that the same upper and lower bounds apply, as derived
for the feature omission case in Subsecs. 3.1, and 3.2. Also,
note that these upper and lower bounds are concave and convex
functions, respectively. Now assume, these upper and lower
bounds are represented by the following two functions g and f ,
respectively (now assumed without normalization of Gini, and
accuracy difference, without loss of generality), such that:

∆Ai(xi) ≤ g
(
∆Gi(xi)

)
(6)

∆Ai(xi) ≥ f
(
∆Gi(xi)

)
(7)

Then Jensen’s inequality [3, p. 182] can be applied to obtain
the same bounds for the global, symbol string case:

∆Ai =
∑
xi

pri(xi)∆Ai(xi)

≤
∑
xi

pri(xi)g
(
∆Gi(xi)

)
(Eq.(6))

≤ g
(∑

xi

pri(xi)∆Gi(xi)
)

(Jensen’s ineq., concave case)

≤ g
(
∆Gi

)
∆Ai =

∑
xi

pri(xi)∆Ai(xi)

≥
∑
xi

pri(xi)f
(
∆Gi(xi)

)
(Eq.(7))

≥ f
(∑

xi

pri(xi)∆Gi(xi)
)

(Jensen’s ineq., convex case)

≥ f
(
∆Gi

)
Nevertheless, it should be mentioned that these global bounds
for the symbol string case are not necessarily tight anymore, as
is confirmed by the simulations shown in the following section.

4. Simulations
4.1. Feature Omission: Single Symbol Case

In order to determine the exact relation between the Gini dif-
ference and the accuracy difference, originally millions of dis-
tributions were simulated to calculate their values of the Gini,
and the accuracy difference for a number of configurations. In
Fig. 1, the results of such a simulation for 8 classes and a set
of 16 different discrete observations is presented. An upper and
a lower bound for the accuracy difference as a function of the
Gini difference is visible. This type of simulation also was per-
formed for other combinations of |C| and |X| and from these
results the upper and lower bounds presented in Sec. 3 were hy-
pothesized empirically by extensive analysis of the simulations,
which further led to corresponding proofs as presented in [1].
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Figure 1: Simulation results for |C| = 8 classes and |X| = 16
observations. Each gray dot represents one simulated distribu-
tion. Also, the derived analytic tight upper and lower bounds
are shown in red and blue, respectively.



4.2. Context Reduction: Symbol String Case

The same experiments were performed for symbol string clas-
sification. The upper and lower bounds from the symbol case
(feature omission) do hold for the string case as shown in Sec-
tion 2, but the simulations suggest that in this case the bounds
are not tight any more, i.e. the simulations do not reach the
bound in general, as shown in Fig. 2
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Figure 2: Simulation results for a string classifier with |C| = 5
classes, |X| = 10 observations, and sequence length N = 3.
The accuracy/Gini difference was calculated at position i = 2.
Each gray dot represents one simulated distribution.

In the following Fig. 3, the number of classes |C| and obser-
vations |X| were proportionally reduced, upon which the space
between the analytical bounds is much less filled. This might be
due to the dependency between the individual position’s distri-
butions, which might be stronger for a lower number of classes
and observations.
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Figure 3: Simulation results for a string classifier with |C| = 3
classes, |X| = 6 observations, and sequence length N = 3.
The accuracy/Gini difference was calculated at position i = 2.
Each gray dot represents one simulated distribution.

When (slightly) increasing the length N , apparently no
strong difference can be observed, as shown in Fig. 4. The
number of observations here was reduced somewhat, as the
complexity of the simulations apparently is exponential and the

number of simulations required to obtain good filling of the
space between the bounds increases strongly.
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Figure 4: Simulation results for a string classifier with |C| = 8
classes, |X| = 9 observations, and sequence length N = 5.
The accuracy/Gini difference was calculated at position i = 3.
Each gray dot represents one simulated distribution.

5. Conclusions & Outlook
In this work, upper and lower bounds on the accuracy difference
for feature omission for single symbol classification, and con-
text reduction for symbol string recognition were investigated.
First of all, a relation between both cases was derived. Further,
tight upper and lower bounds were presented for the single sym-
bol case. Monte-Carlo simulations played an important role in
the discovery, as well as the formal proof of the bounds pre-
sented. Further simulations for the case of context reduction
in symbol string classification were presented, which underline
the relation between both cases. As suggested by these, the pre-
sented bounds, although being tight for the single symbol case,
do not seem to be tight in general for the symbol string case.
Nevertheless, the simulations strongly hint at the existence of
tighter bounds for the symbol string case, which will be inves-
tigated in further work. To the knowledge of the authors, the
bounds presented are the first to analytically support the empir-
ically observed effect of feature omission and context reduction
on the accuracy.
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